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Abstract

Research in social neuroscience has increasingly begun to use the tools of computational neuroscience to better understand
behaviour. Such approaches have proven fruitful for probing underlying neural mechanisms. However, little attention has
been paid to how the structure of experimental tasks relates to real-world decisions, and the problems that brains have
evolved to solve. To go significantly beyond current understanding, we must begin to use paradigms and mathematical
models from behavioural ecology, which offer insights into the decisions animals must make successfully in order to
survive. One highly influential theory—marginal value theorem (MVT)—precisely characterises and provides an optimal
solution to a vital foraging decision that most species must make: the patch-leaving problem. Animals must decide when to
leave collecting rewards in a current patch (location) and travel somewhere else. We propose that many questions posed in
social neuroscience can be approached as patch-leaving problems. A richer understanding of the neural mechanisms
underlying social behaviour will be obtained by using MVT. In this ‘tools of the trade’ article, we outline the patch-leaving
problem, the computations of MVT and discuss the application to social neuroscience. Furthermore, we consider the
practical challenges and offer solutions for designing paradigms probing patch leaving, both behaviourally and when using
neuroimaging techniques.
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Introduction
How do we make decisions based on the value of different
options during social interactions? This question has been at
the core of social, computational and decision neuroscience in
the last decade. To address it, research has largely focused on
using approaches inspired by work in social psychology, from
reinforcement learning (RL) and computer science, or from eco-
nomics (O’Doherty et al., 2015). These approaches have proven
fruitful for better understanding many computations and the
mechanisms guiding social behaviours (Behrens et al., 2009; Ruff
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and Fehr, 2014; Apps et al., 2016; Hill et al., 2016; Lockwood
et al., 2016; FeldmanHall and Chang, 2018; Wittmann et al., 2018).
However, experimental designs and concepts can sometimes be
somewhat artificial and may not reflect the kinds of decisions
that humans and other animals regularly make in the real world.
Recognition of this has led many to argue that we can get a
better understanding of behaviours and their underlying neural
mechanisms by turning to a different field: behavioural ecology
(Kolling et al., 2012; Pearson et al., 2014; Kolling and Akam, 2017;
Mobbs et al., 2018).
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The research in behavioural ecology aims to explain how
the environment an animal is situated in shapes their decision-
making behaviours. This work has demonstrated that animals
are able to be almost optimal when making decisions that they
would commonly face in their natural environment (Krebs et al.,
1974; Charnov, 1976; Mobbs et al., 2018). Such optimality is not
surprising: survival would have depended on the evolution of
decision-making mechanisms that minimised predation risk or
maximised reward intake when foraging. We contend that those
same decision-making mechanisms may be at least partially
conserved in humans and may be deployed when making a
vast range of decisions, including during social interactions.
Indeed, there is considerable evidence that there is overlap in the
mechanisms that guide self-benefitting and other-oriented deci-
sions, even if there are some dissociations (Zaki and Mitchell,
2011; Chang et al., 2013; Wittmann et al., 2018; Piva et al., 2019).
Thus, similar mechanisms that will be deployed when solving
problems outlined within behavioural ecology may be applicable
to social and non-social decisions alike.

New insights have already been found in behavioural and
cognitive neuroscience by using paradigms inspired by models
and frameworks from behavioural ecology, which may not have
been discovered using the binary choice paradigms common
in RL and neuroeconomics (Hayden et al., 2011; Kolling et al.,
2012; Wolfe, 2013; Constantino and Daw, 2015; Lottem et al.,
2018; Le Heron et al., 2019). As social behaviours may rely on the
same mechanisms, new insights can be gained in social neu-
roscience by deploying frameworks from behavioural ecology.
Although behavioural ecology has multiple branches, each of
which may make different contributions to cognitive and social
neuroscience, here we focus on one famous paradigm and a key
theory in ecology: the patch-leaving problem. Marginal value
theorem (MVT) (Charnov, 1976) provides a powerful optimal
account of how animals should make patch-leaving decisions
when foraging for rewards. In the patch-leaving problem, an
agent must continually consider whether to stay in a location
(patch) collecting rewards from a depleting resource, or travel
elsewhere to find new ‘patches’ from which to harvest rewards.

We argue that humans make many social decisions that
could be thought of as patch-leaving decisions, from part-
ner choice, to decisions of when to join or leave a social
group.

In this manuscript, we provide a ‘tools of the trade’ out-
line of MVT, its optimal computational model and the impor-
tant considerations for designing a patch-leaving-based exper-
iment. This will guide future studies that aim to use patch-
leaving paradigms as fruitful, novel ways to probe the compu-
tational, cognitive and neural mechanisms underlying social
decisions.

The patch-leaving problem and optimal foraging

For many species, a vital problem that must be solved in order
to survive, is how to forage for rewards (e.g. food) in patchy
environments. Making ‘patch-leaving’ decisions sub-optimally
can lead to an animal not having consumed enough energy to
survive. What must animals consider in order to solve this prob-
lem? There are three key features that drive foraging decisions
according to theories from behavioural ecology: the reward rate
in a patch, the richness of the environment and the dispersion
of patches.

When an animal arrives in a new location (a ‘patch’), typically
it will be plentiful with a rewarding resource, so they will obtain

rewards at a high rate. The more they collect, the more the
resource is depleted, and the lower their foreground or instan-
taneous rate of reward becomes (e.g. the more apples you have
collected from a tree, the less apples are left and the longer it
takes to get each one). The total amount of reward in a patch
and the rate at which a resource depletes are therefore vital for
the animal to consider and dictate how long an animal should
spend in a patch—the patch residency time. However, animals
must not consider only the current foreground rate to optimise
their foraging, they must also consider the dispersion of patches
and the costs of travelling between them.

Being in a patch with a low rate of reward is sub-optimal if
you could be in a different patch with a much higher rate; thus,
staying until a resource is totally depleted will result in a reduced
amount of reward collected in the same period of time within
an environment. Residency times should therefore depend on
properties of the environment outside of the current patch. In
particular, it is vital to consider the cost of travelling between
patches, because when travelling, the net intake of reward is
zero. In addition, environments are inherently patchy and not
all patches are equal, with some offering a higher yield. So,
residency times should also depend on how rich an environment
is, or, the average rate of rewards across all patches in the
environment. Thus, optimal patch leaving decisions consider the
journey that must be taken to travel between patches, the quality
of the environment, as well as the rate of reward in a current
patch.

How do animals make patch-leaving decisions? Krebs et al.
(1974) established that animal behaviour could be explained by
leaving patches according to a set ‘giving-up’ time, which was
based on the current intake of resources in a patch, but also
the environmental richness. This was subsequently formalised
as an optimal foraging model called MVT (see Box 1; Charnov,
1976), which states that the optimal leaving time from any patch
is when its instantaneous rate of reward equals that of the
average reward rate for the environment, accounting for the
costs required to move between patches. Moving earlier or later
than the optimal time will lead to a reduction in the overall level
of rewards collected, either through over- or under-harvesting.
There is now a wealth of evidence that many species make
patch-leaving decisions in line with the model, with many being
very close to optimal, including guinea pigs (Cassini et al., 1993),
squirrels (Lewis, 1982), ladybirds (Hassell and Southwood, 1978),
birds (Krebs et al., 1974) and humans (Constantino and Daw, 2015;
Le Heron et al., 2019).

The well-studied exploration-exploitation dilemma has
provided insights into how individuals choose to exploit known
reward values or switch to exploring unknown alternatives,
largely using forced-choice RL paradigms (Daw et al., 2006).
These experimental paradigms often involve learning the
associations between abstract symbols and reward values.
A key additional insight and contribution of MVT is that
rather than learning associations, it considers the optimal
duration to spend in a patch of changing value before switch-
ing to another. Furthermore, as detailed above, considera-
tion of environmental conditions—and the cost of travelling
between locations—is built into the theory and the optimal
model.

Crucially, MVT is an optimal model that can be used to
make specific predictions about patch-leaving times. In the next
section, we outline the predicted effects MVT has on leaving
times and in Box 1 we outline the model and how it can be used
to predict optimal leaving times.
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Fig. 1. Example patch-leaving paradigms. Left panel – a continuous reward depletion design. Taken from Le Heron et al. (2019), (A) participants had to decide how long

to remain in their current patch (field). Reward (milk) gains were indicated by the continuous filling of the silver bucket with a white bar. This gain occurred at an

exponentially decreasing rate. Following a leave decision, a clock ticking down the 6-s travel time was presented, during which they could collect no reward. (B) Three

foreground patch types were used, differing in the initial reward rate (low, medium and high yield). Two different background environments (farms) were used, with

the background reward rate determined by the relative proportions of these patch types. Percentages represent the distribution of patch types in each environment.

(C) Predictions of the optimal leaving times according to MVT. Participants should leave each patch when the instantaneous reward rate in that patch (grey lines) drops

to the background environmental average (gold and green dotted lines). Therefore, people should leave sooner from all patches in rich (gold dotted line) compared to

poor (green dotted line) environments, but later in high-yield compared to low-yield patches (D) In line with MVT, residency times are longer in higher yield patches,

but lower in the rich environment. Right panel. Taken from Constantino and Daw (2015). (E) Participants foraged for apples in virtual patch-foraging environments. On

each trial, they could choose to harvest a tree or move on to a new tree. Harvesting returned an exponentially diminishing number of apples with a short time cost.

Moving to a different tree incurred a longer time cost. (F) Number of apples at last harvest is indicative of time spent in harvesting. The lower the number, the longer

participants spent in harvesting each tree in that environment. Participants foraged each patch longer in richer environments (short travel times, slow decay rates)

Predictions of MVT
Foreground reward rate

MVT states that the optimal time to leave a patch is when the
instantaneous reward rate of the current patch is equal to the
environmental reward rate. It follows therefore that a ‘high-
quality’ patch with lots of resources will reach the environ-
mental reward rate after a longer period of time. As such, MVT
predicts that animals should reside in well-resourced patches
longer than poorly resourced patches within the same environ-
ment. That is, you will stay in the apple tree with 20 apples longer
than the one with 10 within the same environment. However,
the foreground rate is not only determined by the rewards itself,
but also the effort (or energetic cost) of harvesting. If collecting
rewards in a patch requires a lot of energy then this effectively
decreases the reward rate. So, animals will leave patches sooner
if it requires a lot of effort to obtain the rewards. Thus, you will
stay longer in the tree with 10 apples if they are on the lower
branches than a tree with 10 apples where you have to climb to
the higher branches to collect them.

Background reward rate (or environmental richness)

Another key feature of the patch-leaving problem, compared to
the type of binary choice paradigms typically used in decision
neuroscience, is that the decision to leave should depend on
the tracking of the average value of the environment. Within
MVT, the background reward rate—or average rate of reward in
all patches in the environment—also influences optimal resi-
dency times and does so independently of the foreground rate.
Specifically, as shown in Box 1, it states that in rich environments
where most patches are plentiful it is optimal to leave patches

sooner than in poor environments where most patches are low
in resources. Thus, the quality of a patch is entirely relative to the
average rate of rewards of all other patches in the environment.
In simple terms, a tree with 10 apples will be left sooner if the
average tree in the environment has 20, than if the average tree
has five.

Travel costs

Once a decision is made to leave, you have to then travel to
start collecting rewards again. But, travelling comes at a cost.
While travelling the net intake of reward is zero, and thus, the
length of time travelling influences the optimal time to leave.
When a lengthy time must be spent travelling between patches,
the environment is less rich. As a result, it is optimal to stay
longer in patches in an environment where travelling takes some
time. However, there is an additional travel cost, which is the
amount of effort (or energy to be expended) required to get to
the next patch. This has the same effect as the length of travel
time, whereby higher effort costs reduce the richness of the
environment and thus make it more optimal to stay in patches
longer. Therefore, you will stay collecting apples from an apple
tree longer if the next tree is far away or up a hill, than if it is
close by on flat ground.

Non-depleting resources

Although in most circumstances food rewards deplete within
patches, there will be exceptions to this rule where resource
intake does not decline over time, particularly when the resource
foraged for is not a primary reinforcer. For instance, if you are in a
relationship where the partner has treated you consistently well,
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why would you leave. MVT still makes predictions of what would
happen if resource depletion is not occurring. As MVT states
that the foreground reward rate is compared to the background
reward rate, a decision to leave occurs when the foreground is
below the background. Thus, if the foreground reward rate is
above the background and does not deplete, MVT would predict
an individual should stay in that patch for as long as possible.
However, if a foreground reward rate does not deplete but is not
above the background, MVT predicts an individual will actually
leave the patch quickly, as other patches could still give a higher
rate of reward. In addition, there is evidence that even if a fore-
ground reward rate is increasing, similar neural mechanisms are
used to compare that rate to the background in order to decide
whether to stay or leave a patch (Wittmann et al., 2016). Thus,
although MVT is typically predicated on a depleting resource,
its key tenets might still be useful for social neuroscience, for
addressing questions such as ‘why would you leave a partner
who has always treated you well?’

Uncertainty in the MVT framework

A key assumption of MVT is complete information of the envi-
ronment (Stephens and Krebs, 1986). In its original form, this
assumption is reasonable, given an animal’s likely knowledge
of its habitat. However, environmental richness is essentially a
probability function: the animal may know the average environ-
mental richness, but not how rich any specific patch is within it.
Therefore, when choosing to leave a patch, there is no certainty
that the next patch will be of high quality. Such a property of
the world may also be found in social situations. For example,
one may know the general reputation of a group, but not that of
individual members. Still, MVT can be extended to remove this
assumption. Constantino and Daw (2015) found that an MVT-
informed RL model explained behaviour in a foraging task with
incomplete information. Future work should examine how RL,
which has increasingly been used within social neuroscience
(Apps et al., 2015; Lockwood and Klein-Flugge, 2019), could be
integrate with MVT to better understand social decisions.

Why forage? neural mechanisms revealed by
patch-leaving paradigms
Some of the ‘decision’ variables outlined above have been exam-
ined previously in cognitive and social neuroscience, in the
context of binary decisions. There is an abundance of research
examining how people process temporal delays, effort costs and
reward magnitudes. Many studies have looked at these in social
decision-making tasks as well (Kable and Glimcher, 2007; Charl-
ton et al., 2013; Bhanji and Delgado, 2014; Ruff and Fehr, 2014;
Garvert et al., 2015; Apps and Ramnani, 2017; Chong et al., 2017;
Lockwood et al., 2017; Schwenke et al., 2017). However, what is
unique is the ecologically valid and dynamic nature of the deci-
sion. It requires the comparison of two different reward rates, in
a dynamic setting where one reward rate is constantly changing.
MVT also considers efforts and delays not as purely instrumental
costs that must be incurred to get a specific magnitude of reward,
but instead as properties of patches and the environment that
must feed into the decisions of how long to reside in a location.
This is strikingly different from the two-option choice tasks that
are very commonly deployed in neuroscience. Moreover, such
dynamic decisions may be more reflective of many of the kinds
of choices that must be made on a regular basis (Mobbs et al.,
2018).

Humans conform to MVT

In addition to its potential utility in social neuroscience, there is
already evidence that humans do broadly conform to MVT prin-
ciples in many non-social situations. Wolfe (2013) administered a
series of computerised experiments where human participants
were required to forage for berries in different patches in an envi-
ronment. By systematically varying different components of the
task, they showed: that participants left individual patches when
their instantaneous rate of reward matched the environmental
reward rate; that greater travel times between patches extended
residency times at individual patches; and greater within-patch
‘effort’ extended patch residency times. In these experiments,
participant behaviour closely matched optimal leaving times
predicted by the MVT model.

Constantino and Daw (2015) designed an experiment where
human participants foraged for apples, deciding whether to
continue harvesting at a tree with depleting returns or to move
on to a new, replenished tree. They found that leaving times
varied as a function of environmental richness, as predicted by
MVT (Figure 1). Furthermore, the authors compared how well
choice behaviour fit two different learning models—a temporal
difference learning algorithm or an MVT-based learning algo-
rithm. They found that the MVT model provided a better fit to the
data, suggesting an important role for environmental average
reward rates in task performance. A recent study by Le Heron
et al. (2019) used a similar design, manipulating the magnitudes
of reward—or yield—available in patches and the proportion of
high or low yield patches in different environments. Similarly,
they found that people’s decisions, although not completely
optimal, broadly conformed to the principles of MVT (Figure 1).
These studies provide clear evidence of the influence of environ-
mental context on human decisions to continue to exploit cur-
rent resource options, or to move on and explore other available
options.

Many human behaviours may therefore conform to MVT
principles, and, as such, using these paradigms to probe human
decision-making may reveal important insights into how
dynamic decisions are made during social interactions.

Novel neural mechanisms revealed by the
patch-leaving problem

Using MVT has already been fruitful in sub-fields of neuro-
science for identifying mechanisms that may not have been
revealed using other approaches. For instance, Hayden et al.
(2011) used a patch-leaving task in macaques, recording from
single-units in area 24c in the anterior cingulate sulcus (ACCs).
They identified a previously never demonstrated property of
cells in this region—a rise-to-threshold signal (Figure 2). The
firing rate of neurons in this region increased gradually with
time in a patch until the point when the monkey left a patch.
Variability in leaving times correlated with variability in the
rise-to-threshold, such that neurons reached a firing threshold
quickest on trials with the earliest leaving times. Furthermore,
when there was a greater travel time between patches, the rate
of increase of firing was reduced, as well as the leaving threshold
being greater. Thus, neurons in the ACCs appear to signal a rise-
to-threshold signal, which builds at different rates depending on
the foreground and background reward rates, but leaving occurs
whenever these neurons reach the same firing rate. This work
seemed therefore to have identified that this rise-to-threshold
signal driving patch-leaving decisions, which would not have
been identified in binary choice tasks.
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Box 1:. Marginal Value Theorem
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Fig. 2. From Hayden et al. (2011). (A) Macaques performed a simulated patch-leaving task. On each trial, the animal could choose to stay or leave a patch by shifting

their gaze to either the blue square (stay) or grey rectangle (leave). If they chose to stay, they received juice reward after a short delay, which diminished with each stay

decision. If they chose to leave, they incurred a travel cost to the next patch. (B) Average firing rate of population of neurons in area 24 of the anterior cingulate sulcus.

Trials split by earliness of patch leaving. Firing rates rose faster for those trials where leave decisions were made earlier, but asymptote at the same level. Error bars

represent SEM.

In humans, Kolling et al. (2012) used fMRI to show that a
homologous region of the dorsal anterior cingulate cortex (dACC)
signals ‘search value’ during a foraging task, analogous to the
average reward rate of the environment, although this was not
strictly a patch-leaving task. Furthermore, they found a corre-
lation between the variance in dACC signal and the variance in
search choices across subjects. This suggests that in this context
dACC signals the value of switching to an alternative option in
the environment.

Patch-leaving decisions have also begun to be linked to neu-
romodulatory systems. Lottem et al. (2018) recently showed that
optogenetic stimulation of serotonergic cells in the dorsal Raphe
lead to greater residency times in a patch leaving task, of which
some cells may in fact project to the dACC (Pollak Dorocic
et al., 2014). Speculatively, therefore, the serotonergic system
may bias animals to stay longer in patches by modulating the
threshold in the dACC for leaving. In the study, by Le Heron et al.
(2019) they found that the delivery of a dopamine agonist to
human participants performing a patch-leaving task modulated
how sensitive people were to the richness of the environment,
and that disruption to this dopaminergic mechanism lead to
abnormal foraging behaviour in Parkinson’s disease.

The dACC is often recruited when making social decisions
(Gabay et al., 2014; Ruff and Fehr, 2014), and the serotonergic and

dopaminergic systems have putatively distinct effects on social
behaviours (Crockett et al., 2015; Gabay et al., 2019, 2018). Yet,
the mechanisms underlying these processes have to date still
not been fully understood. The evidence outlined here would
therefore suggest that social neuroscience may attain significant
new insight into the computations, functional anatomy and neu-
romodulatory mechanisms by using patch-leaving paradigms.

Social foraging

Why might MVT be fruitful for social neuroscience? Within
behavioural ecology, it is well recognised that many foraging
behaviours are conducted within social settings and in social
groups. One commonly used example is bees foraging for pollen.
Although bees must solve the patch-leaving problem when trav-
elling from flower to flower, such behaviour does not fit with
the originally intended purpose of MVT. MVT was intended to
explain how animals expend energy to obtain energy, yet for
bees, the resource (pollen) does not directly contribute to an indi-
vidual’s net energy intake. Instead, the pollen is a resource that is
used for the benefit of the collective hive. Despite this, evidence
suggests that pollinators forage in line with MVT (Cibula and
Zimmerman, 1984; Goulson, 2000). This can therefore be thought
of as a very simple example of a prosocial act—where the bee
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incurs a cost for the collective benefit. It is possible that the
mechanisms that guide such ‘prosocial’ foraging behaviours may
be antecedents for the altruistic behaviours of many species,
including humans.

There is also evidence that many species in fact face ‘social
foraging problems’, where patch-leaving decisions must be
made by social groups. These decisions must still be optimised
to maximise the rewards of the group and therefore conform
to the principles of MVT (Rita et al., 1997; Amano et al., 2006).
Human hunter-gatherers are a clear example of such behaviours,
and there is qualitative evidence of MVT-like behaviour in
hunter-gatherer foragers (Smith et al., 1983). Furthermore, using
historical foraging data from a nomadic hunter-gatherer society,
Venkataraman et al. (2017), showed that the ‘residential mobility’
of a group fits well with MVT predictions. That is, the decision
of when to move camp conforms with optimal leaving times
based on the local habitat and broader environment in which
the group resides. These observational studies point to MVT
being relevant to prosocial behaviours and those requiring
group-level cooperation. Experimental studies can be designed
to examine the proximate, cognitive and neural mechanisms
of these behaviours, testing hypotheses relating to durations
of cooperative interactions, group decision-making and partner
choice when making such decisions. We make recommenda-
tions as to possible task design of such experiments further
below (‘Designing a patch-leaving behavioural experiment’).

Recently, behavioural and cognitive neuroscientists have
begun to use patch-leaving tasks designed to examine foraging
behaviour in the lab. For instance, in one study Turrin et al.
(2017) examined how macaques forage for social information. In
this study, macaques spent longer searching facial expressions
when there were greater delays between conspecific encounters.
Here, environmental richness was manipulated by increasing
the delay between ‘patches’ and is an example of using the
MVT framework in a situation where the ‘resource’ under
consideration is social in nature. Behavioural data fit the
predictions of MVT better than three other potential patch-
leaving models. Similarly, Yoon et al. (2018) showed that human
gaze durations are modulated by the features proposed in MVT.
This suggests that animals may treat social information as a
resource—or reward—to be foraged for and extends optimal
foraging beyond resource collection.

In another study in humans, Zacharopoulos et al. (2018)
required participants to make patch-leaving decisions, either
to collect rewards for themselves or to collect rewards for a
charity of their choice. People’s decisions were broadly in line
with MVT-like predictions when collecting rewards in both
conditions. Individual differences in a personally trait (personal
focus) were associated with overall reward when foraging for
the self, but not when foraging for charities. Such results would
highlight that altruistic decisions may be influenced by some
of the properties that guide patch leaving, and moreover that
variability in prosocial foraging decisions may be linked to
individual differences in psychiatric or personality traits.

The studies outlined above point to the potential for using
this framework to understand how ‘social’ variables can be
considered within a patch-leaving framework. Other social-
interactive decisions may also be better understood by thinking
of them as patch-leaving problems. There are instances where
the value of social relationships changes over time. These
include romantic relationships, platonic relationships and even
business relationships (Poulin and Chan, 2010). MVT provides
a novel approach from which to understand the mechanisms
underlying decisions to remain in, or leave, these relationships

in the face of changing value. How the value of the current social
interaction may be compared to the value of other interactions,
as well as the costs to switch between them, may influence
the length of time one decides to remain in a relationship of
depleting value.

Economic games have been used to study the contextual
importance of interacting partners in terms of their fairness,
cooperativeness and trustworthiness, and how this is modulated
by psychiatric symptoms and pharmacological manipulation
(Güth et al., 1982; King-Casas et al., 2005; Rilling and Sanfey, 2011;
Sorgi and van ‘t Wout, 2016; Gabay et al., 2019). Very little research
has investigated the effect the environmental context on these
behaviours. With environmental factors built into MVT compu-
tations, it provides clear opportunities to address this, providing
testable hypotheses of how differences in the quality of the
social environment might affect duration of social interactions.

Thus, whether using the formal framework of MVT, or simply
considering social decisions as patch-leaving problems, there is
potential for foraging-based frameworks to prove fruitful tools
for social psychology and neuroscience.

Foraging beyond MVT

There are other foraging models beyond MVT. These address a
range of questions other than the patch-leaving problem, so are
beyond the scope of this review (Mobbs et al., 2015). However,
these models could also be of interest for social neuroscientists
to explore, so we briefly describe them here.

The diet breadth, or prey model (Stephens and Krebs, 1986),
considers not durations, but whether to engage with a resource
once encountered. The model formulates the optimal policy
based on the net energetic gains from each resource as a func-
tion of other available resources in the environment. An impor-
tant prediction of this model is that a particular resource may
form an important source of food in one environment, but not be
eaten at all in a richer environment (‘an ice lolly in the desert will
be more valuable, and more likely to be eaten, than the same lolly
in an ice cream parlour’). The same may also be true of resources,
choices, in social settings. For instance, choices of social partners
may depend on a subjective calculation of a person’s ‘value’
(Heijne et al., 2018), and thus foraging mechanisms may also
influence such choices.

The ideal free distribution model looks at the distribution
of competing individuals across an environment (Fretwell, 1969;
Mobbs et al., 2018), and predicts that individuals distribute them-
selves in a manner, which minimises competition. Such a model
could explain human social group behaviour, how people coordi-
nate with others, and where people will physically situate them-
selves in social settings. In sum, other types of social decisions
that are not about duration like in patch leaving, but are instead
about whether to interact with a person or how cooperative
people are, may be better understood by considering other forms
of foraging paradigm.

Designing a patch-leaving behavioural experi-
ment
MVT is an optimal model, which allows for the designing of
an experiment in which explicit and precise predictions can
be made. That is, one is able to design an experiment using
the MVT equation (Box 1), where the optimal leaving times can
be calculated for each condition of one’s experiment. This is
hugely advantageous from an experimental design perspective,
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but also comes with challenges that are somewhat idiosyn-
cratic to foraging experiments. In this section, we provide prac-
tical insights in how to answer questions through experimental
design in the patch-leaving framework. Furthermore, we will
discuss the challenges presented by patch-leaving paradigms for
probing behavioural and neural mechanisms, and potential ways
to overcome them.

Continuous versus discrete rewards

An important decision for the design of a patch-leaving task is
whether the reward rate within a patch is delivered in a com-
pletely continuous manner or in a discrete ‘trial by trial’ fashion.
In a continuous patch-leaving task, a participant can be shown
a continuously declining reward rate (or rewards accumulating
at a continuously diminishing rate) and thus is free to choose
to leave at any point in time during a patch. Such a design,
as deployed by Le Heron et al. (2019) where participants saw a
milk pail continuously filling up at a declining rate, allows pre-
cise measurement of residency times relative to the foreground
reward rate (see Figure 1, left panel).

Although plausible in some circumstances, there are many
patch-leaving scenarios where rewards are not accrued at a
continuous rate. Collecting berries or apples is not completely
continuous, but can be separated into discrete moments where
a reward is obtained. An alternative approach is to break the
depletion up into discrete trials, where on each trial the partic-
ipant must decide whether to stay or leave, with each decision
to stay leading to a depleted magnitude of reward on the next
trial. A decision to leave results in a period of waiting before
entering a new patch that must be longer than the duration of a
trial. This approach, as employed by Constantino and Daw (2015;
Figure 1), solves some of the issues that arise when employing
fMRI to examine neural mechanisms with a continuous version
(see below). However, it offers less temporal resolution, which
could potentially mask small effects on leaving times (i.e. a
consistent 1 s effect on residency times in a continuous version,
may not be detected in a discrete version with 3 second duration
trials). A discrete version also requires modifications to the MVT
equations spelt out in Box 1, although these are outlined nicely
in Constantino and Daw (2015).

Manipulating the value of patches

A cornerstone of the MVT framework is that resources within
a patch deplete over time. However, there are different possi-
ble variables that can be manipulated within an experiment
to create patches with different values and thus different pre-
dicted residency times. One option is to manipulate the rate
of depletion, or ‘decay’ in patches; that is how quickly does
the reward rate drop off. With higher depletion rates, residency
times should be shorter. This manipulation was employed by
Constantino and Daw (2015) with participants asked to virtually
harvest apples from trees in different environments in which
the apples obtained gradually declined but at different rates (see
Figure 1, right panel).

An alternative method of manipulating value is to change the
total reward available in patches, which effectively equates to
changing the initial reward rate—or starting value. When there
is more total reward available in a patch, the starting rate is
higher, which leads to MVT predicting longer residency times.
Such an approach was employed by Le Heron et al. (2019), who
required participants to collect ‘milk’ from cows in fields. Those
cows offered different yields of milk, which was dictated by the
starting reward rate within patches.

The value of a patch can also be manipulated through the
effort required to obtain a reward. When the within patch effort
is higher, this creates a reduced ‘value’ patch and thus MVT
predicts a reduced residency time. Although in the strictest
interpretation of MVT it argues that this should be the ‘energetic’
consumed while obtaining rewards in a patch, we also know
that humans value effort subjectively. As has been discussed
extensively elsewhere (Westbrook et al., 2013; Chong et al., 2017;
Kool and Botvinick, 2018), effort can be manipulated in a variety
of ways by manipulating the physical or cognitive demands of
a task. These manipulations may serve to change the value of
patches if an effort is required to obtain a reward, even if it is
not strictly an ‘energetic’ cost. To illustrate, Wolfe (2013) manip-
ulated effort in a task requiring participants to move a cursor
and click on coloured dots to obtain rewards within a square
patch. Within-patch effort was manipulated by whether partic-
ipants were allowed to freely move between the dots or were
constrained by having to avoid green ‘bushes’, which increased
the effort required to navigate between rewards in the patch.

Manipulating the environment

Within MVT an important feature is that the effect of the differ-
ent patch properties (as outlined above) should have indepen-
dent effects from the properties of the environment. To identify
such independent effects, it is therefore necessary to manipulate
the environment in different ‘blocks’ (Constantino and Daw,
2015; Yoon et al., 2018; Le Heron et al., 2019). Importantly, within
those blocks a variable must be manipulated for a fixed time-
period, rather than a fixed number of trials—as would be typical
in most cognitive experiments. This is due to the fact that (i)
the number of trials a participant completes is dependent on
their own leaving times and (ii) the ‘travel times’ are typically a
fixed feature of an environment (Krebs et al., 1974; Charnov, 1976;
Stephens and Krebs, 1986). In simple terms, if you had infinite
time in the experiment it would be optimal to stay in patches
until all resources are depleted—but the authors are unaware
of real-world environments with infinite time. Manipulations
of the environment must therefore occur in distinct blocks,
which are for fixed periods of time, with participant behaviour
compared between environments.

If blocks differ in the effort costs of travelling, the duration
of the travel time between patches, or the proportion of high
yield (relative to low yield) patches within an environment,
there will be a difference in the average background reward rate
between blocks. As a result, MVT would predict different resi-
dency times between environments. For instance, Constantino
and Daw (2015) had blocks with shorter or longer travel times
between apple trees, creating ‘rich’ or ‘poor’ environments, with
lower or higher residency times predicted by MVT, respectively.
In contrast, Le Heron et al. (2019) manipulated the environment
by having blocks with a majority of ‘high yield’ patches or blocks
with a majority of low yield patches, with MVT predicting shorter
or longer residency times, respectively. Thus, these variables that
manipulate the properties of the environment have been found
to manipulate human patch leaving times in line with MVT.

As noted above, patch leaving requires participants to make
decisions of a different nature (‘stay or leave’) than typical
binary choice paradigms. But, can patch-leaving decisions be
explained by pre-existing computational models? This is an
important question when designing a patch-leaving experiment,
and there have been different approaches to showing that pre-
existing RL-based models do not predict MVT-based behaviours.
One approach has been to instruct participants that there are
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different types of blocks, but that they must learn each block’s
properties by sampling patches. Constantino and Daw (2015)
showed that even when participants are required to learn the
properties of the environment in this manner, they make deci-
sions that conform to MVT’s principles and that the MVT model
is a better fit to the data than a commonly deployed RL-based
model. Similarly, Hayden et al. (2011) showed that a tempo-
ral discounting model could not account for the decisions of
macaques in a patch-leaving foraging task. In addition, it has
also been suggested that drift-diffusion models can be adapted
to accommodate MVT variables to better characterise patch-
leaving choices, and their underlying mechanisms (Davidson
and Hady, 2019).

An alternative approach has been to control for any pos-
sibility of learning, by explicitly instructing and training par-
ticipants about the properties of the different environments
(Le Heron et al., 2019) (i.e. instruct participants that in a particular
block of the experiment there is a higher proportion of high
yield patches). When doing so, there is no learning during the
experiment that would fit with an RL-based account.

Practical challenges

There are inherent challenges when designing patch-leaving
experiments, due to the nature of the decisions being made
and due to previously observed human biases. In most decision-
making paradigms, a participant will make a choice on every
trial between two options. The experimenter therefore has com-
plete control over the number of data-points (decisions) in each
condition within the experimental design. In a patch-leaving
paradigm where blocks have fixed time periods, but patch resi-
dency times depend on the participant, it is impossible to com-
pletely pre-determine how many times you will sample each
patch type in each environment. This is because the participant
may choose, for example, to stay at each high-quality patch for
a long time, thus reducing the available time to see low-quality
patches. As a result, most patch-leaving paradigms will result
in unbalanced designs and different numbers of samples per
participant. In addition, although one of the advantages of the
optimal MVT framework is the potential for knowing precisely
how long residency times should be given the properties of the
experiment, humans show a bias that needs to be taken into
consideration. In several experiments, it has been shown that
humans tend to stay in all patches longer than is optimal, in
a manner that is invariant to the properties of the experiment
(Constantino and Daw, 2015; Le Heron et al., 2019). Thus, it is
likely that an experiment will end up in fewer samples than
would be predicted by the optimal model.

How can such challenges be overcome? Firstly, careful pilot-
ing of the task is required to ensure the length of time in
each environment is sufficient to obtain enough repeats of each
type of patch to enable robust statistical analysis. Secondly, the
unbalanced nature of the design calls for the usage of mixed
effects models that are robust to variability in the number of
samples from each participant (Bates et al., 2015). Thirdly, make
predictions about the number of samples that will be obtained
based on the MVT model, but account for the additional staying
bias. Thus, make blocks longer—or include more repetitions of
blocks—to obtain sufficient samples.

Examining the neural mechanisms of patch
leaving
One of the major advantages of the patch-leaving framework
is that decisions are not made between binary options, but

instead one must constantly compare an evolving foreground
reward rate with the alternative ‘background’. Such an evolving
comparison occurs over a longer timescale (e.g. ∼15 s) in most
experiments, allowing one to start examining the mechanisms
that guide decisions about rewards (or social variables) that
one typically cannot easily measure in commonly employed
fMRI designs. For instance, as noted above Hayden et al. (2011)
identified a ‘rise-to-threshold’ signal in the dACC during patch
leaving. Although this was in single neurons, the nature of patch-
leaving decisions means that putatively similar mechanisms
may be examined in human brains using fMRI. Normally this
would not be possible due to the sluggish nature of the BOLD
signal and the rapid nature of most decisions in binary choice
paradigms. In order to take advantage of this aspect of patch-
leaving paradigms, however, there are still practical challenges
to be overcome.

Going beyond standard block or event-related fMRI
analyses

fMRI paradigms are often either ‘block’ or ‘event-related’ in
nature. In both such cases, ‘subtraction’ designs are typically
used whereby one compares the BOLD signal evoked by one
condition against that of a second condition (Amaro and
Barker, 2006; Penny et al., 2011). Although such approaches
can be employed to examine aspects of patch leaving, they
will miss the rich nature of the signals that can be identi-
fied during foraging tasks, such as rise-to-threshold signals
and thus the key computations involved in patch-leaving
decisions.

To illustrate the challenge, let us assume an experiment
where two environments differ only by travel time between
patches (long or short). In such an experiment, the relevant
difference is the environmental reward rate, which would
be lower in the long travel time compared to the short. If
one simply defined the blocks of interest as being the whole
period one was in an environment, the contrast would reflect
differences in activity related to environmental richness.
While this could provide fruitful information, it would not
tell you how activity evolved differently between the patches.
Such a contrast would entirely miss the continuous extended
comparison between foreground and background reward rates.
As such a challenge that must be solved is how to analyse
patch-leaving data, when standard fMRI analysis tools are not
sufficient.

There are a few solutions to this problem, some based purely
around statistical analysis approaches, and others solve the
problem by tweaking the designs of patch-leaving tasks. One
simple solution is to use a patch-leaving task where the fore-
ground reward rate is not continuously delivered, but instead
happens with discrete ‘events’. For instance, in Constantino and
Daw (2015), different magnitudes of apples are delivered every
few seconds. One can therefore treat this as an event-related
design, and use parametric modulators to examine activity time-
locked to these events that scales with some features of your
patch-leaving experiment. For instance one could include para-
metric modulators incorporating the difference between current
patch reward and the environmental average. This would cap-
ture a dynamic comparison and would allow regions that were
involved in computing such an evolving decision variable to be
revealed.

It is important to note, which when using parametric modu-
lators to analyse an event-related design, assumptions are made
about the nature of the BOLD signal. Specifically, one assumes

Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8790



Fig. 3. From Wittmann et al. (2016). (A) Trial structure: participants saw a series of ‘reward events’. These gave rewards of different levels, including no reward. Participants

could infer the reward rate by the interval between rewarded events and the magnitude of the rewards. After a fixed period, they chose between staying in the current

patch or moving to a previously learned default patch. (B) Trials were derived from 18 different reward curves, nine of which increased, nine of which decreased,

monotonically. This approach allowed for decorrelation between the foreground reward rates in different patches. The decision time is indicated by the solid black line,

and the default reward rate is indicated by the dotted black line. (C) The dACC showed greater activity with a greater positive reward trend.

some form to the haemodynamic response following an event
(e.g. a standard assumption in fMRI packages is that the evoked
response peaks at 6 s after stimulus and returns fully to baseline
at 32 s). However, when examining a rise-to-threshold signal, it
is not clear whether a smooth signal that builds up gradually
within a patch (Figure 2) should conform to such assumptions.
Although such assumptions are often made across a range of
different fMRI analyses approaches, it is relevant to note this as
a caveat here. In the future, it may therefore be fruitful to use the
parametric-fMRI-based approaches suggested here, in parallel
with imaging methods that have better temporal resolution such
as EEG or MEG, to better understand how such an evolving
decision variable relates to neural mechanisms.

In designs where the foreground reward rate continuously
depletes, using a parametric modulator in the typical way may
not be ideal for the nature of the experiment. In continuous
designs, one does not have an event to ‘time-lock’ the analysis to,
and as a result, it is unclear what an ‘event’ should be. How can
one analyse an fMRI study that does not have standard events?
McGuire and Kable (McGuire and Kable, 2015) provide an elegant
solution to such a problem. They analysed fMRI data from a
paradigm that although not a patch-leaving experiment, had
many similarities. In the paradigm participants had to decide
how long to persevere as reward value changed. Such a design
created data of a form similar to that which would be generated
in a patch-leaving paradigm.

To analyse their data, instead of modelling individual events
and fitting the assumed canonical haemodynamic response
function—that peaks at 6 s and returns to baseline at 32 s—they
used finite impulse response to model the BOLD signal (Henson
et al., 2001). This FIR analysis approach was applied across the

whole time-period where participants were evaluating whether
to persevere or not as a reward value continuously changed.
The FIR approach consists of defining post-stimulus time-bins;
for example, every 2 s from entering a patch. Each time-bin is
included as a regressor in a first-level analysis, and the resulting
betas represent the signal change of each time-bin from baseline.
By comparing the same time bins between different types of
patch or different environments it would be possible, as shown
in Mcguire and Kable (2015), to show the BOLD signal changing
dynamically whilst participants are in patches. Thus, although
not ‘events’ per se, the FIR approach allows one to look at how
the BOLD signal changes over a period of time, which is ideal
for patch-leaving decisions. Relying on ‘modelled’ betas from
a FIR analysis may not even be necessary. It is also possible
to simply extract BOLD signals from regions of interest for a
period of time leading up to a decision to leave, or from the time-
point of entering a patch, and examining how different features
of the experiment influence these raw BOLD signals. This may
initially seem complicated, however, this is no different from
how data are extracted to make peri-stimulus time histogram
plots in many fMRI papers. Moreover, the betas from the FIR time
bins or time-bins of extracted BOLD signals can be analysed in
the same way that any other time-series data are. As a result,
standard univariate or multivariate analysis techniques can be
used to examine how the BOLD signal develops leading up to
patch-leaving decisions in relatively straightforward, albeit atyp-
ical, ways.

De-correlating predictors

An important consideration in all computational fMRI studies
is to make sure that one’s predictors or regressors time-locked
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to events in the experiment are not too strongly correlated.
This is particularly pertinent in patch-leaving tasks, because
foreground reward rates always deplete, and thus can make
highly correlated predictions about the BOLD response. One
solution to the problem is to make sure at the design stage
that the depletion rates are very distinct, to ensure low correla-
tions. However, this may not always be possible, given the other
constraints on patch-leaving tasks. An alternative solution is
to slightly modify a task, such as in the manner employed by
Wittmann et al. (2016). They used a design with a fixed decision
point in every patch, after a set number of rewarded timepoints
(Figure 3). At this decision point, participants chose whether
to stay or switch to a default patch (which can be thought of
as the background reward rate), whose reward rate had been
learned during task-training. To decorrelate foreground reward
rates, they used multiple distinct trajectories to the accrual of
rewards, with rates monotonically increasing or decreasing dur-
ing each patch. So, although these were not strictly the depleting
rewards as prescribed by MVT, the need to track the foreground
reward rate (or trajectory) and compare it to an alternative has
considerable similarities. In this way, they were able to examine
which brain regions tracked the increasing or decreasing reward
trend. This design provides an elegant approach to decorrelating
different foreground reward rates; moreover, it again highlighted
the dACC as a key region for making a comparison between
different rates of reward.

Conclusion
Here we highlight the potential for using a hugely influential
model from behavioural ecology, MVT, to probe the neural mech-
anisms underlying social behaviours. This ‘patch-leaving’ frame-
work outlines the importance of the richness of the environ-
ment, and the quality of one’s current location, as key drivers of
a dynamic decision-making process. We have shown that many
species, including humans conform to its principles and that
many social behaviours may necessitate making decisions about
how long to stay in a patch. By outlining the promise and pitfalls
of designing patch-leaving experiments to probe behaviour and
its underlying mechanisms, we hope to encourage the wider
usage of foraging-based approaches in social neuroscience.
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