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Abstract 

Defective viral genomes (DVGs) have been identified in many RNA viruses as a major 
factor influencing antiviral immune response and viral pathogenesis. However, the generation and 
function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG 
generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed 
DVGs ubiquitously from RNA-seq datasets of in vitro infections and autopsy lung tissues of 
COVID-19 patients. Four genomic hotspots were identified for DVG recombination and RNA 
secondary structures were suggested to mediate DVG formation. Functionally, bulk and single cell 
RNA-seq analysis indicated the IFN stimulation of SARS-CoV-2 DVGs. We further applied our 
criteria to the NGS dataset from a published cohort study and observed significantly higher DVG 
amount and frequency in symptomatic patients than that in asymptomatic patients. Finally, we 
observed unusually high DVG frequency in one immunosuppressive patient up to 140 days after 
admitted to hospital due to COVID-19, first-time suggesting an association between DVGs and 
persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role 
of DVGs in modulating host IFN responses and symptom development, calling for further inquiry 
into the mechanisms of DVG generation and how DVGs modulate host responses and infection 
outcome during SARS-CoV-2 infection.  
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Importance 

Defective viral genomes (DVGs) are ubiquitously generated in many RNA viruses, including 
SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide them 
the potential for novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are 
generated through the recombination of two discontinuous genomic fragments by viral polymerase 
complex and the recombination is also one of the major mechanisms for the emergence of new 
coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies 
identify new hotspots for non-homologous recombination and strongly suggest that the secondary 
structures within viral genomes mediate the recombination. Furthermore, these studies provide the 
first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. 
These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination 
and provide the evidence to harness DVGs’ immunostimulatory potential in the development of 
vaccine and antivirals for SARS-CoV-2. 
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Introduction 

Respiratory tract infection of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) results in varying immunopathology underlying coronavirus disease 2019 (COVID-19). 

Its symptoms vary from asymptomatic infection to milder/moderate disease and further critical 

illness, including respiratory failure and death. Immune responses in COVID-19 patients of 

various disease severities have been studied (Lega, Naviglio et al. 2020, Chiale, Greene et al. 2022, 

Dadras, Afsahi et al. 2022). In general, broad induction of IFN responses and antiviral genes are 

associated with milder/moderate COVID-19, whereas severe COVID-19 is often characterized by 

a blunt early IFN responses and elevated proinflammatory cytokine expression in nasopharyngeal 

mucosa (Kwon, Kim et al. 2020, Liu, Li et al. 2020, Gozman, Perry et al. 2021, Janssen, Grondman 

et al. 2021, Vanderbeke, Van Mol et al. 2021). Investigation of how IFN responses are induced by 

SARS-CoV-2 infection, especially early IFN stimulation in some patients, requires further study.  

During SARS-CoV-2 infection, in addition to full-length viral genomes and single 

nucleotide mutations, three major types of viral RNAs are generated from non-homologous 

recombination that are critical for viral pathogenesis, including subgenomic mRNAs (sgmRNAs), 

structural variants (SVs), and defective viral genomes (DVGs). The viral replication-transcription 

complex performs recombination at specific transcription regulatory sequences (TRSs) to generate 

a set of sgmRNAs, which subsequently translate into viral structural proteins (van Hemert, van 

den Worm et al. 2008, Dufour, Mateos-Gomez et al. 2011, Sola, Almazán et al. 2015, Brant, Tian 

et al. 2021). SVs comprise small insertion/deletions that allow the variant genome to independently 

replicate and transmit. Numerous SVs have been described including small deletions in viral spike 

protein that alter the fitness and virulence of SARS-CoV-2 isolates (Davidson, Williamson et al. 

2020, Li, Wu et al. 2020, Majumdar and Niyogi 2021, Wang, Lau et al. 2021). Different from 
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sgmRNAs and SVs, SARS-CoV-2 DVGs contain large internal deletions and have recombination 

positions distinct from TRSs while retaining 5’ and 3’ genomic untranslated regions (UTRs) 

(Gribble, Stevens et al. 2021).  

This type of DVGs, also known as defective viral or interfering RNAs (D-RNAs), is widely 

generated during replication of most positive sense RNA viruses (Huang 1973, Marcus and 

Sekellick 1977) and influenza (Nayak, Chambers et al. 1985), and their replication relies on viral 

machinery provided by co-infected homologous full-length viruses (Huang and Baltimore 1970, 

Brian and Spaan 1997, Wu and Brian 2010). When accumulated to a high level, DVGs can 

interfere with full-length viral genome production by stealing essential viral elements from full-

length viruses (Roux, Simon et al. 1991, Vignuzzi and López 2019). This interference activity has 

been reported for influenza viruses (De and Nayak 1980) and multiple non-SARS-CoV-2 

coronaviruses (CoVs), such as SARS-CoV (Raman and Brian 2005), mouse hepatitis virus (MHV) 

(Makino, Fujioka et al. 1985), bovine CoV (Hofmann, Sethna et al. 1990), avian infectious 

bronchitis virus (IBV) (Pénzes, Wroe et al. 1996), transmissible gastroenteritis virus (Méndez, 

Smerdou et al. 1996), and middle east respiratory syndrome CoV (MERS-CoV) (Gribble, Stevens 

et al. 2021). In addition to interference activity, DVGs from influenza A virus have strong IFN 

stimulation (Kupke, Riedel et al. 2019) and are reported to promote viral persistence in vitro (De 

and Nayak 1980, Moscona 1991, Frensing, Heldt et al. 2013). More importantly, DVGs are largely 

observed in nasal samples from patients positive for influenza and their abundance is negatively 

correlated with patients’ disease severity, indicating the critical roles of DVGs in host responses 

and clinical outcome (Vasilijevic, Zamarreño et al. 2017). The current approach to identify DVGs 

from SARS-CoV-2 infection is through short-read and long-read next generation deep sequencing 

(NGS). Several algorithms, such as DI-tector (Beauclair, Mura et al. 2018), VODKA (Viral 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

Opensource DVG Key Algorithm) (Sun, Kim et al. 2019), and ViReMa, (Viral-Recombination-

Mapper) (Routh and Johnson 2014), and metasearch tool DVGfinder (Olmo-Uceda, Muñoz-

Sánchez et al. 2022) are developed to specifically detect the reads containing the recombination 

sites of DVGs. Using these approaches, DVGs are documented in SARS-CoV-2 infected Vero E6 

cells (Chaturvedi, Vasen et al. 2021, Rand, Kupke et al. 2021) and in nasal samples of COVID-19 

patients (Xiao, Lidsky et al. 2021). Long-read NGS, such as full length iso-seq and nanopore direct 

RNA-seq, further confirmed that substantial TRS-independent deletions identified from short-read 

NGS are from SARS-CoV-2 genomes and maintain two genomic ends (Gribble, Stevens et al. 

2021, Wong, Ngan et al. 2021). Additionally, identical deletions are found in various transcripts 

encoding distinct sgmRNAs (Wong, Ngan et al. 2021), strongly suggesting that even deletions in 

sgmRNAs are likely to be originated from viral genomes, since deletions existing in the viral 

genome can be used as the template to generate a set of sgmRNAs with the same deletions during 

transcription.  

Despite DVGs playing such an important role in viral pathogenesis, their function in 

SARS-CoV-2 biology is less known. Recent reports show that synthetic SARS-CoV-2 DVGs 

(named therapeutic interfering particles, TIPs) exhibit substantial reduction on viral load across 

different viral variants when delivered in hamsters (Chaturvedi, Vasen et al. 2021) and mice (Xiao, 

Lidsky et al. 2021) pre- or shortly after infection, demonstrating the potential of SARS-CoV-2 

DVGs as a new class of antiviral intervention by interfering genomic replication. No reports have 

been identified for the role of DVGs in IFN responses and viral persistence for SARS-CoV-2 

infection so far. Interestingly, a COVID-19 cohort study (Wong, Ngan et al. 2021) indicates that 

the abundance of TRS-independent deletions (>20nts) is significantly more in symptomatic 
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patients than that in asymptomatic patients, suggesting a potential role of DVGs in modulating 

host responses and symptom development in COVID-19 patients.  

As our interest lies with the generation of DVGs, in relation to viral pathogenesis rather 

than sgmRNAs or smaller deletions in SVs, we used a pipeline based on ViReMa combined with 

sequence filtering via RStudio to specifically identify TRS-independent DVGs with deletion 

lengths larger than 100nts. We identified DVGs with varying degrees of junction frequency, 

termed Jfreq, from multiple NGS datasets that are either publicly available or from our own 

infections. Interestingly, we found DVG junctions consistently clustered in several genomic 

hotspots among different NGS datasets and secondary structures within viral genome are likely to 

guide the recombination. Functionally, we found that with similar infection level, samples with 

more DVG reads had enhanced type I/III IFN responses than samples with less or no DVGs, 

indicating the potential IFN stimulation of SARS-CoV-2 DVGs. In support, analysis of single cell 

RNA-Seq from infected primary human lung epithelial cells showed an earlier primary IFN 

expression (IFNB and IFNL1) in DVG+ cells than in DVG- cells. Finally, we applied our DVG 

analysis to several published NGS datasets from nasal samples of COVID-19 patients. We found 

persistent DVG reads with unusually high frequency in one immunosuppressive patient and higher 

DVG abundance in symptomatic patients than asymptomatic patients. Taken together, our analyses 

demonstrate critical roles of DVGs in modulating host IFN responses, viral persistence, and clinic 

outcome for SARS-CoV-2 infection. 

Results 

DVGs are ubiquitously produced during SARS-CoV-2 infection both in vitro and in patients. 

To examine whether DVGs can be detected universally during SARS-CoV-2 infections, we used 

the ViReMa pipeline (Virus Recombination Mapper) combining with R filtering (Fig. S6) to 
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specifically map the DVG recombinant sites (Fig. 1A) in multiple next generation sequencing 

(NGS) datasets. As reported previously, ViReMa can agnostically detect RNA recombination 

events and reported these junction positions in BED files. Reported junction positions include 

sgmRNAs, of which their junctions contain leader transcriptional-regulatory signal (TRS-L, within 

the first 85 nts of leader), and other recombinant RNAs with their jumping positions that are far 

away from TRS-L. We defined our targeted DVGs as TRS-L independent RNA species bearing 

deletions larger than 100 nts (Fig. 1A).  Use these criteria, we first examined DVGs in 4 publicly 

available in vitro infected NGS datasets with various cell types, MOIs, viral stocks, and sample 

origins (Table S1). We found that DVGs can be detected in all examined datasets ranging from 

several counts to several thousand counts (Fig. 1B). As the infection level varied significantly 

among different datasets, we normalized DVG levels by junction frequency (Jfreq), a ratio of DVG 

counts over virus counts. DVG counts were the total number of DVG reads obtained from ViReMa 

and meeting the above criteria, whereas virus counts were the total amount of reads fully aligned 

to the reference viral genome. We observed two ranges of Jfreq, <0.1% and 0.1%-1%. A549-ACE2 

infected cells have the highest Jfreq, whereas infections in NHBE varied. In addition, either total 

RNA or polyA enriched RNA were used for NGS for Calu3-total RNA and Calu3-polyA, 

respectively. Both samples had very similar Jfreq, suggesting Jfreq is robust to different library 

preparation methods. Interestingly, we detected DVGs, although with low Jfreq, in the supernatants 

collected from infected Vero E6 cells, suggesting that certain DVG species generated within 

infected cells, potentially the DVGs containing packaging signals, were able to be packaged into 

virions and released out into supernatants.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

Figure 1. DVGs were ubiquitously generated in SARS-CoV-2 in vitro infections and autopsy 
tissues of COVID-19 patients. (A) Schematic representation of DVG generation from positive 
sense viral genome and the general principle of ViReMa identification of deletion DVGs. The V’ 
site represents the break point and the E’ site represents the rejoin point of the viral polymerase 
in the formation of DVGs. The gray dashed box marks the recombinant site that distinguishes 
DVGs from full length viral genomes, which are identified by ViReMa, and further filtered using 
two criteria shown in the graph. (B) The DVG read counts, viral read counts, and Jfreq percentages 
were graphed for each of the in vitro samples including the infected cells and supernatants. (C) 
The DVG read counts, viral read counts, and Jfreq percentages were graphed for autopsy lung 
tissues of 9 DVG + COVID-19 patients. Each case represented one patients and different dots 
represented RNA-seq from the different location of the same lung tissues. (D) The correlations 
between DVG read counts and viral read counts were plotted for both the in vitro and autopsy 
samples. ****p<0.0001 by Pearson’s correlation. (E) The percentage of -sense DVG among total 
DVGs in in vitro and autopsy samples were shown.  
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We then examined DVGs in autopsy tissues from patients that unfortunately died from 

COVID-19 complications (GSE150316). We analyzed lung, heart, jejunum, liver, and kidney from 

19 cases and DVGs were observed in only lung tissues in 9 cases (Fig. 1C). Their DVG counts 

were close to the level observed in infections in NHBE cells but much less compared to infections 

in cell lines, such as A549-ACE2, Vero E6, Calu3, and Caco2. Jfreq from autopsy tissues were 

mostly less than 0.1%, comparable with the lower range of Jfreq observed from in vitro infections. 

Next, we sought to examine the relationship between DVG production and viral replication. 

Interestingly, we observed strong positive correlation between DVG counts and virus counts for 

autopsy tissues, but not for in vitro infections (Fig. 1D). In addition, Jfreq was not significantly 

correlated with virus replication level. It is noted that both negative sense (-sense) and positive 

sense (+sense) DVGs were detected in all NGS datasets. The percentage of -sense DVGs 

dominated in most in vitro infected NGS using total RNA to prepare the library (Fig. 1E). Together 

with the previous reports in nasal specimens of COVID-19 patients (Xiao, Lidsky et al. 2021) and 

our own analysis, we concluded that DVGs are ubiquitously generated during SARS-CoV-2 

infection in vitro and in patients. 

Recombination sites of SARS-CoV-2 DVGs were clustered in certain genomic hotspots. To 

characterize positions of DVGs’ recombination sites, we graphed the actual junction positions of 

all identified DVGs from in vitro infections from different cells and DVG+ autopsy tissues. As 

both +sense and -sense DVGs were identified, we examined their distributions separately and first 

analyzed the junction positions of -sense DVGs. Interestingly, we found that their generation were 

clustered in three conserved genomic hotspots, indicated as junction areas A, B, C (green boxes in 

Fig. 2A and 2B). Among them, area B was observed in all infections and area A was largely 

observed in infected cells but absent in the supernatants from infected Vero E6 cells. As DVGs 
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formed in junction area A contained the largest deletion compared to B and C, it is possible that 

DVGs within area A lack the package signal and thus were less efficiently released into 

supernatants. To further identify the genomic hotspots for DVG break and rejoin points, we 

graphed their locations separately based on the junction frequency per DVG position. We 

identified one major hotspot for break point, corresponding to genomic positions 28200-29750 

(highlighted in grey dashed box in Fig. 2C, details in Fig. 2D). Additionally, three major rejoin 

hotspots were identified including 700-2500 (red box), 6500-8200 (yellow box), and 27000-29400 

(green box). When comparing the distribution between -sense and +sense DVGs, we observed that 

rejoin points, V, of +sense DVGs shared the same hotspots with break point, V’, of -sense DVGs 

(Fig. S1A-D vs Fig. 2A). This suggests that the junction positions of -sense and +sense DVGs are 

correlated, likely resulting from their self-replication (Fig. S1E). Finally, we ought to examine 

whether common DVGs can be detected from different infection or different autopsy tissues. We 

only identified common DVGs from different in vitro infections within the same RNA-seq dataset 

(likely used the same viral stock for infections, Table S2). We did not find any common DVGs 

from different autopsy tissues. Taken together, our analysis from multiple NGS datasets indicated 

that SARS-CoV-2 DVGs are not generated randomly, rather they are formed at specific genomic 

regions.  
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Figure 2. Four genomic hotspots were identified for DVG formation. Break point (V’) and rejoin 
point (E’) distributions for -sense DVGs from in vitro samples (A) and autopsy samples (B). Circle 
size and color intensity indicated the DVG counts. The green dashed boxes represented hotspots 
clustered with DVG junctions. (C) Break point (V’) and rejoin point (E’) distributions by Jfreq per 
position for all in vitro samples. The dashed boxes indicated hotspots with high concentrations of 
break or rejoin points. The width of each bar represented 300 nts. (D) Detailed positions of 4 
identified hotspots clustered with DVG break and rejoin points. The color of the dashed outline 
around each graph indicated the corresponding hotspot with the same color in (C). The width of 
each bar represented 10 nts. 
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The RNA structure distance between SARS-CoV-2 DVG junction positions is shorter than 

any two random SARS-CoV-2 genomic positions. Ziv et al. developed COMRADES (Ziv, 

Gabryelska et al. 2018), which can probe RNA base pairing inside cells, and applied it to detect 

short- and long-range interactions along the full-length SARS-CoV-2 genome (Ziv, Price et al. 

2020).  Interestingly, the positions of SARS-CoV-2 DVG junctions correlated well with the 

pairings found by COMRADES (red arches in Fig. 3A), which suggests a role of RNA secondary 

structures in the formation of DVGs. The paired bases bring distant nucleotides in the primary 

sequence close and make it possible for the breaking and rejoining actions to occur around those 

close pairs. To further study the relationship between DVG junctions and the identified secondary 

structure within the SARS-CoV-2 genome, we calculated the structural distance between DVG 

junction positions, which is the shortest distance between two nucleotides by traversing the 

backbone and base pairs (red solid path in Fig. 3B) (Clote, Ponty et al. 2012). We further extended 

this definition to allow competing base pairs from alternative secondary structures since many 

RNAs are known to populate multiple conformations in equilibrium and Ziv et al.’s data included 

alternative conformations of SARS-CoV-2.   

We first analyzed the distribution of all structural distances between any two nucleotides 

in SARS-CoV-2 (counts >= 2), where 41% of the distances were under 100 (Fig. 3C) with a long 

tail up to 1200. The median distance of the distribution was 112. However, for the structural 

distances only between SARS-CoV-2 DVG junction positions, the peak of the distribution shifted 

to the left with a smaller median value 33, and the vast majority (94%) of distances were less than 

100 (Fig. 3D). Therefore, the structural distances between DVG junction positions were 

substantially shorter than the distances between any two random positions, which indicated a 

strong correlation between secondary structures and DVGs formation. Moreover, we observed that 
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the larger the cutoff value for DVG counts, the greater the proportion of distances under 100 and 

the smaller the mean distance (Fig. S2). As a negative control, we also evaluated the sequence 

distance, which is the distance between nucleotides only based on their positions along the primary 

sequence; in fact, it is a special case of structural distance without any secondary structure. We 

analyzed the sequence distance between any two nucleotides in SARS-CoV-2 and between SARS-

CoV-2 DVG junction positions (Fig. 3E and 3F), respectively. The distribution of sequence 

distances between any two nucleotides on SARS-CoV-2 was a triangular distribution. Most of the 

distances between DVG junctions were clustered similarly as the hotspots previously observed 

(Fig. 2C vs Fig. 3F), which is completely different from the distribution of structural distances of 

DVG junctions that has its peak on the left (Fig. 3C and 3D).  

Figure 3. The correlation between DVGs and secondary structures. (A) Comparison between 
DVG junction positions (top, in vitro, -sense DVGs) and chimeric reads from COMRADES 
(bottom) along full-length SARS-CoV-2 genome (Ziv, Price et al. 2020). The red arches 
represented DVG positions that match COMRADES crosslinks and the blue arches represented 
positions that do not match crosslinks. (B) Example to compare sequence distance and structural 
distance. The structural distance between nucleotides 10 to 50 is only 5 (red solid path that 
includes a connection across a base pair), while the sequence distance is 40 (orange dashed 
path). (C–D) The distribution of all structural distances between any two positions in SARS-
CoV-2 (C), and between SARS-CoV-2 DVG junction positions (D). The percent of distances less 
than 50, 100 and 200 were indicated, respectively. (E–F) As a negative control, the distribution 

short- and long-interactions detected by COMRADES (Ziv et al.) 
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of all sequence distances between any two positions in SARS-CoV-2 (E), and between SARS-
CoV-2 DVG junction positions (F). The mean and median distances of all distributions were 
annotated in C–F. In (D) and (F), the blue, yellow, and red bars corresponded to three hotspots 
annotated in Fig. 2C, respectively, while the grey bars were out of the range of these detected 
hotspots. The inset in (D) distinguished structural distance’s distributions of three hotspots and 
the rest up to a structural distance of 100. The dashed contour in the inset represented the sum of 
all distributions for the same structural distance, and it was with the same shape as the major 
figure in (D). In both (C) and (E), the total occurrence of all distances equals the number of any 
two positions along SARS-CoV-2, and in (D) and (F), the total occurrence of all distances is the 
same as the number of DVG data points (with counts 2 or above).  

 

SARS-CoV-2 DVGs specifically enhanced type I/III IFN responses. To understand the 

dynamics of SARS-CoV-2 DVGs during infection and how that affects host responses and viral 

replication, we infected PHLE cells from donors of different age groups with SARS-CoV-2 Hong 

Kong strain (SARS-CoV-2/human/HKG/VM20001061/2020) at MOI of 5. Mock and infected 

cells were harvested at different time points post infection (hpi) followed by bulk RNA-seq-

ViReMa analysis. We observed DVGs as early as 48 hpi in cells from infants and younger adults, 

whereas in the elderly sample, we did not detect DVGs until 72 hpi (Fig. 4A), suggesting that DVG 

generation may be delayed in the elderly who are more likely to display severe symptoms when 

infected. We observed the same genomic hotspots for DVG junction regardless of their age groups 

and time points (Fig. S3A-S3D). Strikingly, those hotspots were consistent with the ones identified 

from different cell lines (Fig. 2), autopsy lung tissues (Fig. 2), and the following single cell RNA-

seq analysis (Fig. S3E). Again, we observed that V (rejoin point of +sense DVGs) and V’ (break 

point of -sense DVGs) shared the same hotspots and E (break point of +sense DVGs) and E’ (rejoin 

point of -sense DVGs) shared the same hotspots (Fig. S3A vs S3B), indicating that our identified 

recombination sites were likely from DVGs capable of replication.  

In order to examine the role of DVGs in host responses, we grouped our infected samples 

based on their DVG counts and viral counts. Three samples (D231_I_48hr, D231_I_72hr, and 
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D239_I_48hr) were significantly higher in both viral counts and DVG counts and thus categorized 

as High group (marked dark blue in Fig. 4B and S4A). When compared this group with the rest 

infected samples, one cluster of genes (pink cluster) were identified as upregulated in the High 

group. Gene Ontology (GO) enrichment analysis of this cluster was highly enriched in genes 

involved in type I IFN antiviral responses (Fig. S4B). A heatmap focusing on type I/III IFN related 

genes confirmed that samples in High group had enhanced gene expression compared to the rest 

of samples (Fig. 4B). In order to test if the IFN stimulation is specific to DVGs, we selected 4 

samples at 72 hpi with similar levels of viral replication but different level of DVGs (Fig. 4E) to 

compare their type I/III IFN responses. We observed that the sample with more DVGs exhibited 

enhanced antiviral responses than samples with less DVGs (Fig. 4C), but this enhancement was 

not observed for genes in other pathways such as type II responses and inflammation (Fig. 4D). 

Although we cannot perform proper statistical analysis due to limited sample size, these data, for 

the first time, suggest that SARS-CoV-2 DVGs enhance IFN production as observed previously 

in other RNA viruses (Kupke, Riedel et al. 2019). 
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Figure 4. DVGs influence type I/III interferon responses in infected PHLE cells. PHLE cells of 
donors from different age groups were infected with SARS-CoV-2 at MOI of 5. Samples were 
harvested at designated time points post infection. (A) Viral read counts, DVG read counts, and 
Jfreq were graphed for all samples, grouped by donor’ age group and time points. NA indicated 
that the samples were not available for RNA-seq and thus no data were collected. (B) Differential 
expression levels of genes related to type I interferon responses were graphed as heat map for all 
infected samples. Samples were grouped by viral infection level. DVG levels of each sample were 
indicated by different color codes on top of the heatmap. Four infected samples at 72 hpi with 
similar level of viral counts were selected to compare their IFN responses (C) and other gene 
expression unrelated to type I/III IFN responses (D). (E) The viral and DVG read counts for the 
selected 4 infected samples (D198, D203, D239, and D283) were graphed. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Primary IFNs were expressed earlier in DVG+ cells with moderate infection. To understand 

DVG generation and their host responses at single cell level, we obtained one single cell RNA-seq 

dataset using adult NHBE cells with infection at MOI of 0.01 (GSE166766). Consistent with the 

previous observations, viral counts, DVG counts and Jfreq at 2 dpi were all significantly increased 

compared to that at 1 dpi, but not significantly different from 3 dpi (Fig. 5A). Major cell types 

enriched with DVGs were ciliated cells, basal cells, and SLC16A7+ (red in Fig. 5B, grouping of 

cell types were based on the markers used in original publication). Among these three cell types, 

ciliated cells had the most DVG+ cells, whereas SLC16A7+ cells had the highest percentage of 

DVG+ (Fig. 5C). All DVG+ cells contained at least 1 viral count (virus positive cells) and total 

viral counts were significantly higher in DVG+ cells than DVG- cells at all three time points (Fig. 

5D). Only about 1% of virus positive cells at 1 dpi (n=60) were DVG+. Therefore, we focused on 

the DVG+ population at 2 dpi (n=348) and 3 dpi (n=725) to analyze their host responses. 

Differential expression tests were then performed using three different methods in Seurat (MAST, 

Wilcox, and DEseq2) between DVG+ and DVG- groups within virus positive cells. Significantly 

more genes were identified as downregulation in DVG+ cells than genes that were upregulated at 

both time points (adj_pvalue < 0.01 and logFC > 0.25) and similar enriched pathways were 

observed from GO analysis. Specifically, the ribosomal cytoplasmic translation (host protein 

synthesis) was largely inhibited in DVG+ cells, possibly due to their higher level of viral 

replication (more expression of NSP1) than DVG- cells (2 dpi: upper panel in Fig. 6A; 3 dpi: Fig. 

S5A). Despite of this, pathways such as transcription from RNA polymerase II promoter, TNF and 

NF-kB, and apoptosis were significantly enriched in the upregulated genes. Importantly, defense 

to virus and chemokines were also observed in the upregulation list, consistent with the results 

from bulk RNA-seq (2 dpi: bottom panel in Fig. 6A, 3 dpi: Fig. S5B). Next, we specifically 
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examined the expression level of representative genes related to type I/III IFN pathways between 

DVG- and DVG+ viral positive cells, including two primary IFNs (IFNB1 and IFNL1), ISGs and 

chemokines selected from the differentially expressed gene list. To better control viral loads, we 

further categorized virus positive cells (cells with virus count ≥1) based on their viral counts as 

three groups: low (viral counts ≤10), moderate (10< viral counts <20000 for 1 dpi and 2 dpi; 10< 

viral counts <10000 for 3 dpi), and high (viral counts ≥20000 at 1 dpi and 2 dpi; viral counts 

≥10000 at 3 dpi). DVGs were identified majorly in moderate (~12%) and high groups (>84%), and 

extremely small percentage (<0.2%) of low infected cells generated DVGs. Two primary IFNs 

were predominantly expressed only in moderate viral group regardless of DVG presence. 

However, DVG+ cells expressed two primary IFNs 1 day earlier than DVG- cells (2 dpi vs 3 dpi, 

moderate group in Fig. 6B), suggesting a role of DVGs in stimulating primary IFNs early. In 

support, ISGs showed similar trend. As IFN related genes are zero-inflated, we performed 

comparisons for both the expression level of cells expressing interested genes (gene counts >0, 

named as non-zero cells) and their percentages within DVG+ and DVG- groups. Briefly, the 

average expression of ISGs (non-zero cells) was all significantly enhanced in DVG+ cells within 

moderate group at 2 dpi but this enhancement was partially lost at 3 dpi despite of higher 

percentage of DVG+ cells expressing IFNs and ISGs at 3 dpi relative to that of DVG- cells (Fig. 

6C and 6D). Different from moderate group, high viral group had minimal expression of all IFN 

related genes, further confirming IFN pathways were suppressed in highly infected cells (Fig. 6A, 

6B). Low viral group predominantly expressed ISGs rather than two primary IFNs at all time points 

(Fig. 6E), suggesting they are the secondary responders to initial type I/III IFN production. Taken 

together, our analysis strongly suggests that DVG+ cells with moderate infection were the first 
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responders to viral infection, quickly expressing primary IFNs and subsequentially alerting 

neighboring cells to express ISGs. 

 

Figure 5. DVG generation in infected NHBE cells from single cell level. (A) Violin plots of log 
transformed viral UMI counts, DVG UMI counts, and Jfreq for 1 dpi, 2 dpi, 3 dpi, and mock 
samples. (B) Bar plots of cell counts of uninfected cells, DVG- infected cells, and DVG+ cells 
within different cell type for mock, 1 dpi, 2 dpi, 3 dpi samples. Infected cells were cells with viral 
UMI over 1 and DVG+ cells were the ones with DVG UMI over 1. All DVG+ cells had at least 1 
viral UMI. (C) Bar plots of DVG+ cell counts and DVG+ percentages per cell type for mock, 1 
dpi, 2 dpi, and 3 dpi samples. (D) Violin plots of log transformed viral counts for DVG+ and DVG- 
viral positive cells.  *** p < 0.01, ** p < 0.05 by two-sided Wilcoxon Rank Sum test.  
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Figure 6. DVG+ cells expressed primary IFNs earlier than DVG- cells. (A) Gene ontology 
analysis of genes that were downregulated (Top) and upregulated (Bottom) in DVG+ cells relative 
to DVG- cells at 2 dpi. Circle size represented number of genes in each pathway. Gene ratio 
represented the ratio of number of genes in that pathway to the number of genes in the entire 
cluster. (B) Gene expression of IFNB1 and IFNL1 (Y-axis) were correlated with viral UMI level 
(X-axis) within each virus counts group. Virus groups with their counts criteria were indicated on 
top of the graph. Each dot represented individual cell and were colored based on their presence 
of DVGs. (C-D) In the moderate virus group, expression level of IFNB, IFNL1, selected ISGs and 
chemokines for non-zero (gene counts > 0) cells and percentage of non-zero cells within DVG+ 
and DVG- groups were compared and graphed as violin plots at 2 dpi (C) and 3 dpi (D). *** p < 
0.01, ** p < 0.05 by two-sided Wilcoxon Rank Sum test. (E) Expression level of IFNB, IFNL1, and 
selected ISGs for DVG- cells with low virus group at 2 dpi and 3 dpi were graphed as violin plots. 
**** P<0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05 by Fisher’s exact test.  
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Symptomatic COVID-19 patients had higher amount and Jfreq of SARS-CoV-2 DVGs than 

asymptomatic patients. As SARS-CoV-2 DVGs can stimulate early expression of primary IFNs, 

the question of whether DVG generation is associated to COVID-19 disease severity was asked. 

We identified a publicly available NGS dataset (PRJNA690577) investigating subgenomic RNAs 

and their protein expression from symptomatic vs asymptomatic COVID-19 patients and the 

authors also indicated more deletions with length over 20 nts in symptomatic patients than 

asymptomatic patients (Wong, Ngan et al. 2021). To better examine the DVG (larger deletions) 

level between two patient groups, we applied our criteria to this dataset and found a distinguished 

increased DVG counts (both -sense and +sense, Fig. 7A) and subsequent higher Jfreq (Fig. 7C) in 

symptomatic individuals compared to asymptomatic patients on average. Additionally, our method 

also confirmed the original finding that the read counts for genomic RNA was significantly lower 

in symptomatic patients than that in asymptomatic patients (Fig. 7B). These data imply the 

potential role of DVGs in COVID-19 symptom development.  

 

Figure 7. Symptomatic COVID-19 patients had higher amount and Jfreq of SARS-CoV-2 DVGs 
than asymptomatic patients. Samples of various collection methods including nasopharyngeal 
(n = 42), anterior nasal (n = 35), and oropharyngeal (n = 5) were used from NGS dataset 
PRJNA690577. Symptomatic samples (n = 51) were collected from patients presented at the 
hospital with symptoms consistent with COVID-19 while asymptomatic samples (n = 30) were 
collected from patients who did not have symptoms consistent with COVID-19 and were found 
through contact tracing and workforce screening. DVG read counts (A), viral read counts (B), 
and Jfreq (C) percentages were calculated and graphed for all symptomatic and asymptomatic 
samples. **** p < 0.0001, *** p < 0.001 by two-sided Mann-Whitney test. 
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High DVG Jfreq was observed in one COVID-19 persistent patient. SARS-CoV-2 can develop 

persistent infections in immunosuppressive patients (Caccuri, Messali et al. 2022, Quaranta, 

Fusaro et al. 2022), and DVGs have been reported to facilitate viral persistence (Sun and López 

2017). To examine whether DVGs are associated with persistent SARS-CoV-2 infection in patient, 

we identified one NGS dataset, where nasal samples were taken at 9 time points from one 

immunosuppressive patient who was infected with SARS-CoV-2 and was positive for virus up to 

140 days since the first hospital admission (PRJEB47786). We detected DVGs in all 9 time points, 

but the amount of DVGs were not always correlated with total virus counts (Fig. 8A and 8B). More 

interestingly, Jfreq of DVGs from the samples in this patient were at least 10 times higher than the 

number we observed in in vitro infections and autopsy tissues (Fig. 8C vs Fig. 1B, 4A, and 5A) 

with highest Jfreq up to nearly 20% at 56 days post initial admission to hospital. We noticed that 

the method used in this dataset was tiled-PCR using ARTIC V3 followed by Illumina sequencing, 

which is different from all the previous bulk and single cell RNA-seq we examined. To test 

whether the high Jfreq was due to the different approach and potentially because of nasal samples, 

we found another NGS dataset with nasal samples of normal COVID-19 patients using tiled-PCR 

(ARTIC V1 and V3) followed by Illumina sequencing (PRJNA707211). We found that the Jfreq of 

each patient sample was below 1%, within the range observed from previous in vitro and autopsy 

NGS (Fig. 8D vs Fig. 1B, 4A, and 5A). This strongly suggests that the high Jfreq of DVGs in this 

patient was not due to the amplification and sequencing methods, but rather may be associated 

with the suppression status of patient’s immune system and persistent viral infection.   
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Figure 8. High DVG Jfreq was observed in one SARS-CoV-2 persistent patient. Nasal samples 
were collected from one immunosuppressive COVID-19 patient with persistent viral infection at 9 
different time points. DVGs were identified from the NGS dataset (ERP132087/PRJEB47786) of 
the nasal samples from this patient. DVG read counts (A), viral read counts (B), and Jfreq (C) 
percentages were calculated and graphed for samples at each time points. (D) Jfreq of samples in 
another NGS dataset (PRJNA707211) utilizing the same amplification and sequencing methods 
demonstrated a much smaller Jfreq than the SARS-CoV-2 persistent patient, comparable to Jfreq 
levels found SARS-CoV-2-infected in vitro and autopsy samples.   

 

Discussion 

It has been well-documented that DVGs are universally generated across single stranded 

RNA viruses both in vitro and in vivo, such as Respiratory Syncytial Virus (RSV), measles, 

influenza, Ebola, Dengue, CoVs, and many more.  For SARS-CoV-2, DVGs are resulted from 

non-homologous recombination and are previously observed in infected Vero cells  (Chaturvedi, 

Vasen et al. 2021) and nasal samples of COVID-19 patients (Xiao, Lidsky et al. 2021). In Vero 

cells, SARS-CoV-2 is reported to be more than 10 times more recombinogenic than other CoVs, 

such as MERS-CoV (Gribble, Stevens et al. 2021) and junctions of SARS-CoV-2 DVGs are most 

commonly flanked at U-rich RNA sequences, suggesting a novel mechanism by which viral 

polymerases use to generate DVGs. Interestingly, recombination is also proposed to be critical for 
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coronavirus diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. To further 

understand the recombination positions of SARS-CoV-2 DVGs, we expanded DVG analyses to 4 

more commonly used cells lines for SARS-CoV-2 studies, primary human lung epithelial cells 

(NHBE), and autopsy tissues from patients died of complications of COVID-19, further 

confirming that DVGs are ubiquitously produced during SARS-CoV-2 infections. Importantly, we 

identified specific genomic hotspots for DVG recombinant sites that are not only consistent in in 

vitro and in patient samples, but also shared between +sense and -sense DVGs. These results imply 

two points: 1) DVG recombination is not random in SARS-CoV-2 and certain mechanisms are 

utilized to regulate their production; and 2) our identified +sense DVGs and -sense DVGs are 

correlated with each other, likely due to the self-replication in between. One limitation of our 

analyses using short-read NGS is that short reads are <400 bp long and thus junction reads are less 

likely to cover the entire DVG sequence. Despite of this, the replication capability of identified 

DVGs strongly suggest that the 5’ UTR and 3’ UTR are retained in our identified DVGs, as two 

UTRs are essential for genome replication. More analysis from long read sequencing data are 

needed to further confirm full sequences of DVGs.  

Based on the secondary structures identified by COMRADES crosslinking in the +sense 

viral genome (Ziv, Gabryelska et al. 2018), we calculated the structural distance between two 

recombination sites of any -sense DVGs and surprisingly found an association between DVG break 

and rejoin points with short structural distance (Fig. 3C, D), as mediated by RNA base pairing.  

The relatively short structural distance, as compared to the sequence length, indicates that DVGs 

form when the viral polymerase falls off the template during replication and then rejoins the viral 

template at a position close in space, which can be quite distant in sequence. This strongly suggests 

that the recombination of viral polymerase complex can be guided by the secondary structures 
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within viral genomes. As the structures formed within the -sense strand are expected to be different 

from those in +sense strand (because folding stability is strand-direction dependent and G-U pairs 

map to A-C mismatches in the complementary strand), we postulate that DVG generation is 

initiated as -sense by viral polymerase complex using +sense viral genomes as template and -sense 

DVGs are then used as templates to replicate +sense DVGs (Fig. S1E). More investigations on the 

secondary structures in both strands of viral genomes and their role in viral recombination are 

needed to further test this hypothesis.  

The presence of DVGs on host response and viral replication were additionally explored. 

It was observed that samples with moderate and high amounts of DVGs exhibited enhanced 

antiviral responses than samples with low amounts of DVGs. From scRNA-seq analysis, IFN 

pathways were suppressed in highly infected cells and primary IFNs were stimulated earlier in 

moderately infected cells with DVGs than the ones without DVGs. These data suggest DVG 

generation earlier on in infection can enhance antiviral response more quickly, which is critical for 

mounting adequate and in-time immune response. The mechanisms by which DVGs enhance IFN 

responses are unknown. DVGs from RSV and influenza can function as primary triggers to directly 

stimulate type I IFN production through RIG-I like receptors (Sun and López 2017). It is 

previously reported that SARS-CoV-2 RNAs can be recognized by MDA5 (Thorne, Reuschl et al. 

2021, Znaidia, Demeret et al. 2022) and we showed that the expression of MDA5 (IFIH1) was 

elevated in DVG+ cells at 2 dpi (Fig. 6C). Therefore, it is possible that SARS-CoV-2 DVGs 

stimulate type I/III IFNs through MDA5. Alternatively, if DVGs do not directly stimulate IFN 

production, they can suppress the expression of viral-encoding IFN antagonists by large deletions, 

resulting in an earlier and higher IFN expression in DVG+ cells. Indeed, IFN antagonists are 

encoded in NSP1, NSP3, NSP5, NSP12, NSP13, NSP14, NSP15, ORF3a, ORF3b, ORF6, ORF7a, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

ORF7b, ORF8, ORF9b, N, and M (Lei, Dong et al. 2020, Xia, Cao et al. 2020, Han, Zhuang et al. 

2021, Wong, Cheung et al. 2022, Znaidia, Demeret et al. 2022) and most of them are within the 

deletion regions based on our conserved genomic hotspots for DVG recombination sites (Fig. 2A 

and 2B). Nevertheless, the higher IFN expression in DVG+ samples/cells suggest the critical role 

of DVGs in modulating host responses and sequential disease severity of COVID-19.   

To further explore the role of DVGs in COVID-19 severity, we take advantage of one 

published NGS dataset that investigates sgmRNA levels in patients with differing clinical severity 

(Wong, Ngan et al. 2021). They observed a reduction of viral sgmRNAs and viral deletions larger 

than 20 nts but an increased viral genomic RNA level in nasal samples from asymptomatic patients. 

As deletions with a cutoff of 20 nts may not represent the viral genomes that are defective, we 

applied our criteria to this dataset and found that the abundance and Jfreq of DVGs containing 

deletions larger than 100 nts were similarly reduced in asymptomatic patients compared to 

symptomatic patients. A significant difference in DVG production between patients with and 

without symptoms leads us to posit that quantity and Jfreq of DVGs contribute to the heterogeneity 

of both disease outcomes and presentation of symptoms in infected individuals, potentially through 

modulating host immune responses. As sgmRNAs and DVGs were both reduced in asymptomatic 

group in this cohort study, we wonder whether sgmRNAs production is always positively 

correlated with DVG generation. To examine this, we quantified TRS-dependent junction reads 

(recombination sites <85) from the ViReMa output in infected PHLE cells from different age 

groups as the estimation of sgmRNAs (dataset used in Fig. 4). Interestingly, we did not observe 

any positive correlation. Specifically, D198 with the least DVG amount among all samples at 72 

hpi had more sgmRNAs counts (n=385) than D239 (n=32), which again confirm that DVGs, rather 

than sgmRNAs, specifically stimulate IFN responses. Why do symptomatic patients generate more 
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DVGs? It is possible that the IFN response induced by DVGs lead to subsequential expression of 

cytokines, such as IL6, which is known to be an important mediator for immune-induced fever, as 

shown in blood monocytes for SARS-CoV-2 infection (Junqueira, Crespo et al. 2021). However, 

rapid and controlled immune response will lead to milder symptoms, whereas prolonged and 

uncontrolled immune response will lead to severe symptoms and even death (Janssen, Grondman 

et al. 2021). Future studies with higher symptom scoring resolution, such as mild/moderate, severe, 

and death, could elucidate the potential associations of DVG abundance and/or frequency with 

viral load, IFN responses, and COVID-19 disease severity.  

Analysis of DVG presence in longitudinal clinical samples describe the kinetics of the 

DVG population across entire infection course. For one NGS dataset, we were surprised to find 

one immunosuppressed patient generating DVGs consistently in every collected time point over a 

period of 140 days, and Jfreq of these samples being at least 10-fold higher than all previous 

analyzed datasets (>1%). When comparing a similar method, it was determined that the increased 

Jfreq was not due to the amplification and sequencing methods, but rather a biological difference 

either from a compromised immune status or a prolonged viral infection. These data additionally 

imply that a prolonged DVG presence/production may associate with a prolonged viral infection 

and a longer length of illness. Indeed, DVGs have been shown to promote viral persistence for 

various viruses, such as influenza A (De and Nayak 1980), dengue (Juárez-Martínez, Vega-

Almeida et al. 2013), Japanese encephalitis virus (Park, Choi et al. 2013), mumps (Andzhaparidze, 

Bogomolova et al. 1983), rabies (Kawai, Matsumoto et al. 1975), Sendai (Roux and Waldvogel 

1981), measles (Baczko, Liebert et al. 1986); additionally, worse disease outcome was found to be 

associated with prolonged DVG detection in RSV (Felt, Sun et al. 2021). More longitudinal studies 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.09.22.509123doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.22.509123
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

are needed to elucidate the relationship between DVGs and prolonged viral infection especially in 

immunosuppressed COVID-19 patients.  

Determining the generation (recombination) and function of DVGs during SARS-CoV-2 

infection would facilitate reducing the viral recombination events, which greatly contribute to 

newly emerging CoVs, and elucidate another point of mitigating disease severity from those 

infected. We showed here that the recombination sites of SARS-CoV-2 DVGs are clustered in 

several genomic regions, which are likely to be determined by RNA secondary structures formed 

in between. Furthermore, our studies provide the evidence that DVGs play vital roles in IFN 

stimulation, prolonged viral replication, and symptom development during SARS-CoV-2 

infection, urging for more investigations to further determine the mechanism of DVG generation 

and their impact on SARS-CoV-2 pathogenesis. 

Materials and Methods 

Virus and cell preparation  

The following reagents were deposited by the Centers for Disease Control and Prevention and 

obtained through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate USA-

WA1/2020, NR-52281. SARS-CoV-2 was propagated and titered using African green monkey 

kidney epithelial Vero E6 cells (American Type Culture Collection, CRL-1586) in Eagle’s 

Minimum Essential Medium (Lonza, 12-125Q) supplemented with 2% fetal bovine serum (FBS) 

(Atlanta Biologicals), 2 mM l-glutamine (Lonza, BE17-605E), and 1% penicillin (100 U/ml) and 

streptomycin (100 μg/ml). Viral stocks were stored at − 80°C. All work involving infectious 

SARS-CoV-2 was performed in the Biosafety Level 3 (BSL-3) core facility of the University of 

Rochester, under institutional biosafety committee (IBC) oversight. 
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PHLE culture on air-liquid interface and SARS-CoV-2 infection  

Primary human lung epithelial (PHLE) cells were cultured on an air-liquid interface as previously 

described (Wang, Bhattacharya et al. 2020, Anderson, Chirkova et al. 2021). Briefly, lung tissue 

issues were digested with a protease cocktail and cells were then cultured on a collagen-coated 

transwell plate (Corning, 3470) until each well reaches a transepithelial electrical resistance 

(TEER) measurement of >300 ohms. Cells were then placed on an air-liquid interface (ALI) by 

removing media from the apical layer of the transwell chamber and continuing to feed cells on the 

basolateral layer as they differentiate. Cells were differentiated for 4-5 weeks at ALI before use in 

experiments. The apical layer of primary lung cells that had been cultured on an air-liquid interface 

for about 4-5 weeks were inoculated with SARS-CoV-2 (BEI, NR-52281, hCoV-19/USA-

WA1/2020) at a MOI of 5 (titered in VeroE6 cells) in phosphate-buffered saline containing 

calcium and magnesium (PBS++; Gibco, 14040-133), and incubated at 37°C for 1.5 hours. The 

infectious solution was then removed and the apical layer washed with PBS++. Cells were then 

incubated for 24, 48, or 72 hours. 

SARS-CoV-2 inactivation and sample preparation  

Cells that were harvested at 24 and 72 hours post infections were lysed with SDS lysis buffer 

(50mM Tris pH8.0, 10mM EDTA, 1% SDS) and collected with a wide-bore pipette tip. Cells that 

were harvested at 48 hours were first washed by dispensing and aspirating 37°C HEPES buffered 

saline solution (Lonza, CC-5022), and then trypsinized with 0.025% Trypsin/EDTA (Lonza, CC-

5012) for 10 min at 37°C. Dissociated cells were aspirated using a wide-bore pipette tip and to a 

tube containing ice-cold Trypsin Neutralization Solution (Lonza, CC5002); this was repeated to 

maximize cell collection. Cells were then pelleted by centrifugation, resuspended in chilled 

HEPES, and centrifugally pelleted once more before being resuspended in SDS lysis buffer. All 
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samples were physically lysed with QIAshredder homegenizers (Qiagen, 79656) and stored at -

80°C. Homogenized SDS lysates were diluted 1:1 with RNA lysis buffer (Agilent) and RNA was 

extracted using the Absolutely RNA Microprep Kit (Agilent) according to the manufacturer’s 

protocol, including on-column DNase treatment.  

Bulk RNA-sequencing of infected PHLE cells  

RNA concentration was determined with the NanopDrop 1000 spectrophotometer (NanoDrop, 

Wilmington, DE) and RNA quality assessed with the Agilent Bioanalyzer 2100 (Agilent, Santa 

Clara, CA). 1 ng of total RNA was pre-amplified with the SMARTer Ultra Low Input kit v4 

(Clontech, Mountain View, CA) per manufacturer’s recommendations. The quantity and quality 

of the subsequent cDNA was determined using the Qubit Flourometer (Life Technologies, 

Carlsbad, CA) and the Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). 150 pg of cDNA was 

used to generate Illumina compatible sequencing libraries with the NexteraXT library preparation 

kit (Illumina, San Diego, CA) per manufacturer’s protocols. The amplified libraries were 

hybridized to the Illumina flow cell and sequenced using the NovaSeq6000 sequencer (Illumina, 

San Diego, CA). Single end reads of 100nt were generated for each sample. 

Bulk RNA-seq data processing and DVG identification  

The datasets used for bulk RNA-Seq analyses in Fig. 1 and Fig. 2 were publicly available. Their 

detailed information was listed in Table S1. The RNA-seq used in Fig. 4 were from our own 

infection following the protocol as demonstrated earlier. For each sample, we first used Bowtie2 

(v. 2.2.9, (Langmead and Salzberg 2012)) to align the reads to the GRCh38 human reference 

genome. The unmapped reads were then applied to ViReMa (Viral-Recombination-Mapper v. 

0.21) to identify recombination junction sites and their corresponding read counts using SARS-
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CoV-2 reference genome (GenBank ID MT020881.1). A custom filtering script was developed in 

R to identify junction reads that met our criteria (R v4.1.0 and RStudio v1.4.17, script in Fig. S6). 

We required the positions of both sites (break and rejoin) of junction reads larger than 85, as TRS-

L is reported to be located with the first 85 nts of the SARS-CoV-2 genome. Additionally, we 

required deletions longer than 100 nts to ensure that the truncated viral RNAs are deficient in 

replication. We also included all deletions that had one or more reads as identified by ViReMa. 

The number of viral reads in each bulk RNA-Seq sample was quantified using the RSubread 

Bioconductor package. The junction frequency (Jfreq) was calculated as shown below for each 

sample.  

𝐽!"#$ =
𝐷𝑉𝐺	𝐶𝑜𝑢𝑛𝑡

𝑉𝑖𝑟𝑎𝑙	𝑅𝑒𝑎𝑑	𝐶𝑜𝑢𝑛𝑡 

For host transcriptome analysis, raw fastq files were mapped to the human transcriptome (cDNA; 

Ensembl release 86) using Kallisto (Bray, Pimentel et al. 2016) with 60 bootstraps per sample. 

Annotation and summarization of transcripts to genes was carried out in R, using the TxImport 

package (Soneson, Love et al. 2015). Differentially expressed genes (≥twofold and ≤ 1% false 

discovery rate) were identified by linear modeling and Bayesian statistics using the VOOM 

function in the Limma package (Ritchie, Phipson et al. 2015). Gene Ontology (GO) was performed 

using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Dennis, 

Sherman et al. 2003).  

DVG identification from scRNA-seq dataset 

We used the publicly available dataset from Ravindra et al. 2021 accessed through the NCBI 

database (GSE166766). This study consisted of single cell RNA-Seq (scRNA-Seq) data from 

human bronchial epithelial cells (NHBEs) infected with SARS-CoV-2 that were harvested 1 day 
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post infection (dpi), 2 dpi, and 3 dpi. We first used Cell Ranger (Zheng, Terry et al. 2017) to 

construct gene expression matrices for each sample. To identify the number of viral transcripts, 

the SARS-CoV-2 reference sequence was concatenated to the end of the human genome reference 

as one additional gene. The gene expression matrices were then loaded into the Seurat package in 

R (Satija, Farrell et al. 2015), followed by principal component analysis and cell clustering were 

performed. Cells were then clustered and annotated based on the gene makers used in the original 

publication of this dataset. To identify DVGs, we first used UMI-tools (Smith, Heger et al. 2017) 

to associate the cell barcodes and UMIs with each corresponding read name. Similar to the bulk 

RNA-Seq analysis, we used Bowtie2 (Langmead and Salzberg 2012), ViReMa, and a custom R 

filtering script for DVG identification (details in Fig. S6). We then used the filtered ViReMa output 

to re-quantify DVG count based on the UMIs associated with each cell barcode, which is 

considered as DVG count per cell. We also calculated Jfreq for each cell by using DVG UMI/viral 

UMI per cell barcode. The numbers of DVG UMIs and Jfreq of each cell barcode was then added 

to the gene expression matrix created by Cell Ranger. The Jfreq values were multiplied by 103 so 

that they would not be left out during the cell clustering and type identification steps. Cells with 

more than one DVG UMI (virus positive cells) were grouped as DVG+ and DVG- based on the 

presence or absence of DVG UMI, respectively.  

Differentially expressed genes between DVG+ and DVG- in scRNA-seq analysis 

The list of differentially expressed genes between the DVG+ group and DVG- group was 

generated with the Seurat function FindMarkers, after normalizing and scaling the data with the 

Seurat function SCTransform. Three different types of tests were used to create three differential 

gene expression (DGE) lists for both 2 dpi and 3 dpi: Mast, DESeq2, and the Wilcoxon rank sum 

test (default) using the criteria of percentage of cells where the gene was detected (pct) > 0.1, 
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adj_pval < 0.01, and log fold change > 0.25. The final DGE list was determined based on common 

genes that were found in two of the three methods. To identify the pathways enriched in the DGE 

list, we first divided the DGE list based on their upregulation and downregulation in DVG+ group. 

GO analysis was performed for the upregulated genes and downregulated genes separately through 

DAVID functional annotation clustering tool and graphed in R using the code in Fig. S6. We then 

specifically focused on interferon responses between DVG+ and DVG- groups. Low, medium and 

high groups were further categorized based on their amount of viral UMI within virus positive 

cells and the expression of selected IFN related genes were specifically compared and graphed 

between DVG+ and DVG- cells within each viral groups in R (code in Fig. S6).  

DVG identification from the tiled-PCR deep sequencing  

The protocol for identifying DVGs in three publicly available datasets that utilize PCR tiling from 

ARTIC LoCost (V1 or V3) (https://artic.network) primer sets followed bulk sequencing data 

processing for DVG identification. The first dataset was used to study DVG generation during 

longitudinal COVID-19 persistence in one immunosuppressed patient (ENA: ERP132087, NCBI 

SRA: PRJEB4778) and the second one was served as the control cohort containing 16 regular 

COVID-19 patients using the same way to prepare the library (PRJNA707211). The third one is 

to study DVGs in a cohort of both asymptomatic and symptomatic COVID-19 patients (NCBI 

SRA: PRJNA690577). This method of amplification produced overlapping 400 bp amplicons that 

are then used to construct respective sequencing libraries from which data processing and 

subsequent analysis can occur. For the longitudinal study, the ARTIC V3 amplicons were 

sequenced as paired-end 300 bp reads on Illumina Miseq. The ARTIC V3 amplicons of the 

symptomatic cohort study was PCR amplified by five cycles and also sequenced identically.  

Secondary structure analysis of DVG junction positions 
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Our definition of structural distance follows (Clote, Ponty et al. 2012). For a given primary 

sequence and a corresponding secondary structure, we first convert them to a graph where each 

nucleotide i is a node. We add an edge (i, i+1) between any two adjacent nucleotides i and i+1 

(gray bonds in Fig. 3B), and an edge (i, j) between any paired bases i and j (black bonds in Fig. 

3B) as reported by Ziv et al. from their COMRADES mapping (Ziv, Gabryelska et al. 2018). This 

graph can model alternative base pairs. For example, if nucleotide i has possible pairs with 

nucleotides j, k, and l, then node i will connect five edges (i, i-1), (i, i+1), (i, j), (i, k), and (i, l). 

Based on the connected graph, the structural distance between two nucleotides is formalized as the 

number of edges in the shortest path between them (red solid path in Fig. 3B), which can be solved 

by classical graph algorithms (Cormen, Leiserson et al. 2022).  

The chimeric reads detected by COMRADES from (Ziv, Price et al. 2020) consist of only left- and 

right-side sequences without base-pairing information. For short-range interactions, they extracted 

a (continuous) subsequence between the 5’ end of the left side and the 3’ end of the right side and 

used RNAfold (Lorenz, Bernhart et al. 2011) to predict structures for that subsequence. For long-

range interactions, they utilized RNAduplex (Lorenz, Bernhart et al. 2011) to predict interactions 

between the two (distant) segments, which does not model any intra-segmental base pairs for either 

segment. Note that alternative base pairs exist in the data. Therefore, we built the graph based on 

the predicted base pairs in Ziv et al.’s data and calculated the structural distance between any two 

positions using the method described above. Additionally, we chose a cutoff value of 50 for the 

number of chimeric reads, which leads to a balanced precision and sensitivity evaluated on the 

known structure (Ziv, Gabryelska et al. 2018).  

Statistical analysis 
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Pearson’s correlation was performed to identify the association between virus and DVG counts 

and virus and Jfreq in the bulk RNA-Seq datasets. For the scRNA-Seq dataset, unpaired two-sided 

Wilcoxon rank sum tests were performed to identify the differences in viral load, DVG counts, 

and Jfreq among mock, 1 dpi, 2 dpi, and 3 dpi samples. We first log transformed viral UMI counts 

and expression level of selected IFN related genes and then compared between DVG- and DVG+ 

cells for each time point using unpaired two-sided Wilcoxon rank sum tests.  

Data availability  

Source data for the publicly available NGS datasets described in this manuscript is available as 

Supplementary Table S1. All NGS datasets were retrieved with NCBI and ENA accession numbers 

GSE147507 (Daamen, Bachali et al. 2021), GSE148729 (Wyler, Mösbauer et al. 2021), BioProject 

PRJNA628043 (Ogando, Dalebout et al. 2020), GSE166766 (Ravindra, Alfajaro et al. 2021), 

GSE150316 (Desai, Neyaz et al. 2020), BioProject PRJNA707211 (Jaworski, Langsjoen et al. 

2021), and BioProject PRJNA690577 (Wong, Ngan et al. 2021); ERP132087-BioProject 

PRJEB47786 (Weigang, Fuchs et al. 2021), respectively. Dataset used in Fig. 4 are available upon 

request and the raw data of all infected samples are under submission to GEO. 
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Supplementary tables and figures 

Table S1 Summary of all samples from published datasets 

Cells/Tissues/Sam
ple Types Infection Type MOI Time 

Points Dataset# (Sample#) Sequence 
Method 

Paired or 
Single end 

A549-ACE2 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(infected cells) 2 24h 

GSE147507 
(GSM4486160, 

4486161, 4486162) 
Bulk Single  

NHBE 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(infected cells) 2 24h 

GSE147507 
(GSM4432381, 

4432382, 4432382) 
Bulk Single  

Calu3_total RNA 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(infected cells) 0.3 24h 

GSE148729 
(GSM4477962, 

4477963) 
Bulk Paired  

Calu3_polyA 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(infected cells) 0.3 24h 

GSE148729 
(GSM4477910, 

4477911) 
Bulk Single  

Caco2 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(infected cells) 0.3 24h 

GSE148729 
(GSM4477888, 

4477889) 
Bulk Single  

H1299 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(infected cells) 0.3 24h 

GSE148729 
(GSM4477868, 

4477868) 
Bulk Single  

Vero E6_S 

Fig. 1B, D, & E 

Fig. 2 

In vitro 
(supernatants) 3 

48h/ 

passage 

PRJNA628043: 

SRP258466 
Bulk Paired  

NHBE 

Fig. 4 

Fig. 5 

In vitro 
(infected cells) ~0.01 24h, 48h, 

72h GSE166766  scRNA-seq Paired  

Case1 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - 

GSE150316 
(GSM4546576, 

4546577, 4546578, 
4546579) 

Bulk Paired  
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Case8 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - 

GSE150316 
(GSM4698544, 

4698545, 4698546, 
4698547, 4698548) 

Bulk Paired  

Case9 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - 

GSE150316 
(GSM4698549, 

4698550, 4698551, 
4698552, 4698553) 

Bulk Paired  

Case11 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - 

GSE150316 
(GSM4698526, 

4698527, 4698528) 
Bulk Paired  

CaseC 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - GSE150316 

(GSM4698556) Bulk Paired  

CaseD 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - GSE150316 

(GSM4698557) Bulk Paired  

CaseE 

Fig. 1C, D, & E 

Fig. 2 

Autopsy lung 
tissue - - GSE150316 

(GSM4698558) Bulk Paired  

Longitudinal 
samples  

Fig. 6A, B, & C 
Nasal  - - 

ENA: ERP132087, 
NCBI SRA: 

PRJEB47786 

ARTICv3-
Bulk Paired 

ARTIC samples 

Fig. 6D 
Nasal - - PRJNA707211 

ARTIC 
v1&v3-

Bulk 
Paired 

Asymptomatic 
and Symptomatic 

samples  

Fig. 7 

Nasal  - - PRJNA690577 ARTICv3-
Bulk Paired 
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Table S2 Common DVGs identified from in vitro infections 

GSE147507 

Break Point Rejoin Point Counts Strand ID 

28691 1620 109 - A549-ACE2_r1 

28691 1620 49 - A549-ACE2_r3 

29173 27800 8 - NHBE_r2 

29173 27800 104 - A549-ACE2_r1 

29173 27800 92 - A549-ACE2_r2 

29173 27800 63 - A549-ACE2_r3 

29307 731 129 - A549-ACE2_r1 

29307 731 115 - A549-ACE2_r2 

29307 731 96 - A549-ACE2_r3 

29308 733 52 - A549-ACE2_r1 

29308 733 57 - A549-ACE2_r2 

29308 733 46 - A549-ACE2_r3 

29310 747 76 - A549-ACE2_r1 

29310 747 109 - A549-ACE2_r2 

29310 747 48 - A549-ACE2_r3 

29310 755 55 - A549-ACE2_r1 

29310 755 56 - A549-ACE2_r2 

29310 755 54 - A549-ACE2_r3 

29310 827 89 - A549-ACE2_r1 

29310 827 99 - A549-ACE2_r2 

29310 827 49 - A549-ACE2_r3 

29350 824 66 - A549-ACE2_r1 

29350 824 110 - A549-ACE2_r2 

29350 824 92 - A549-ACE2_r3 

29353 734 13 - NHBE_r2 

29353 734 104 - A549-ACE2_r1 

29353 734 52 - A549-ACE2_r3 
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29353 735 64 - A549-ACE2_r1 

29353 735 68 - A549-ACE2_r3 

29477 730 54 - A549-ACE2_r2 

29477 730 68 - A549-ACE2_r3 

GSE148729 

27234 27344 14 + calu3_totalRNA_AR2 

27234 27344 13 + calu3_totalRNA_BR2 

27341 27231 11 - calu3_polyA_A 

27341 27231 9 - calu3_polyA_B 

27341 27231 25 - calu3_totalRNA_AR1 

27341 27231 25 - calu3_totalRNA_BR1 

27341 27231 11 - caco2_polyA_A 

27341 27231 24 - caco2_polyA_B 

27794 29175 19 + calu3_totalRNA_AR2 

27794 29175 10 + calu3_totalRNA_BR2 

27794 29176 12 + calu3_totalRNA_BR2 

27795 29175 12 + calu3_totalRNA_AR2 

27796 29195 8 + calu3_totalRNA_BR2 

27802 29175 29 + calu3_totalRNA_AR2 

27802 29175 28 + calu3_totalRNA_BR2 

27965 27231 3 - calu3_polyA_A 

27965 27231 9 - calu3_totalRNA_AR1 

27965 27231 9 - caco2_polyA_B 

28318 29123 8 + calu3_totalRNA_AR2 

28318 29123 13 + calu3_totalRNA_BR2 

28319 29017 12 + calu3_totalRNA_AR2 

28319 29017 7 + calu3_totalRNA_BR2 

28408 29017 11 + calu3_totalRNA_AR2 

28408 29017 9 + calu3_totalRNA_BR2 

28673 28505 9 - calu3_totalRNA_BR1 
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28673 28505 5 - caco2_polyA_A 

28729 28464 13 - caco2_polyA_A 

28729 28464 6 - caco2_polyA_B 

28731 28465 13 - caco2_polyA_A 

28731 28465 8 - caco2_polyA_B 

28731 28495 8 - caco2_polyA_A 

28731 28495 5 - caco2_polyA_B 

29084 28318 12 - calu3_totalRNA_AR1 

29084 28318 11 - calu3_totalRNA_BR1 

29084 28318 6 - caco2_polyA_A 

29084 28318 8 - caco2_polyA_B 

29164 27800 4 - calu3_polyA_A 

29164 27800 6 - caco2_polyA_A 

29173 27792 8 - calu3_polyA_B 

29173 27793 6 - calu3_polyA_B 

29173 27793 6 - caco2_polyA_A 

29173 27800 16 - calu3_polyA_A 

29173 27800 15 - calu3_polyA_B 

29173 27800 16 - calu3_totalRNA_AR1 

29173 27800 14 - calu3_totalRNA_BR1 

29173 27800 25 - caco2_polyA_A 

29173 27800 12 - caco2_polyA_B 

29173 27801 3 - calu3_polyA_A 

29173 27801 6 - caco2_polyA_A 

29343 6653 3 - calu3_polyA_A 

29343 6655 5 - caco2_polyA_B 

29345 6635 3 - calu3_polyA_A 

29353 6603 3 - calu3_polyA_B 

29353 6653 7 - calu3_totalRNA_AR1 

29481 6683 3 - calu3_polyA_B 
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29481 6683 9 - calu3_totalRNA_BR1 

29493 6653 3 - calu3_polyA_A 

29494 6653 4 - calu3_polyA_A 

29494 6653 3 - calu3_polyA_B 

29495 6655 10 - calu3_totalRNA_BR1 

29520 6883 3 - calu3_polyA_B 

29520 6883 11 - calu3_totalRNA_BR1 

29805 29686 8 - caco2_polyA_A 

29805 29686 9 - caco2_polyA_B 

SRP258466 

Break Point Rejoin Point Counts Strand ID 

5981 6566 8 + veroE6_L8 

5981 6566 9 + veroE6_s5p2 

5982 6566 8 + veroE6_L8 

5982 6566 8 + veroE6_s5p1 

5982 6566 7 + veroE6_s5p3 

5982 6573 7 + veroE6_s5p1 

6044 6525 8 + veroE6_s5p1 

6045 6525 8 + veroE6_L8 

20272 20387 8 + veroE6_L8 

20272 20387 9 + veroE6_s5p3 

27386 29472 7 + veroE6_s5p3 

27386 29473 13 + veroE6_L8 

27386 29473 17 + veroE6_s5p2 

27785 29195 9 + veroE6_s5p3 

27788 29196 23 + veroE6_L8 

27788 29196 8 + veroE6_s5p1 

27788 29196 26 + veroE6_s5p3 

27793 29163 11 + veroE6_s5p1 

27794 29166 6 + veroE6_s5p3 
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27794 29175 7 + veroE6_s5p1 

27794 29175 9 + veroE6_s5p3 

27794 29195 7 + veroE6_L8 

27802 29175 14 + veroE6_L8 

27802 29175 11 + veroE6_s5p3 

28508 28676 22 + veroE6_L8 

28508 28676 7 + veroE6_s5p1 

28508 28676 11 + veroE6_s5p2 

28508 28676 22 + veroE6_s5p3 

PHLE cells in vitro infections (own infection) 

Break Point Rejoin Point Counts Strand ID 

1363 29345 6 + D231_I_72hr_R1 

1363 29353 4 + D231_I_72hr_R1 

1369 29353 1 + D283_I_72hr_R1 

1416 29449 3 + D231_I_72hr_R1 

1425 29444 2 + D283_I_72hr_R1 

1624 29337 15 + D231_I_72hr_R1 

1624 29339 1 + D231_I_72hr_R1 

27382 29472 10 + D231_I_72hr_R1 

27382 29473 7 + D231_I_72hr_R1 

27382 29483 1 + D231_I_72hr_R1 

27385 29473 14 + D231_I_48hr_R1 

27385 29479 9 + D231_I_72hr_R1 

27385 29472 7 + D231_I_72hr_R1 

27385 29473 3 + D231_I_72hr_R1 

27385 29473 2 + D239_I_48hr_R1 

27386 29473 12 + D231_I_72hr_R1 

27386 29476 4 + D231_I_72hr_R1 

27386 29474 1 + D231_I_72hr_R1 

27386 29473 9 + D239_I_48hr_R1 
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27386 29468 4 + D239_I_48hr_R1 

27793 29166 4 + D231_I_48hr_R1 

27793 29176 1 + D231_I_72hr_R1 

27794 29175 5 + D231_I_72hr_R1 

27794 29167 3 + D231_I_72hr_R1 

27794 29166 2 + D231_I_72hr_R1 

27795 29166 11 + D231_I_72hr_R1 

27795 29195 3 + D231_I_72hr_R1 

27795 29176 2 + D231_I_72hr_R1 

27795 29175 2 + D231_I_72hr_R1 

27795 29175 22 + D239_I_72hr_R1 

27796 29186 10 + D231_I_48hr_R1 

27797 29167 4 + D231_I_72hr_R1 

27798 29176 7 + D231_I_72hr_R1 

27800 29174 1 + D239_I_48hr_R1 

27801 29175 4 + D231_I_72hr_R1 

27802 29175 21 + D231_I_48hr_R1 

27802 29166 12 + D231_I_72hr_R1 

27802 29175 9 + D231_I_72hr_R1 

27802 29176 3 + D231_I_72hr_R1 

27802 29175 28 + D239_I_48hr_R1 

27802 29175 1 + D283_I_72hr_R1 

27803 29174 1 + D203_I_72hr_R1 

27803 29175 10 + D231_I_72hr_R1 

27803 29172 3 + D231_I_72hr_R1 

29172 27803 3 - D231_I_72hr_R1 

29173 27802 1 - D203_I_72hr_R1 

29173 27800 10 - D231_I_48hr_R1 

29173 27801 10 - D231_I_72hr_R1 

29173 27800 7 - D231_I_72hr_R1 
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29173 27793 4 - D231_I_72hr_R1 

29173 27792 3 - D231_I_72hr_R1 

29173 27800 12 - D239_I_48hr_R1 

29173 27800 4 - D283_I_72hr_R1 

29174 27800 2 - D231_I_72hr_R1 

29175 27797 2 - D231_I_72hr_R1 

29176 27802 2 - D231_I_72hr_R1 

29184 27794 29 - D231_I_48hr_R1 

29443 1424 1 - D283_I_72hr_R1 

29448 1415 5 - D231_I_72hr_R1 

29468 27381 3 - D231_I_72hr_R1 

29471 27383 1 - D231_I_48hr_R1 

29472 27382 1 - D231_I_72hr_R1 

29473 27386 3 - D231_I_72hr_R1 

29473 27386 1 - D239_I_48hr_R1 

29474 27389 1 - D198_I_72hr_R1 

29474 27386 1 - D231_I_72hr_R1 

29475 27385 1 - D231_I_72hr_R1 

29685 29808 1 + D231_I_72hr_R1 

29687 29813 1 + D231_I_72hr_R1 

29689 29812 1 + D231_I_48hr_R1 

29690 29813 2 + D231_I_72hr_R1 

29690 29828 1 + D231_I_72hr_R1 

29691 29818 3 + D231_I_72hr_R1 

29695 29814 8 + D231_I_72hr_R1 

29695 29823 1 + D231_I_72hr_R1 

29695 29814 4 + D239_I_48hr_R1 

29791 29681 1 - D239_I_48hr_R1 

29793 29690 1 - D231_I_72hr_R1 

29805 29686 10 - D231_I_72hr_R1 
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29807 29688 3 - D203_I_48hr_R1 

29807 29688 6 - D231_I_48hr_R1 

29807 29688 7 - D231_I_72hr_R1 

29807 29688 16 - D239_I_48hr_R1 

29807 29688 1 - D283_I_72hr_R1 

29810 29687 13 - D231_I_48hr_R1 

29812 29686 1 - D231_I_72hr_R1 

29813 29690 4 - D231_I_72hr_R1 

29813 29690 15 - D239_I_48hr_R1 

29814 29693 1 - D231_I_72hr_R1 

29816 29680 4 - D231_I_72hr_R1 

29817 29690 1 - D231_I_72hr_R1 

29818 29686 4 - D231_I_48hr_R1 
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Figure S1. Positive sense DVG generation in SARS-CoV-2 in vitro and autopsy samples. (A) 
scheme for +sense DVGs as they were generated from -sense genomic template. V and E position 
distributions for +sense DVG from in vitro infected samples (B), where circle size and color 
intensity indicated DVG counts, and autopsy samples (C), where circle size indicated the Jfreq at 
that position and circle color indicates sample case. The green dashed boxes represented genomic 
hotspots for DVG junctions. (D) V and E position distributions by Jfreq per position for +sense 
DVGs. Graph showed two in vitro infected samples with more than half of the DVGs are positive 
sense. The width of each bar represents 300 nucleotides. (E) Schematic representation of how -
sense and +sense DVGs replicate from each other, leading to the observation that V position of 
+sense DVGs shared the same hotspots with V’ position of -sense DVGs.  
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Figure S2: More comparisons between structural distance (left) and sequence distance (right). 
The first row showed the distributions over all pairs of positions, and the next rows represented 
distributions over DVG junctions with different cutoff values for counts (2, 5, 10). As the cutoff 
value increased, a greater proportion of distances are under 100, and the mean values get 
smaller.    
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Figure S3. Junction distribution of DVGs identified in bulk RNA-seq and scRNA-seq using 
infected NHBE cells. (A-D) graphed DVGs of NGS used in Fig. 3. Junction distributions for 
identified -sense (A) and +sense (B) DVGs from infected NHBE cells of different age groups were 
graphed as scatterplot. Circle color represented harvest time post infection or patient age group. 
(C) The location distribution of Break point and Rejoin point of -sense DVGs were plotted 
separately as bar graph. The dashed boxes indicated hotspots with high concentrations of break 
or rejoin points. The width of each bar represented 300 nucleotides. (D) Detailed positions of 
identified hotspots clustered with -sense DVG break and rejoin points. The color of the dashed 
outline around each graph indicated the corresponding hotspot with the same color in (C). The 
width of each bar represented 10 nucleotides. (E) represented scRNA-seq used in Fig.4 and 5. 
Break point (E) and rejoin point (V) distributions of +sense DVGs were graphed at different time 
points post infection. Circle size represented cell count per position and circle color represents 
length of deletions in DVGs.   
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Figure S4. Antiviral (type I IFN) responses was upregulated in samples with high viral counts 
and DVG counts. (A) Differential expressed genes between high virus and low virus groups were 
graphed as heatmap for all samples. Pink cluster was the genes upregulated in high virus group 
and orange cluster was the gens downregulated in high virus group. The virus group and the DVG 
level of each sample were both indicated on top of the heatmap. (B) Gene ontology analysis of 
genes that were upregulated in high virus group with high DVG level (pink cluster) were graphed 
in R (GOplot). Circle size represented number of genes in each pathway. Gene ratio represented 
the ratio of number of genes in that pathway to the number of genes in the entire cluster.  
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Figure S5. Gene ontology analysis of differential expressed genes between DVG+ and DVG- 
groups at 3 dpi. Gene ontology analysis of genes that were downregulated (A) and upregulated 
(B) in DVG+ cells relative to DVG- cells at 3 dpi. Circle size represented number of genes in each 
pathway. Gene ratio represented the ratio of number of genes in that pathway to the number of 
genes in the entire cluster. 
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2  

module  load  bowtie2/2.2.9 
 

bowtie2 -x /scratch/tzhou18/hg38index/GRCh38_noalt_as 
-U  /scratch/tzhou18/sample1.fastq.gz -p  8 
--un-gz ./sample1.unmapped.fq.gz --al-gz ./sample1.mapped.fq.gz 

Introduction 
 

The purpose of this standard operating procedure is to outline the pipeline used for ViReMa. This document 
describes the steps needed to identify and analyze defective viral genomes (DVGs) from bulk RNA-Seq and 
single cell RNA-Seq (scRNA-Seq) data in SARS-CoV-2. 

The Bowtie2 and ViReMa scripts were both run on the BlueHive Linux computing cluster supported by the 
Center for Integrated Research Computing at the University of Rochester. 

We used version 2.2.9 of Bowtie2 to map our samples to the human genome. We used the GRCh38 (hg38) 
human reference genome. We also used UMI-Tools version b1 for our single cell RNA-Seq analysis. 

We used version 0.21 of ViReMa to identify the DVG recombinant events and their corresponding counts. 
Version 0.21 of ViReMa uses version 0.12.9 of Bowtie and Python3 to map each sample to the reference viral 
genome. We used the SARS-CoV-2 reference genome with GenBank ID MT020881.1. 

For the rest of our analysis, we used version 4.1.0 of R and version 1.4.1717 of RStudio. Our analysis used 
the following packages: 

 
• Rsubread 
• tidyverse 
• ggplot2 
• plotly 
• openxlsx 
• data.table 

 
 

DVG analysis from bulk RNA-Seq dataset 
 

The pipeline to identify DVGs from bulk RNA-Seq analysis was as follows: 

 
1. Bowtie2 
2. ViReMa 
3. Subread 
4. R filtering 

 

Bowtie2 

 
We used Bowtie2 to align our sample to the human reference genome (GRCh38 (hg38)). The GRCh38 
(hg38) index was downloaded from the Bowtie2 website. The unmapped output sequence served as the viral 
sequence to be used for ViReMa. 

The SLURM script used to run Bowtie2 alignment for single end reads is shown below: 
 

 

For paired end samples, properly paired read files were specified using the -1 and -2 options instead of the 
-U option used for single end reads. 
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3  

module  load  bowtie/0.12.9 
module load python3 

 

python3  /scratch/tzhou18/ViReMa_0.15/ViReMa_0.21/ViReMa.py 
/scratch/tzhou18/sars2_MT020881.fasta  /scratch/tzhou18/sample1.unmapped.fq.gz 
/scratch/tzhou18/sample1_recombinations.bam --MicroInDel_Length  5 
--Aligner_Directory  /software/bowtie/0.12.9  -BED 
--Output_Dir  /scratch/tzhou18/sample1 

fastq sample path 
sample1.fastq.gz sample1 /Users/terryzhou/ 
sample2.fastq.gz sample2 /Users/terryzhou/ 
sample3.fastq.gz sample3 /Users/terryzhou/ 

library(Rsubread) 
 

targets <- read.table("study_design.txt", 
row.names=NULL,  header  =  T,  as.is  =  T) 

 

# Build Index from genome fasta 
buildindex(basename="reference_name",  reference="reference.fasta") 
# make  sure  the  reference.fasta  has  lines  that  are  less  than  1000  bases  long 

 

# Align reads 
reads <- targets$fastq 
align(index="reference_name", readfile1=reads, input_format="gzFASTQ", 

output_format="BAM",  unique=TRUE,  indels=5,  nthreads=8) 

ViReMa 

 
We used ViReMa to identify viral recombinant events. 

 

 

The Virus_Recombination_Results.bed  file  within  the  BED_Files  folder  and  the  recombinations.bam 
file were used for the downstream analysis. 

 

Subread 

 
Bioconductor R package Rsubread (v2.6.4) was used to align our RNA-seq data to the viral reference genome 
to identify the number of viral reads in each sample. 

To import each sample into RStudio to run Subread, a tab-delimited file named study_design.txt  was 
created to contain the file names and paths, as shown below: 

 

 

The following R script was used to run Rsubread in RStudio. 
 

 

The number of viral reads printed out in the R console, as well as the subread.BAM.summary file, in the 
Uniquely_mapped_reads row were used as the total counts of viral reads (Fig1B_virus). 

 

R Filtering Script 

 
The following R script was used to filter out recombinations that are not deletions (i.e. insertions, duplica- 
tions), deletions shorter than 100 nt, and those that had a break point before the 85 nt position. We also 
separated the identified DVGs into positive and negative sense and analyzed them separately. 
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library(tidyverse) 
 

# import  ViReMa  output  BED  file as  csv  with  headers 
T1  <-  read.csv("2dpi_recombinations.csv") 

 

# filter out recombinations that are not deletions 
T1_final <- filter(T1, Type == "Deletion") 

 

#  calculate  deletion  lengths 
T2 <- mutate(T1_final, Deletion_length = abs(Break_Point - Rejoin_Point)) 
# filter out  deletions  shorter  than  100  nt 
T2_less <- filter(T2, Deletion_length > 100) 
# filter out  deletions  with  break  points  before  the  85  nt  location 
T2_final  <-  filter(T2_less,  Break_Point  >  85) 
# negative  sense  DVGs  have  their  break  points  labeled  as  Rejoin_Point 
T2_final <- filter(T2_final, Rejoin_Point > 85) 

 

# calculate  ratio  of  DVGs  at  that  position 
T3 <- mutate(T2_final, DVGratio = (Counts/Total_Rejoin), 

DVGratio_R = (Counts/Total_Break)) 
# add  sample  ID  name  column 
T3['ID']  =  '2dpi' 

 

#  calculate  Jfreq 
T3['jfreq'] = T3$Counts / 300000 
# replace the 300000 with actual numerical viral counts 
# obtained in the Subread section 

 

# separate T3 into positive and negative sense 
T3_neg <- subset(T3, strand == "-") 
T3_pos <- subset(T3, strand == "+") 

 

write.csv(T3, file = "T3_2dpi.csv", row.names = FALSE) 

library(ggplot2) 
# plot  negative  sense  break  and  rejoin  distribution 
neg.rejoin <-  ggplot(T3_neg,  aes(width  =  300))  + 

geom_col(aes(x = Rejoin_Point, y = Counts, fill = Deletion_length)) + 
coord_cartesian(ylim  =  c(0,  10),  xlim  =  c(0,  30000))  + 
scale_x_continuous(breaks=seq(0,  30000,  2000))  + 
labs(x = "Rejoin point", y = "Total reads", 

title = "Rejoin point usage distribution (negative sense)", 
fill = "Deletion Length") + 

Since viral load can affect DVG level, we used the junction frequency (Jfreq) as a standardized value to 
quantify DVG level. We calculated Jfreq by dividing the DVG count by the viral read count. The viral read 
count was identified via the previous Subread step. 

The filtering script is shown below: 
 

 
 

Making Plots 

 
We used the following script to graph plots as shown in Fig. 2 and Fig. S1. 
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theme_bw() + 
theme(legend.position = "right", 

axis.text = element_text(size = 8), 
axis.title = element_text(size = 16)) 

neg.break <- ggplot(T3_neg, aes(width = 300)) + 
geom_col(aes(x = Break_Point, y = Counts, fill = Deletion_length)) + 
coord_cartesian(ylim  =  c(0,  10),  xlim  =  c(0,  30000))  + 
scale_x_continuous(breaks=seq(0,  30000,  2000))  + 
labs(x = "Break point", y = "Total reads", 

title = "Break point usage distribution (negative sense)", 
fill = "Deletion Length") + 

theme_bw() + 
theme(legend.position  =  "right", 

axis.text = element_text(size = 8), 
axis.title = element_text(size = 16)) 

 

# DVG distribution --  Counts 
neg.dist <- ggplot(T3_neg,  aes(y  =  Break_Point,  x  =  Rejoin_Point, 

size = Counts, color = Deletion_length), 
alpha = 0.5) + 

geom_point() + 
labs(y = "Break point (nt)", x = "Rejoin point (nt)", 

title= "All Deletions (negative sense)", 
color = "Deletion Length", size = "Counts") + 

geom_rug(aes(color = Deletion_length)) + 
theme_bw() + 
xlim(0,  30000)+  ylim(0,  30000)+ 
theme(legend.position = "right", axis.text = element_text(size = 8), 

axis.title = element_text(size = 16)) 
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DVG analysis from scRNA-Seq dataset 
 

The pipeline to identify DVGs from scRNA-Seq analysis was as follows: 

 
1. UMI-Tools 
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module load umi-tools 
 

umi_tools extract --bc-pattern=CCCCCCCCCCCCCCCCNNNNNNNNNNNN 
--extract-method=string 
--stdin=1dpi_CoV2_HHT_S2_L001_R1_001.fastq.gz   --stdout=1dpi_out_R1.fastq.gz 
--read2-in=1dpi_CoV2_HHT_S2_L001_R2_001.fastq.gz  --read2-out=1dpi_out_R2.fastq.gz 
-L extract.log 

module  load  bowtie2/2.2.9 
 

bowtie2 -x /scratch/tzhou18/hg38index/GRCh38_noalt_as 
-U  /scratch/tzhou18/1dpi_out_R2.fastq.gz -p  8 
--un-gz ./1dpi.unmapped.fq.gz --al-gz ./1dpi.mapped.fq.gz 

module  load  bowtie/0.12.9 
module load python3 

 

python3  /scratch/tzhou18/ViReMa_0.15/ViReMa_0.21/ViReMa.py 
/scratch/tzhou18/sars2_MT020881.fasta 1dpi.unmapped.fq.gz 
1dpi_recombinations.bam --MicroInDel_Length  5 
--Aligner_Directory  /software/bowtie/0.12.9 
-BED --Output_Dir /scratch/tzhou18//1dpi -ReadNamesEntry 

2. Bowtie2 
3. ViReMa 
4. R filtering 

 

UMI-Tools 

 
UMI-Tools was used to associate the cell barcodes and UMIs for each read to the sequence. The cell barcodes 
and UMIs from the R1 file were combined with the corresponding read in the R2 file. 

 

 
 

Bowtie2 

 
As with the bulk RNA-Seq analysis, we are used Bowtie2 to align our sample to the human genome. The 
unmapped output file was used for ViReMa analysis. 

 

 
 

ViReMa 

 
For scRNA-Seq analysis, ViReMa must be run twice in order to link the cell barcodes and UMIs to the 
identified DVGs. The first run was identical to running ViReMa for bulk RNA-Seq. The second run was as 
follows: 

 

 

The Virus_Recombination_Results.bed file within the  BED_Files  folder  and  the  recombinations.bam 
file from the first run and the Virus_Recombination_Results.txt file from the second run were used for 
the following R filtering. 

 

R Filtering Script 

 
The first section of the R filtering script was identical to bulk RNA-seq section. 
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recomb   <-   read.csv("3dpi_Virus_Recombination_Results.txt") 
# give column temporary header name 
colnames(recomb) <- c("xx") 

 
 

This next section of the R filtering was unique to scRNA-seq analysis. The input file for this section was the 
Recombination_Results.txt file from the second run of ViReMa, including all of the read counts, positions, 
and cell barcodes/UMIs for each DVG. 

The viral.reads dataframe, including the number of viral UMIs for each cell and lists the cells in the order, 
was used for downstream Seurat analysis. This dataframe was retrieved by outputting only the viral reads 
row from the Cell Ranger gene matrix into a .csv file. 

The final dataframes of interest from the following R filtering script were the df1, df2, and df3 dataframes, 
which included the number of DVG UMIs per cell, the number of DVG UMIs per position and the number 
of DVG UMIs per combination of cell and position, respectively. These datasets were used for downstream 
analyses. In addition, the bcmatrix dataframe was added to the matrix in Seurat as a “DVG gene.” 

The following script only showed the filtering process for the positive sense DVGs, however the same script 
was used for the negative sense DVGs. 

 

library(ggplot2) 
library(tidyverse) 
library(openxlsx) 
library(data.table) 

 

# filter ViReMa output 
# this section is the same for both bulk and scRNA 
# import ViReMa output BED file as csv with headers 
T1 <- read.csv("3dpi_recombinations.csv") 

 

# filter out recombinations that are not deletions 
T1_final <- filter(T1, Type == "Deletion") 

 

# calculate  deletion  lengths 
T2 <- mutate(T1_final, Deletion_length = abs(Break_Point - Rejoin_Point)) 

# filter out deletions shorter than 100 nt 
T2_less <- filter(T2, Deletion_length > 100) 
# filter out deletions with break points before the 85 nt location 
T2_final <-  filter(T2_less,  Break_Point  >  85) 
# negative sense  DVGs  have  their  break  points  labeled  as  Rejoin_Point 
T2_final <- filter(T2_final, Rejoin_Point > 85) 

 

# calculate ratio  of  DVGs  at  that  position 
T3 <- mutate(T2_final, DVGratio = (Counts/Total_Rejoin), 

DVGratio_R = (Counts/Total_Break)) 
# add sample  ID  name  column 
T3['ID'] = '3dpi' 

 

# separate T3 into positive and negative sense 
T3_neg <- subset(T3, strand == "-", select = Break_Point:ID) 
T3_pos <- subset(T3, strand == "+", select = Break_Point:ID) 

 

# save T3 dataframe as csv file 
write.csv(T3, file = "T3_3dpi.csv", row.names = FALSE) 
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# remove rows that are @NewLibrary and @EndOfLibrary 
ind <- (startsWith(recomb$xx, "@")) 
temp.dat <- recomb[!ind, ] 
# dat dataframe has one column with pos/count in odd numbered rows 
# and all of the barcodes in even rows 
dat <-  as.data.frame(temp.dat) 

 

# reformat dat dataframe into two columns 
# identify odd rows and making separate lists of odd and even rows 
row_odd <- seq_len(nrow(dat)) %% 2 
dat.odd  <-  dat[row_odd  ==  1,  ] 
dat.even  <-  dat[row_odd  ==  0,  ] 
# join odd and even rows into two columns, 
# so each row is pos/count then all cell barcodes 
dat1 <- cbind(dat.odd, dat.even) 
dat1 <- as.data.frame(dat1) 

 

# filter based on DVG filtering from T3 above 
# creating  new  column  that  combines  break/rejoin/counts 
T3$PosCount <- paste0(T3$Break_Point, "_to_", T3$Rejoin_Point, "_#_", T3$Counts) 
T3_neg$PosCount <- paste0(T3_neg$Break_Point, "_to_", 

T3_neg$Rejoin_Point, "_#_", T3_neg$Counts) 
T3_pos$PosCount <- paste0(T3_pos$Break_Point, "_to_", 

T3_pos$Rejoin_Point, "_#_",  T3_pos$Counts) 
# filter all 
dat1.1  <-  recomb  %>% 

filter(xx %in% T3$PosCount) 
dat1.2 <-  dat1  %>% 

filter(dat.odd  %in%  dat1.1$xx) 
# filtering only positive sense 
dat1.1.pos  <-  recomb  %>% 

filter(xx %in% T3_pos$PosCount) 
dat1.2.pos <-  dat1  %>% 

filter(dat.odd %in% dat1.1.pos$xx) 
 

#  positive  sense 
# create new df with each column being a different DVG (position and count) 
# each row is a different cell 
dat3.pos.umi <- dat1.2.pos %>% 

mutate(id = row_number()) %>% 
separate_rows(dat.even, sep = '_Fuzz=') %>% 
separate(dat.even, c('dat.even'), sep = '_Fuzz=') %>% 
group_by(id) %>% 
mutate(x = row_number()) %>% 
ungroup %>% 
pivot_wider(names_from = dat.odd, values_from=dat.even) %>% 
select(-c(id, x)) 

# move  all cells with  values  to  top 
dat4.pos.umi <- 

data.table(dat3.pos.umi)[, lapply(.SD, function(x) x[order(is.na(x))])] 
# remove rows with all na from bottom 
# (but still includes some individual cells with na) 
dat5.pos.umi <- 
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dat4.pos.umi[rowSums(is.na(dat4.pos.umi)) != ncol(dat4.pos.umi), ] 
# get rid of information in read name that isn't the cell barcode or UMI 
dat6.pos.umi <- 

sapply(dat5.pos.umi,  function(i)  gsub(pattern  =  "[A-Z0-9:]+:[0-9]+_", 
replacement = "", x = i) ) 

dat6.pos.umi <- as.data.frame(dat6.pos.umi) 
# get  rid of  any  new  lines, tabs,  whitespaces 
dat7.pos.umi <- 

sapply(dat6.pos.umi, function(i) gsub(pattern = "[\r\n\t\\S+]", 
replacement = "", x = i) ) 

dat7.pos.umi <- as.data.frame(dat7.pos.umi) 
# every  cell barcode/  UMI  in one  column 
dat7.pos.umi <- data.frame(newcol = c(t(dat7.pos.umi))) 
dat7.pos.umi <- na.omit(dat7.pos.umi) 
dat7.pos.umi$newcol <- as.character(dat7.pos.umi$newcol) 
dat7.pos.umi <- subset(dat7.pos.umi, newcol != "NA") 
dat7.pos.umi <- subset(dat7.pos.umi, newcol != "") 
# new  dataframe  separating  barcodes  from  UMIs 
# whether barcode or umi comes first will depend on the specific sample. 
# change as needed 
dat8.pos.umi <- 

separate(dat7.pos.umi, newcol, into = c("barcode", "umi"), sep = "_") 
dat8.pos.umi <- na.omit(dat8.pos.umi) 
dat8.pos.umi$barcode <- as.character(dat8.pos.umi$barcode) 
dat8.pos.umi$umi <- as.character(dat8.pos.umi$umi) 
# for each  cell, how  many  unique  UMIs  are  there 
dat9.pos.umi1 <- dat8.pos.umi %>% 

group_by(barcode) %>% 
distinct(umi) %>% 
summarise(unique.umi.count = n()) 

 

# viral reads 
# import table with cell barcodes in order and viral UMI  counts 
viral.reads <- read.xlsx("3dpi_Barcodes.xlsx") 
# may have to modify these two lines based on how the imported table is formated 
viral.reads <- separate(viral.reads, row_names, 

into = c("barcode", "x"), sep = "-") 
viral.reads  <-  viral.reads[,c(2,4)] 
# final viral reads  dataframe  should  have  column  1  be  the  cell barcode  and 
# column 2 be the viral UMI counts 
colnames(viral.reads) <- c("barcode", "viral.read") 

 

# DVG  UMIs  per  cell 
# merge filtered DVGs with viral reads 
# not  including  cell barcodes  that  are  in the  filtered list, 
# but are not in the viral reads dataframe 
df1.pos  <-  merge(dat9.pos.umi1,  viral.reads,  by  =  c("barcode")) 
#  calculate  Jfreq 
df1.pos$jfreq <- df1.pos$unique.umi.count / df1.pos$viral.read 

 

# DVG  (UMI)  per  position 
# append positions to each cell barcode/UMI 
dat6.pos.umi[] <- Map(paste, names(dat6.pos.umi), dat6.pos.umi, sep = ':') 
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# make  dataframe  into  just  one  column 
xyz    <-     data.frame(x=unlist(dat6.pos.umi)) 
# separate out the positions 
xyz <- separate(xyz, x, into = c("a", "b"), sep = ":") 
xyz <- subset(xyz, b != "NA") 
xyz <- subset(xyz, b != "\t") 
# separate cell barcodes from UMIs 
xyz <- separate(xyz, b, into = c("b", "c"), sep = "_") 
# create new column that counts the number of unique UMIs for each position 
xxyz <- xyz %>% 

group_by(a) %>% 
distinct(c) %>% 
summarise(unique.umi.count = n()) 

colnames(xxyz) <- c("pos", "unique.umi.count") 
# count the number of unique cells with DVGs at each position 
y <- xyz %>% 

group_by(a) %>% 
distinct(b) %>% 
summarise(cells_per_position = n()) 

colnames(y)  <-   c("pos",   "cells_per_position") 
# add number of cells for each position 
xxyz<- merge(xxyz, y, by = c("pos")) 
xxyz <- separate(xxyz, pos, sep = "_", 

into = c("break_point", "to", "rejoin_point", "z", "count")) 
df2.pos  <-  xxyz[,  c(1,  3,  6,  7)] 
df2.pos$break_point <- as.numeric(df2.pos$break_point) 
df2.pos$rejoin_point  <-   as.numeric(df2.pos$rejoin_point) 
# calculate deletion lengths 
df2.pos$deletion_length  <-  abs(df2.pos$break_point  -  df2.pos$rejoin_point) 

 

# DVG (UMI) per position + cell ---- 
# merge position and cell columns 
xyzz <-  xyz  %>% 

unite("a", a:b, sep= ":", remove = FALSE) 
# count number of unique UMIs with each position/cell combination 
xyzzz <- xyzz %>% 

group_by(a) %>% 
distinct(c) %>% 
summarise(unique.umi.count =  n()) 

xyzzz <- separate(xyzzz, a, sep = ":", into = c("pos", "barcode")) 
xyzzz <- separate(xyzzz, pos, sep = "_", 

into = c("break_point", "to", "rejoin_point", "z", "count")) 
xyzzz  <-  xyzzz[,  c(1,  3,  6,  7)] 
# merge  with  viral  reads 
# not  including  cell barcodes  that  are  in the  filtered list, 
# but are not in the viral reads dataframe 
df3.pos <- merge(xyzzz, viral.reads, by = c("barcode")) 
#  calculate  Jfreq 
df3.pos$jfreq <- df3.pos$unique.umi.count / df3.pos$viral.read 
df3.pos$break_point <- as.numeric(df3.pos$break_point) 
df3.pos$rejoin_point <- as.numeric(df3.pos$rejoin_point) 
# at  this point  you  should  have  3  dataframes: 
# df1 is the DVG UMI count per cell 
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library(plotly) 
#plots for positive  sense only 
viral.percentile.95.pos  <-  quantile(df1.pos$viral.read, 

probs=seq(0,  1,  0.05))[20] 
viral.hist.pos <- ggplot(df1.pos, mapping = aes(x = viral.read)) + 

geom_histogram(color = "black", fill = "pink") + 
theme_bw() + 
ggtitle("Histogram of Viral Load") + 
xlab("Unique UMIs per Cell") 

plot.viral.load.pos <-  ggplot(df1.pos,  mapping  = aes(x  =  ""  , y  =  viral.read))  + 
geom_jitter(color  =  "hotpink",  size=2,  alpha=0.9)  + 
theme_bw() + 

 

 
Making Plots 

 
We used the following code to create exploratory data analysis plots of the positive sense DVGs, however 
the same code was used to visualize the negative sense DVGs. 

 

# df2 is the DVG UMI count per break and rejoin positon 
# df3 is the DVG UMI count per combination of cell and position 

 

# barcodes in order for seurat ---- 
# list  of all  cell   barcodes 
barcodes <- viral.reads[, c(1)] 
barcodes <- as.data.frame(barcodes) 
# all cells with unique DVG UMI count per cell 
bc  <-  rbind(df1.pos[,  c(1,  2)]) #add  df1.neg[,  c(1,  2)]  to  rbind  if  relevant 
# get rid of duplicates 
bc1 <- aggregate(unique.umi.count ~ barcode, bc, sum) 
bclist <- bc1$barcode 
counts <- bc1$unique.umi.count 
# create matrix of barcodes and counts with row1=barcodes row2=counts 
bcmatrix <- rbind(bclist, counts) 
# make cell barcodes the column names 
colnames(bcmatrix) <- bcmatrix[1,] 
bcmatrix <- as.data.frame(bcmatrix) 
# get rid of row with cell barcodes 
bcmatrix <- bcmatrix[-1,] 
rownames(bcmatrix) <- c("counts") 
# list of all cell barcodes 
bcs <- barcodes$barcodes 
bcs <- as.factor(bcs) 
# identify DVG negative cells 
nondvg  <-  setdiff(bcs,  bclist) 
# identify DVG positive cells 
posdvg <- bc1$barcode 
# set DVG  negative  cells  to  DVG  UMI  count  =  0 
bcmatrix[nondvg] <- 0 
# order columns to match matrix needed for seurat 
# the order should match the column order of the viral.reads dataframe, 
# which should be in alphabetical order by cell barcode 
bcmatrix <- bcmatrix[, order(colnames(bcmatrix))] 
write.csv(bcmatrix, "3dpi_dvgmatrix.csv") 
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#ylim(0, 30)  + 
ggtitle("Viral Load - UMI") + 
ylab("UMI Count per Cell Barcode") + 
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank(), 

panel.grid.major.x = element_blank()) + 
geom_hline(yintercept  =  viral.percentile.95.pos,  color  =  "blue") 

 

dvg.percentile.95.pos  <-  quantile(df1.pos$unique.umi.count, 
probs=seq(0,  1,  0.05))[20] 

dvg.hist.pos<- ggplot(df1.pos, mapping = aes(x = unique.umi.count)) + 
geom_histogram(color = "black", fill = "pink") + 
theme_bw() + 
ggtitle("Histogram of DVG Count (UMI)") + 
xlab("Unique UMIs per Cell") 

dvg.p.pos <- ggplot(df1.pos, mapping = aes(x = "" , y = unique.umi.count)) + 
geom_jitter(color  =  "hotpink",  size=2,  alpha=0.9)  + 
theme_bw() + 
#ylim(0,  2)  + 
ggtitle("DVG - UMI Per Cell Barcode") + 
ylab("UMI Count per Cell Barcode") + 
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank(), 

panel.grid.major.x = element_blank()) + 
geom_hline(yintercept  =  dvg.percentile.95.pos,  color  =  "blue") 

 

jfreq.percentile.95.pos  <-  quantile(df1.pos$jfreq,  probs=seq(0,  1,  0.05))[20] 
dvg.jfreq.hist.pos <- ggplot(df1.pos, mapping = aes(x = jfreq)) + 

geom_histogram(color = "black", fill = "pink") + 
theme_bw() + 
ggtitle("Histogram of Jfreq") + 
xlab("Jfreq") 

dvg.ratio.p.pos <- ggplot(df1.pos, mapping = aes(x = "" , y = jfreq)) + 
geom_jitter(color  =  "hotpink",  size=2,  alpha=0.9)  + 
theme_bw() + 
ggtitle("Jfreq = DVG UMI/ Viral UMI") + 
ylab("UMI Count per Cell Barcode") + 
theme(axis.title.x = element_blank(), axis.ticks.x = element_blank(), 

panel.grid.major.x = element_blank()) + 
geom_hline(yintercept  =  jfreq.percentile.95.pos,  color  =  "blue") 

 

# break/rejoin distribution graphs ---- 
#  break  point  distribution 
break.pos <-  ggplot(df2.pos)  + 

geom_col(mapping =  aes(x  =  break_point,  y  =  unique.umi.count, 
fill = deletion_length, width = 300)) + 

coord_cartesian(ylim  =  c(0,  100),  xlim  =  c(0,  30000))  + 
scale_x_continuous(breaks=seq(0,  30000,  2000))  + 
labs(x = "Break point", y = "Total reads", 

title = "Break point usage distribution (negative sense)", 
fill = "Deletion Length") + 

theme_bw() + 
theme(legend.position = "right", axis.text = element_text(size = 8), 

axis.title = element_text(size = 16)) 
# rejoin point distribution 
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rejoin.pos <-  ggplot(df2.pos)  + 
geom_col(mapping = aes(x = rejoin_point, fill = deletion_length, 

y = unique.umi.count, width = 300)) + 
coord_cartesian(ylim  =  c(0,  100),  xlim  =  c(0,  30000))  + 
scale_x_continuous(breaks=seq(0,  30000,  2000))  + 
labs(x = "Rejoin point", y = "Total reads", 

title = "Rejoin point usage distribution (negative sense)", 
fill = "Deletion Length") + 

theme_bw() + 
theme(legend.position = "right", axis.text = element_text(size = 8), 

axis.title = element_text(size = 16)) 
 

dist.pos1 <- ggplot(df2.pos, mapping = aes(y = break_point, x = rejoin_point)) + 
geom_point(mapping = aes(size = unique.umi.count, color = deletion_length), 

alpha = 0.5) + 
geom_rug(aes(color = deletion_length)) + 
theme_bw() + 
scale_colour_gradient(low = "red", high = "blue") + 
xlim(0,  30000)  +  ylim(0,  30000)  + 
labs(x = "Rejoin Point", y = "Break Point", 

title = "DVG Distribution (Positive Sense)", 
color = "Deletion Length", size = "DVG UMI Count") + 

theme(aspect.ratio  =  1,  legend.position  =  "right") 
dist.pos2 <- ggplot(df2.pos, mapping = aes(y = break_point, x = rejoin_point)) + 

geom_point(mapping = aes(color = cells_per_position), alpha = 0.5) + 
geom_rug(aes(color = deletion_length)) + 
theme_bw() + 
scale_colour_gradient(low = "red", high = "blue") + 
xlim(0,  30000)  +  ylim(0,  30000)  + 
labs(x = "Rejoin Point", y = "Break Point", 

title = "DVG Distribution (Positive Sense)", 
color = "Cells Per Position") + 

theme(aspect.ratio  =  1,  legend.position  =  "right") 
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Histogram of DVG Count (UMI) DVG − UMI Per Cell Barcode 
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Histogram of Jfreq Jfreq = DVG UMI/ Viral UMI 
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We used the following script to graph plots as shown in Fig. 4 and Fig. 5. The gene expression matrices 
were imported for each time point and the mock sample. The same script as Fig.4D was used to plot other 
time points and the same script as plots Fig.5A Fig.5B and Fig.5C was used to plot other time points and 
viral loads. 
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all <- rbind(genes.1dpi, genes.2dpi, genes.3dpi, mock) 
all$virus <- 

ifelse(all$MT020881.1  >=  1  &  all$MT020881.1  <=  10, 
"low", ifelse(all$MT020881.1 > 10 & 

all$MT020881.1  <=  15000,  "med",  "high")) 
all$jfreq <- (all$DVG / all$MT020881.1) 
all$dvg.presence  <-  ifelse(all$DVG  ==  0,  "neg",  "pos") 
all1 <- all[, -13] 
all.infect <- subset(all1, MT020881.1 >= 1) 
all2  <-  all1[,  c(1,11:16)] 
all2.infect <- subset(all2, MT020881.1 >= 1) 

 

Fig.4A <- ggplot(all2.infect, aes(x = day, y = log10(MT020881.1), color = day)) + 
geom_violin(width  =  1,  aes(fill  =  day),  alpha  =  0.2,)  + 
geom_boxplot(width = 0.1,  alpha  =  0)  + 
theme_classic() + 
scale_color_manual(values=c("dodgerblue4", "#E69F00", 

"forestgreen", "gray49")) + 
scale_fill_manual(values=c("dodgerblue4", "#E69F00", 

"forestgreen", "gray49")) + 
xlab("Sample") + ylab("log10(Viral UMI Count)") + 
ggtitle("Viral Load Per Sample") + 
theme(legend.position = "none") 

 

Fig.4D  <-  ggplot(subset(all2.infect,  day  ==  "2dpi"), 
aes(x = dvg.presence, y = log10(MT020881.1), color = dvg.presence)) + 

geom_violin(width  =  1,  aes(fill  =  dvg.presence),  alpha  =  0.2,)  + 
geom_boxplot(width = 0.1, alpha = 0) + 
theme_classic()  + 
scale_fill_manual(values = c("dodgerblue", "brown3")) + 
scale_color_manual(labels  =  c("DVG+",  "DVG-"), 

values = c("dodgerblue", "brown3")) + 
xlab("Sample") + ylab("log10(Viral UMI Count)") + 
ggtitle("Viral Load by DVG Presence (2dpi)") + 
theme(legend.position = "none") 
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all2dpi  <-  subset(all,  day  ==  "3dpi") 
all2dpi$virus  <-  factor(all2dpi$virus,  levels  =  c("low",  "med",  "high")) 
`Fig.5A  Fig.5B`  <-  ggplot(data  =  all2dpi,  mapping  =  aes(x  =  MT020881.1,  y  =  MX1))  + 

geom_point(aes(colour = dvg.presence)) + 
facet_grid(vars(dvg.presence),  vars(virus))  + 
xlab("Viral Count") + ylab("MX1 Gene Expression") + ggtitle("MX1 vs. Virus") + 
theme_bw() 

 

infected.2dpi <- subset(all.infect, day == "2dpi" & MT020881.1 >= 1) 
infected.2dpi  <-  infected.2dpi[,  c(1,  5,  8,  9,  10,  2,  7,  6,  4,  11:16)] 
infected.2dpi.long <- gather(infected.2dpi, gene, exp, IFNB1:IL6, 

factor_key =  TRUE) 
Fig.5C <- ggplot(data = subset(infected.2dpi.long, virus == "med")) + 

geom_violin(aes(x = gene, y = log10(exp + 1), 
group = interaction(gene, dvg.presence), 
color = dvg.presence, fill = dvg.presence), 

scale = "width", position = position_dodge(width = 0.9), 
alpha = 0.2, width = 0.8) + 

geom_boxplot(aes(x = gene, y = log10(exp + 1), 
group = interaction(gene, dvg.presence), 
color = dvg.presence), 

position =  position_dodge(width  =  0.9), 
width  =  0.2,  outlier.shape  =  NA,  alpha  =  0)  + 

scale_color_manual(values = c("dodgerblue", "brown3"), 
labels = c("Negative", "Positive")) + 

scale_fill_manual(values = c("dodgerblue", "brown3"), 
labels  =  c("Negative",  "Positive"))  + 

theme_bw()  +  theme(aspect.ratio  =  2/3,  legend.position  =  "bottom")  + 
ylim(c(0,  2.25))  + 
xlab("Gene") + ylab("Log10(Gene Expression + 1)") + 
labs(title = "Log Transformed Gene Expression by DVG Presence", 

subtitle = "2dpi, Moderate Viral Load", 
fill = "DVG Presence", color = "DVG Presence") 
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dvg.neg <- all2.infect %>% 
group_by(day, virus, dvg.presence) %>% 
summarize(dvg.neg = n()) %>% 
filter(virus == "low" & day != "mock") %>% 
group_by(day, virus) %>% 
mutate(total = sum(dvg.neg), neg.perc = (dvg.neg / total)*100) %>% 
filter(dvg.presence == "neg") 

Fig.5D <- ggplot(dvg.neg) + 
geom_col(aes(x = day, y = neg.perc, fill = day), color = "black") + 
scale_fill_manual(values = c("dodgerblue4", "goldenrod", "forestgreen")) + 
scale_color_manual(values = c("dodgerblue4", "goldenrod", "forestgreen")) + 
geom_text(aes(x = day, y = neg.perc, 

label =paste0(round(neg.perc, 3), "%")), vjust = -0.75) + 
ylim(c(0,  105))  + 
theme_bw() + theme(legend.position = "none") + 
xlab("Day") + ylab("Percent of DVG- Cells") + 
ggtitle("DVG Negative Low Viral Infection Cells") 
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Cellranger and Seurat 

 
The purpose of this section of the standard operating procedure is to outline the pipeline used for Cellranger and the 
Seurat R package for DVG counting and their impact on host responses from single cell RNA-seq. 
 
We used version 6.1.2 of Cellranger to generate the gene expression matrices for our single cell RNA-Seq analysis. 
 
This part of the analysis used the following R packages: 
 

• Seurat 
• Matrix 
• sctransform 
• Mast 
• DESeq2 
• tidyverse 
• ggplot2 
• dplyr 
• data.table 

 

Reference Genome 

 
SARS-CoV2 FASTA and GTF 
 

We dowloaded the SARS-CoV2 genome fasta file. For the MT020881.1 strain, it can be found in the following ncbi link. 
https://www.ncbi.nlm.nih.gov/nuccore/MT020881.1?report=fasta) 
We made a custom GTF for the SARS-CoV2 genome such that it was labeled as a ‘gene’ in the human reference 
genome to which the covid genome was appended. 
 

echo -e 'MT020881.1\tunknown\texon\t1\t(number of bases in genome, i.e. 29882)\t
.\t+\t.\tgene_id "MT020881.1"; transcript_id "MT020881.1"; gene_name "MT020881.1
"; gene_biotype "protein_coding";' > MT020881.1.gtf 
The resulting gtf file looked like the following with the ‘cat MT020881.1.gtf’ command. 

MT020881.1     unknown exon    1       29881     .       +       .       gene_id
 "MT020881.1"; transcript_id "MT020881.1"; gene_name "MT020881.1"; gene_biotype 
"protein_coding"; 

 
Creating reference package for Cellranger 
 

We used the following shell script to run the mkref command in cellranger to create the reference package. 
 

#!/bin/bash 
#SBATCH -J cellrngr_ref 
#SBATCH -e /scratch/sspandau/Yan_lab/cellrngr_ref_log.err 
#SBATCH -o /scratch/sspandau/Yan_lab/cellrngr_ref_log.out 
#SBATCH -t 24:00:00  
#SBATCH -c 8 
#SBATCH --partition=standard 
#SBATCH --mem=24G 
  
module load cellranger/6.1.2 
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cellranger mkref --genome=GRCh38_SARS-CoV2 --fasta=/path_to_concatenated_fasta/G
RCh38_SARS-CoV2.fa --genes=/path_to_concatenated_gtf/GRCh38_SARS_CoV2.gtf 
 
The ‘–genome=’ argument was for naming the resulting reference package. The ‘–fasta=’ was for inputing the 
reference fasta, and the ‘–genes=’ was for inputing the corresponding gtf file. 
 

Gene Expression Matrix 

 
Cellranger count 
 

#!/bin/bash 
#SBATCH -J cellrngrcount 
#SBATCH -e /scratch/sspandau/Yan_lab/cellrngrcount.err 
#SBATCH -o /scratch/sspandau/Yan_lab/cellrngrcount.out 
#SBATCH -t 72:00:00  
#SBATCH -c 8 
#SBATCH --partition=standard 
#SBATCH --mem=200G 
  
module load cellranger/6.1.2 
  
cellranger count --id=sample_name --transcriptome=/gpfs/fs2/scratch/sspandau/Yan
_lab/GRCh38_Covid19/ --fastqs=path/fastq --sample=id_fastqfilename  
 
The ‘–id=’ argument was for naming the output folder which contains the gene expression matrix.  
The ‘–transcriptome=’ argument was for inputing the path to the reference genome folder that was previously 
generated. The ‘–fastqs=’ argument was for input the path(s) to the R1 and R2 fastqs of the sample. The ‘–sample=’ 
argument was for input the sample id, which was the first few characters at the beginning of the R1 and R2 fastq file 
names. 
 

Loading matrix into R and creating csv files 
 

library(Seurat) 
library(Matrix) 
library(tidyverse) 
library(dplyr) 
library(data.table) 
#read in matrix from cellranger 
expression_matrix<- ReadMtx( 
  mtx = "pathway/cellranger/outs/filtered_feature_bc_matrix/matrix.mtx.gz",featu
res = "pathway/cellranger/outs/filtered_feature_bc_matrix/features.tsv.gz", 
  cells = "pathway/cellranger/outs/filtered_feature_bc_matrix/barcodes.tsv.gz", 
) 
 
#convert to data frame 
#makes barcodes rows, easier to align dvg matrix 
Expression_table <- as.data.frame(t(expression_matrix))  
rm("expression_matrix") 
 
#adding dvg matrix from R filter after scRNAseq ViReMa 
DVG_UMI<- read.csv("pathway/dvgmatrix.csv") 
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#makes barcodes rows, check to see if dvg matrix is already in this format befor
e using this code 
DVG_UMI<-as.data.frame(t(DVG_UMI))  
 
#create column with barcode 
Expression_table<-tibble::rownames_to_column(Expression_table, "barcode") 
 
#removes -1 that Seurat added to end of barcodes when matrix loaded into R 
Expression_table$barcode <- 
  sapply(Expression_table$barcode,function(i) gsub(pattern ="-1", 
                                       replacement = "", x = i) ) 
#merges DVG matrix with Gene expression matrix based on barcode 
Expression_DVG<-merge(Expression_table, DVG_Umi, by = "barcode")  
#re-adds barcodes as row names 
rownames(Expression_DVG)<-Expression_DVG$barcode  
#removes barcode columns 
Expression_DVG$barcode<- NULL  
 
rm("DVG_UMI") 
rm("Expression_table") 
Expression_DVG<-as.matrix(Expression_DVG) 
#naming DVG row as DVG, the row number below 
#may be different depending on the number of features 
#can check with this code : rownames(Expression_DVG) 
rownames(Expression_DVG)[60667]<-"DVG" 
 
#Target genes 
#makes genes the rows 
Expression_DVG<-as.data.frame(t(Expression_DVG))  
#creates vector with target genes 
data_keep_rows<-c("MX1", "MX2", "IL6", "IFIT1", "STAT1", "STAT2", "IFNB1", "IFNL
1", "TNF", "MT020881.1", "DVG")  
#creates subset with target genes 
Gene_subset<-Expression_DVG[rownames(Expression_DVG) %in% data_keep_rows, ]  
 
 
#make barcodes the rows 
Gene_subest<-as.data.frame(t(Gene_subset)) 
#add barcodes as column for excel 
Gene_subset<-tibble::rownames_to_column(Gene_subset, "row_names") 
#export to csv 
write.csv(Gene_subset, "pathway/Gene_subset_name", row.names = TRUE) 

 
Celltype Identification 
 

library(sctransform) 
#Cell Type 
Expression_DVG<-as.data.frame(Expression_DVG) 
# to check if data frame was in right format  
#rownames(Expression_DVG) 
#colnames(Expression_DVG) 
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#load into seurat as a seurat data object 
# min.cells filters out features that don't have counts in however many cells 
#min.features filters out cells that don't have a certain number of features det
ected 
seurat_Object<-CreateSeuratObject(counts = Expression_DVG, min.cells = 3, min.fe
atures = 200) 
 
#normalize and scale data 
seurat_Object <- SCTransform(seurat_Object) 
 
#perform PCA 
seurat_Object <- RunPCA(seurat_Object, features =     VariableFeatures(object = 
seurat_Object)) 
 
#Cluster the cells based on PCA and variable features 
seurat_Object <- FindNeighbors(seurat_Object, dims = 1:10) 
#change resolution based on how many cells were in scRNA data set (i.e. for 3000
 cells, resolution should be between 0.5 and 1.2, the higher the resolution, the
 more clusters) 
seurat_Object<- FindClusters(seurat_Object, resolution = 0.2) 
 
#print out gene markers for clusters 
all_markers <-FindAllMarkers(seurat_Object, pval.type = "all", direction = "all"
) 
markers <- as.data.frame(all_markers %>% group_by(cluster) %>% top_n(n = 10, wt 
= avg_log2FC)) 
top10_markers 
 
#renaming clusters based on cell types 
#identify celltypes of each cluster based on top markers in the clusters 
#if data set was already published, look in paper for which marker genes were us
ed for prior celltype identification 
#can use online CellMarker data base (https://www.researchgate.net/deref/http%3A
%2F%2Fbio-bigdata.hrbmu.edu.cn%2FCellMarker%2F) or PanglaoDB (https://panglaodb.
se/) to look up marker genes and their associated celltypes 
 
#create vector with new ident names (celltypes) in order of cluster number (i.e.
 first cluster is first celltype in vector) 
new.cluster.ids.0.2res <- c("SLC16A7+", "Secretory", "Ciliated", "SLC16A7+") 
#new.cluster.ids.0.8res <- c("SLC16A7+", "Ciliated", "SLC16A7+", "SLC16A7+", "SL
C16A7+","Secretory", "Unknown", "FOXN4+") 
 
#rename idents (clusters) 
names(new.cluster.ids.0.2res) <- levels(seurat_Object) 
seurat_Object<-RenameIdents(seurat_Object, new.cluster.ids.0.2res) 
 
#adding cell type to data frame 
Celltype<-seurat_Object@assays$RNA@counts 
Celltype<-as.data.frame(Celltype) 
cell<-data.frame(seurat_Object@active.ident) 
cell<-t(cell) 
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colnames(cell)=colnames(Celltype) 
Celltype<-rbind(Celltype, cell) 
rownames(Celltype) 
 
# Creating celltype data frame 
#If want matrix to just have covid counts, dvg counts, and cell type 
#use following line, numbers may vary based on how many features are present 
# Celltype<-Celltype[17626:17627,] 
Celltype<-as.data.frame(Celltype) 
rownames(Celltype) 
flipped<-t(Celltype) 
#convert new flipped expression table back to data frame 
Celltype<-as.data.frame(flipped) 
write.csv(Celltype, "Celltype_PHLE.csv", row.names = TRUE) 

 
Celltype Percents 
 

#read in csv created at the end of the celltype identification section containin
g celltypes, covid counts, and dvg counts for each cellbarcode 
celltype_data<-read.csv("pathway/celltype.csv") 
#to calculate number of cells in the sample 
num_cells<-nrow(celltype_data) 
 
#for celltype 1 
# to calculate celltype percent 
num_celltype1<-nrow(celltype_data[celltype_data$seurat_Object.active.ident == "n
ame_of_celltype1"]) 
percent_celltype1<-100*(num_celltype1/num_cells) 
celltype1_subset<-subset(celltype_data, seurat_Object.active.ident == "name_of_c
elltype1") 
#to calculate number of uninfected cells for that cell type 
num_celltype1_uninfected<-nrow(celltype1_subset[celltype1_subset$MT020881.1 == 0
,]) 
 
celltype1_subset_infected<-subset(celltype1_subset, MT020881.1 > 0) 
#to calculate DVG+ cells 
num_DVGpos<-nrow(celltype1_subset_infected[celltype1_subset_infected$DVG > 0,]) 
#to calculate DVG- cells 
num_DVGneg<-nrow(celltype1_subset_infected[celltype1_subset_infected$DVG == 0,]) 
 
#Repeat for however many celltypes were in the data and for however many samples
 are being compared 
#Add resulting statistics to csv 

 
Differential Gene Expression 
 

library(Mast) 
library(DESeq2) 
#subset Seurat object to only contain infected cells 
#the infection threshold used below was at least one covid count 
Q1<-subset(x = seurat_Object, subset = MT020881.1 > 0)  
infectioncounts<- Q1@assays$RNA@counts 
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infectioncounts<-as.data.frame(infectioncounts) 
 
 
#load in dvg status data frame 
#the data frame had first column as barcodes (sometimes called row_names), and t
he second column had the DVG status for that cell (i.e. Y for DVG+, N for DVG-, 
No_inf for uninfected cells) 
dvg_status<-read.csv("dvg_status_PHLE.csv") 
colnames(dvg_status) 
 
#align gene matrix barcodes with dvg barcodes 
infectioncounts<-as.data.frame(t(infectioncounts)) 
#name barcode column the same as it was named in the DVG status csv 
infectioncounts<-tibble::rownames_to_column(infectioncounts, "row_names or barco
de") 
#merge used to filter cells in expression matrix that were not present in dvg st
atus file 
infectioncounts<-merge(infectioncounts, dvg_status, by = "row_names or barcode") 
# makes barcodes the rownames instead of a column 
rownames(infectioncounts)<-infectioncounts$row_names 
#rownames(infectioncounts) 
 
#merge used to remove cells in dvg status file that were not present in filtered
 expression matrix 
dvg_status<-merge(dvg_status, infectioncounts, by = "row_names") 
#returns dvg status data frame with just the barcodes and dvg status 
dvg_status<-dvg_status[,c(1,2)] 
#fix colnames after adjusting number of cells to matrix cells 
colnames(dvg_status)<-c("row_names", "dvg_status")  
#colnames(dvg_status) 
rownames(dvg_status)<-dvg_status$row_names  
ncol(infectioncounts) 
#remove row_names and dvg status from expression matrix so that expression matri
x only has numerical data 
infectioncounts<-infectioncounts[,-c(1, 29575)]  
colnames(infectioncounts) 
# recreate seurat object with infectioncounts 
#made features the rows and cell barcodes the columns such that 
#it was in the correct format for seurat object 
infectioncounts<-t(infectioncounts) 
seurat_infected<- CreateSeuratObject(counts = infectioncounts) 
#add dvg status as meta data  
seurat_infected<-AddMetaData(seurat_infected, dvg_status$dvg_status, col.name = 
'dvg_status') 
#reset idents to be the dvg status meta data 
seurat_infected<-SetIdent(seurat_infected, value = seurat_infected@meta.data$dvg
_status) 
 
#use the following code to check if dvg status was correctly added as meta data 
to seurat object 
#VlnPlot(seurat_infected, features = "MTND1P23", split.by = 'dvg_status', split.
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plot = TRUE) 
 
#standardization and normalization 
seurat_infected<-SCTransform(seurat_infected) 
#Find marker genes 
list_mast<-FindMarkers(seurat_infected, ident.1 = "Y", ident.2 = "N", test.use =
 "Mast") 
#Mast was DGE method for 0-inflated expression matrix 
#DESeq2 and wilcox are other DGE methods that were used 
list_mast<-as.data.frame(list_mast) 
list_mast<-tibble::rownames_to_column(list_mast, "row_names") 
 
#to calculate average expression for the two idents (DVG+ and DVG- cells) 
#log normalize data 
seurat_infected<-NormalizeData(object = seurat_infected) 
#calculate average expression for the genes found in the DGE list above 
avg_E <-AverageExpression(seurat_infected, features = list_mast$row_names) 
avg_E<-as.data.frame(avg_E) 
avg_E<-tibble::rownames_to_column(avg_E, "row_names") 
#adds average expression to DGE list data frame such that resulting csv contains
 p-vals, adjusted p-vals for differentially expressed genes, the the percentage 
for which each genes were present in the two idents, and the average expression 
for each gene in the two idents 
list_mast_avgE<-merge(list_mast, avg_E, by = "row_names") 
write.csv(list_mast_avgE, 'DGE_list_mast.csv') 

 
Fig 5 A: GO dotplots 
 

#for merging the 3 DGE lists from the three methods, Mast, DESeq2, and Wilcoxon 
rank sum test 
#load in DGE lists 
mast<-read.csv("pathway\DGE_list_mast.csv") 
deseq2<-read.csv("pathway\DGE_list_DESeq2.csv") 
wilcox<-read.csv("pathway\DGE_list_wilcox.csv") 
#create merged data sets between each possible pairing of the lists 
wilcox_mast<-merge(mast, wilcox, by = "row_names") 
wilcox_deseq2<-merge(wilcox, deseq2, by = "row_names") 
mast_deseq2<-merge(mast, deseq2, by = "row_names") 
#bind newly merged data together 
all<-rbind(wilcox_mast, wilcox_deseq2) 
all<-rbind(all, mast_deseq2) 
#remove any duplicated rows (i.e. genes found in all three) 
all_noduplicate<-all[!duplicated(all$row_names), ] 
#remove duplicated columns  
all_noduplicate<-all_noduplicate[,-c(2:13)] 
write.csv(all_noduplicate, "New_DGE_list_commongenes.csv") 
 
After submitting DGE list to DAVID functional annotation tool and selecting the top pathways found in each cluster of 
the DAVID results, we used the following script to generate the GO dotplots. 
 

library(ggplot2) 
# load in top pathways from DAVID cluster results 
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downreg<-read.csv("pathway/David_cluster_topdownreg_pathways.csv") 
#add the pathway names as a factor with the levels being the generatio for those
 pathways 
downreg$Description<-factor(downreg$Description, levels=downreg[order(downreg$Ge
neratio,decreasing=F),]$Description) 
downreg<-as.data.frame(downreg) 
upreg<-read.csv("pathway/David_cluster_upreg_pathways.csv") 
upreg$Description<-factor(upreg$Description, levels=upreg[order(upreg$Generatio,
decreasing=F),]$Description) 
upreg<-as.data.frame(upreg) 
 
#plot the GO pathway enrichment 
ggplot(downreg, #can replace the numbers to the row number of pathway of your in
terest 
       aes(x = Generatio, y = Description)) +  
  geom_point(aes(size = Genes.per.GO.category, color = Fold.Enrichment)) + 
  theme_bw(base_size = 14) + theme(axis.text.y = element_text(size = 5))+ 
  scale_colour_gradient(limits=c(2, 100), low="coral1", high = "darkred") + 
  ylab(NULL) + 
  ggtitle("GO pathway enrichment Down Regulated")+theme(plot.title = element_tex
t(size = 15)) 
 
ggplot(upreg, 
       aes(x = Generatio, y = Description)) +  
  geom_point(aes(size = Genes.per.GO.category, color = Fold.Enrichment)) + 
  theme_bw(base_size = 14) + theme(axis.text.y = element_text(size = 5))+ 
  scale_colour_gradient(limits=c(1, 20), low="coral1", high = "darkred") + 
  ylab(NULL) + 
  ggtitle("GO pathway enrichment Up Regulated")+theme(plot.title = element_text(
size = 15)) 

2dpi GO dotplots 
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