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Abstract: SOX2 is a recognized pluripotent transcription factor involved in stem cell homeostasis,
self-renewal and reprogramming. It belongs to, one of the SRY-related HMG-box (SOX) family of
transcription factors, taking part in the regulation of embryonic development and determination
of cell fate. Among other functions, SOX2 promotes proliferation, survival, invasion, metastasis,
cancer stemness, and drug resistance. SOX2 interacts with other transcription factors in multiple
signaling pathways to control growth and survival. The aim of the study was to determine the effect
of a parturient’s age, umbilical cord blood pH and length of pregnancy on the quality of stem cells
derived from Wharton’s jelly (WJSC) by looking at birth weight and using SOX2 gene expression as
a marker. Using qPCR the authors, evaluated the expression of SOX2 in WJSC acquired from the
umbilical cords of 30 women right after the delivery. The results showed a significant correlation
between the birth weight and the expression of SOX2 in WJSC in relation to maternal age, umbilical
cord blood pH, and the length of pregnancy. The authors observed that the younger the woman
and the lower the umbilical cord blood pH, the earlier the delivery occurs, the lower the birth
weight and the higher SOX2 gene expression in WJSC. In research studies and clinical applications of
regenerative medicine utilizing mesenchymal stem cells derived from Wharton’s Jelly of the umbilical
cord, assessment of maternal and embryonic factors influencing the quality of cells is critical.

Keywords: SOX2; mesenchymal stem cells; gene expression; WJSC

1. Introduction

Mesenchymal stem cells (MSCs), especially obtained from perinatal tissues, includ-
ing Wharton’s jelly of umbilical cord have been an excellent source of stem cells used in
regenerative medicine during the last decade. MSCs derived from Wharton’s jelly (WJSC)
possess a number of valuable properties including the high ability of self-renewal and
differentiation, fast proliferation rate, immunosuppressive and paracrine properties and
high expression of factors specific to embryonic stem cells e.g., SOX2 or POU5F1. Addi-
tionally, the umbilical cord is considered to be a safe and abundant resource for MSCs, and
sampling does not raise any ethical concerns. In recent years WJSC have been the subject of
numerous studies in both pre-clinical and clinical phases [1,2]. However, there is still a lack
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of in-depth information regarding the mechanisms affecting the regulatory properties of
these cells, as well as the factors determining their therapeutic potential. The study focused
on the evaluation of one expression of the pluripotency factors—SOX2 expression, at the
mRNA level. The SOX2 gene (SRY-Related HMG-Box Gene 2) belonging to the SOX gene
family was discovered and described by Stevanovic et al. in 1994. It has been mapped to
3q26.3-27 on the long arm of chromosome 3 [3]. It encodes the SOX2 protein consisting
of 317 amino acids which contain the HMG domain, characteristic of all SOX proteins.
The domain binds to the ATTGTT motif in the DNA [4–7]. In embryonic stem cells, the
level of expression of transcription factors SOX2, OCT4 and NANOG impacts self-renewal,
maintenance of pluripotency and reprogramming of somatic cells [8–10]. It also directs the
differentiation of pluripotent stem cells to neural progenitors, as well as maintaining the
properties of neural progenitor cells [11]. SOX2 is a vital gene participating in maintaining
cell pluripotency [9,11]. Its mechanism of action involves activation and maintenance of
the OCT4 gene expression [12]. The SOX2 protein, when interacting with the OCT4 forms
a heterodimeric complex responsible for activation and silencing transcription processes of
genes in control of cell differentiation [13]. The cell remains undifferentiated if there is an
adequate level of SOX2 and even small changes in the SOX2 and OCT4 gene expression may
cause the loss of pluripotency [11]. A drop in SOX2 expression leads to the differentiation
of cells into trophectoderm [14], while its increase causes differentiation into meso-, ecto-
and trophectoderm [15]. There are numerous reports recording the presence of SOX2 gene
expression in human stem cells derived from different tissues, including perinatal [16–18],
adipose [19,20], bone marrow [19,21], dental pulp [22], mammary gland [23,24] skin and
heart muscle [20]. Many factors may influence gene expression and SOX2 protein level.
The effect depends, among other factors, on the type of cell and the degree of differen-
tiation. SOX2 protein concentration is regulated at many levels, including transcription,
post-transcription and post-translation [25]. Horizontal gene transfer occurs through a pro-
cess of self-regulation involving feedback mechanism, as well as mutual cross-regulation
between SOX2 and OCT4, OCT4 and NANOG [26]. Current research indicates that the
high proliferation potential is caused (at least partially) by the inhibitory effect of SOX2 on
genes involved in cell cycle regulation such as CCND1 and CDK4 genes [27].

SOX2 is considered irreplaceable and is required for the normal functioning of stem
cells and their maintenance in an undifferentiated state as well as self-renewal [28]. In
addition, it has been shown that SOX2 also affects migration and cell adhesion [29], SOX2
pituitary stem cells can hold additional roles in tissue expansion and homeostasis, acting
as paracrine signaling centers to coordinate the proliferation of neighboring cells [30].
Research suggests that the presence of high levels of SOX2 is related to the therapeutic po-
tential of stem cells, and the prospect of modulating SOX2 expression to achieve therapeutic
benefit seems to be promising [31]. Understanding the molecular mechanisms governing
SOX2 functions will facilitate the use of pluripotent stem cells for clinical and biomedical ap-
plications, with particular emphasis on the modeling and treatment of various neurological
disorders [11].

Factors influencing the SOX2 gene expression in stem cells are still being intensively
studied and there is a high demand for more data. The discovery of new factors influencing
the expression of SOX2 may contribute to better utilization of the cells taken from the
patient, as well as better preparation and maintenance of cells in in vitro culture.

The effect of maternal and neonatal factors on the quality of umbilical cord blood
stems cells have been a subject of numerous studies [31–40]. One of the deciding factors
in the usefulness of cord blood is the number of CD34+ stem cells. Studies involving
umbilical cord blood stem cells have shown, inter alia, that the number of CD34+ cells
depends on the number of previous live births and the body weight of the newborn, and
is better with good weight and first babies, and decreases with subsequent births [41]. It
was also observed in several studies that the gestational age negatively correlates with
the number of CD34+ cells [42,43], and the number of CD34+ stem cells is significantly
higher in premature babies [44]. Bielec–Berek et al. assessed the correlations between
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maternal age and selected properties of umbilical cord blood stem cells. Moreover, in
this study, the correlation between the mode of delivery, the age of the mother and the
quality of the obtained material for transplantation was assessed. The older the women
from whom umbilical cord blood was collected, the lower the mean concentration of HSC
cells in the material [37]. Aufderhaar et al. showed that perinatal factors such as low blood
pH and prolonged first stage of labor correlate with increases in CD34+ cells and cord
blood progenitor cells [45]. There is insufficient research related to the influence of these
factors on the quality of mesenchymal stem cells of Wharton’s jelly of the umbilical cord.
Available literature does not provide sufficient information on the influence of maternal age,
birth weight and duration of pregnancy or the physicochemical properties of cord blood
on the expression of the SOX2 gene in stem cells derived from umbilical cord Wharton’s
jelly. Therefore, in our work, we have decided to evaluate these factors. The study aims to
bring closer the knowledge of MSC biology, the combination of in vivo factors necessary to
maintain the state of undifferentiation, self-renewal potential and stem cell proliferation.
Finding the optimal maternal age and other perinatal parameters for collecting and banking
the highest quality material.

In view of the potential therapeutic benefits that may result from mesenchymal stem
cell transplantation widening viewers, understanding how to maintain cell viability and
in vitro pluripotency trait is of primary importance, bridging the gap in the knowledge of
the specific origin of MSCs, from Wharton’s jelly as opposed to into umbilical cord blood.

The aim of the study was to assess the expression of the SOX2 gene in mesenchymal
stem cells of Wharton’s jelly at the transcript level. The study also examined the effect of
a patient’s age, pregnancy length, birth weight and cord blood parameters on SOX2 gene
expression in the examined material.

2. Results
2.1. Cell Culture and Cytometric Analysis

Using flow cytometry (Figures 1 and 2) and cell culture under adhering conditions
(Figure 3A,B), mesenchymal character of the analyzed cells was demonstrated. The cyto-
metric test confirmed the presence of surface antigens characteristic for MSC on the tested
cells, such as: CD73, CD90, CD105 and CD145. During cell culture, the adherence capacity
to the plastic walls and the fibroblast-like shape of the analyzed cells were confirmed.

2.2. SOX2 Gene Expression Analysis

The presence of the SOX2 gene transcript was shown in all examined mesenchymal
Wharton’s jelly stem cells. The results showed that the expression of the SOX2 gene
in WJSC varies significantly depending on maternal age. In women aged 34 years and
younger, significantly higher expression of the SOX2 gene was recorded in comparison to
women over 34 years of age (p = 0.005) (Figure 4A). The analysis of the correlation between
gestational age and the SOX2 gene expression revealed a negative correlation (r = −0.55,
p < 0.05) (Figure 5a). Significant differences in the expression of the SOX2 gene in WJSC
have been noted in relation to the time of delivery. In the group of women who gave birth
before the due date, the expression of the SOX2 gene in Wharton’s jelly mesenchymal stem
cells was statistically significantly higher compared to women who gave birth in due course
(p = 0.002) (Figure 4B). An analysis of a correlation between the SOX2 gene expression
and the week of pregnancy in which the birth took place discovered a significant negative
correlation (r = −0.43, p < 0.05) (Figure 5b). A statistically significant negative correlation
between the SOX2 gene expression level and the birth weight (r = −0.47, p < 0.05) was noted
(Figure 5c). An analysis of the SOX2 gene expression in relation to the umbilical cord blood
pH showed a significantly negative correlation between the SOX2 gene expression level and
the cord blood pH (r = −0.46, p < 0.05) (Figure 5d). Furthermore, it was observed that the
SOX2 expression in WJSC is statistically significantly higher at pH 7.35 (p = 0.02) or lower
(Figure 4c). An analysis of the SOX2 gene expression in relation to the oxygen and carbon
dioxide pressure showed a statistically significant negative correlation of the SOX2 gene
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expression with pO2 (r = −0.44, p < 0.05) (Figure 5f) and a statistically significant positive
correlation of the SOX2 expression level with pCO2 (r = 0.57, p < 0.05) (Figure 5e). The
investigation did not show the impact of the delivery route, drugs used during pregnancy
and delivery on the SOX2 gene expression in WJSC.
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3. Discussion

The authors present the study showing the expression of the SOX2 gene, regarded as
one of the main factors of Wharton’s jelly stem cell pluripotency factors to be contingent
on the parturient’s age, the maternal age, birth weight, the pH of the umbilical cord blood,
carbon dioxide pressure and oxygen pressure.

The SOX2 expression in WJSC was statistically significantly higher at the pH of umbil-
ical cord blood equal to or lower than 7.35. They also have shown a correlation between the
SOX2 gene expression and the physicochemical parameters of umbilical cord blood. The
SOX 2 expression was increased at lower O2 and higher CO2 levels of umbilical cord blood.
The SOX2 level was increased with a decrease in cord blood pH. Obradovic et al. showed
that Wharton’s jelly stem cells cultured in vitro at 3% oxygen concentration showed higher
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expression of SOX2 compared to cells cultured at 21% oxygen concentration. It was also
noted that lower oxygen concentration increases in vitro migration ability of culture and
enhances the activity of proteolytic enzymes, as well as protecting the cell from harmful
factors. The authors theorize that low oxygen concentration enhances WJ-MSC multipo-
tency by stimulating their self-renewal and increasing the expression of the pluripotency
factor which can boost the therapeutic potential of WJSC [46]. As previously explained
in the literature, it has been shown that higher SOX2 expression in stem cells is associ-
ated with stemness, greater self-reinforcement potential, better proliferative properties,
and probably also increases cell migration and adhesion, and influences their paracrine
properties [28–31].

Mesenchymal stem cells require adequate oxygen concentration for their physiological
function. The balance between differentiation, apoptosis and self-mood which is character-
istic of stem cells must be achieved through regulation by the microenvironmental niche
in which stem cells reside. Oxygen concentration is an important factor to consider when
growing stem cells in tissue engineering and regenerative medicine [47]. In their research,
Halim et al. focused on finding a combination of factors in vitro necessary to control
stem cell proliferation, which would allow them to remain viable and undifferentiated,
by analyzing, among other things, oxygen concentration [48]. The research conducted by
Widowati et al. showed that Wharton’s jelly MSCs, cultured under hypoxic conditions,
have a higher rate of proliferation but show no difference in surface markers from cells
grown under normoxic conditions [49]. Yamamoto et al. demonstrated that low oxygen
pressure enhances proliferation and increases the number of growth factors secreted by
stem cells derived from adipose tissue. The authors would like to emphasize the effec-
tiveness of hypoxic cultures for ASC expansion and maintenance of an undifferentiated
state for further therapeutic use [50]. Zhao et al. show that HSPCs of the umbilical cord
blood maintain stemness better under hypoxic conditions [51]. It is difficult to compare our
research with the research presented in the literature, due to the use of various units by
the authors, moreover, in our study, we assess the possible effect of the pressure of carbon
dioxide and oxygen in the umbilical cord blood on the level of SOX2 expression in MSC,
while the level of CO2 and O2 in culture cellularity was constant at 5% and 15%. Safitri et al.
studied the effect of oxygen concentration on the level of SOX2 expression in the MSC of
rabbit bone marrow. They observed that low in vitro oxygen pressure conditions increased
OCT4 and SOX2 expression compared to conventional or hyperoxic conditions [52]. Bae
et al. suggest that SOX2 is a gene that is exceptionally amplified under hypoxic condi-
tions [53]. The presented research agrees with findings from other studies. It demonstrates
that lower oxygen pressure is linked to higher SOX2 gene expression. Our results indicate
that mesenchymal stem cells show higher expression of the SOX2 gene in a more acidic
environment with lower oxygen pressure and higher carbon dioxide pressure. We imply
that in vivo the pH of umbilical cord blood, oxygen and carbon dioxide concentration are
important factors regulating stem cells by influencing SOX2 expression. This fact may
prove to be valuable information used in the stem cell collection process as well as during
the handling of the cells.

The authors have demonstrated that the expression of the SOX2 gene in WJSC is
statistically significantly higher in women aged 34 years and younger compared to women
over 34 years of age. It is also shown that there is a statistically significant moderate negative
correlation between maternal age and the SOX2 gene expression. It was established in
several studies that the parturient’s age affects the quantity and quality of stem cells,
however, the studies focused mainly on cord blood stem cells [36,39,40,54]. Alrefaei et al.
evaluated the effect of maternal age on the expression of the mesenchymal stem cell
markers CD105 and CD29 in various regions of the human umbilical cord and showed
that there were significant negative correlations between maternal age and CD29 and
CD105 expression [55]. In studies with rats, Asmuda et al. observed that the expression
profile of Sox-2 in bone marrow derived MSCs of old rats was significantly lower compared
to that of young rats [56]. Huang et al. suggested that the younger donor umbilical
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cord is a relatively effective source of MSC. The authors speculated that the older donor’s
umbilical cord cells showed reduced differentiation capacity, and this could be attributed
to the decreased functional status of the older maternal organs, which play a supporting
role and the microenvironment enabling the development of umbilical cord MSC [57].

No studies have been found with regard to the influence of the parturient’s age on
the SOX2 expression level in WJSC. In the authors’ previous research, it was shown that
the expression of the POU5F1 gene [58] and the expression of the BIRC2, BIRC3 and BIRC5
genes [59] decrease with maternal age. It was noted that the expression of the SOX2 gene is
statistically significantly higher in WJSC of babies born prematurely, and the level of the
SOX2 expression correlated positively with the length of pregnancy. The earlier the birth
took place the higher the SOX2 expression in WJSC. The study also showed a negative
correlation between the SOX2 expression and the birth weight. It was observed that the
lower the birth weight, the higher the SOX2 gene expression. Researching the influence of
the birth weight and the time of delivery on the quality of stem cells is focused mainly on
the umbilical cord blood. A number of studies have demonstrated that higher birth weight
and, consequently, a larger volume of the placenta, acts as a stimulus on the number of
stem cells in the umbilical cord blood [36,38–40,60]. On the other hand, other researchers
note that the size of the placenta is related to the number of pregnancies, and so the first
pregnancy is usually associated with the weakening of the vascularization of the placenta,
while the more births, the larger the size of the placenta in multi-family mothers, thus
providing a greater volume of umbilical cord blood and more cells. CD34 [61,62]. However,
these studies looked only at the number of stem cell

Looking at the delivery time, the reports vary. Some studies report a high number of
stem cells collected during term deliveries [34]. Others suggest that during preterm births
the number of CD34+ cord blood cells is higher compared to the predicted due date [33,63].
In our study, we accepted preterm deliveries before our 37th week of pregnancy. The
earliest born child was at 35 weeks of pregnancy. However, no studies on the influence of
birth weight and delivery time on WJSC quality or expression of the SOX2 gene in WJSC
have been found in the available literature.

Low birth weight may result from preterm birth and/or intrauterine growth restriction
(IUGR). Premature birth (PT) and low birth weight (LBW) are associated with numerous
health and social consequences, both short-term and long-term. These infants have an
increased risk of death in the perinatal period and are at increased risk of developing
chronic diseases [64]. According to some authors these two adverse pregnancy outcomes,
PT and LBW should be investigated together [65]. Kotowski et al. found that the count
of cord blood non-HSCs/VSELs is inversely associated with the birth weight of preterm
infants. They also noticed that a high number of cord blood HSCs is strongly associated
with a lower risk of prematurity complications [66]. The conducted research provides
valuable information in the context of possible compensation mechanisms for babies
born prematurely and with low birth weight. Further research is needed to evaluate the
umbilical cord in babies with low birth weight and premature births, due to the possible
better therapeutic potential of the collected cells with regard to increased expression of the
SOX2 gene.

In the author’s previous work, it was demonstrated that the expression of the second
key factor responsible for maintaining the state of pluripotency, POU5F1 in stem cells of
Wharton’s jelly cord, is dependent on the age of the gravida, the manner of delivery, the
method of delivery and the use of oxytocin. MSCs derived from Wharton’s jelly (WJSC)
taken from younger women and during their first childbirth as well as from patients who
received oxytocin showed higher expression of POU5F1 [58]. In the authors’ previous
studies, it was also observed that MSCs derived from Wharton’s jelly (WJSC) collected
from younger women who were giving birth naturally and in an acidic umbilical cord
blood environment are characterized by higher expression of inhibitor of apoptosis protein
(IAP): BIRC2, BIRC3 and BIRC5 genes, making them more resistant to apoptosis. IAPs have
multidirectional effects and a wide range of cellular functions; in addition to promoting
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cell survival, they are also involved in signal transduction, cell differentiation, cell response
to damage, and cell division [59].

4. Conclusions

The authors concluded that the younger the woman and the earlier the birth takes
place, the lower the birth weight and the higher the SOX2 gene expression in WJSC. In
addition, it has been noticed that the physicochemical parameters of umbilical cord blood,
such as O2, pressure, CO2 pressure and pH are the factors that regulate the expression
of the SOX2 gene in WJSC. However, the correlation coefficients obtained in our study,
although significant, are quite low (around 0.5), thus, the study should be continued with
a larger number of patients. Due to functions performed by the SOX2 in stem cell biology,
it is possible to draw a conclusion that increased expression is likely to translate to higher
stem cell effectiveness. Stem cells with high SOX2 expression have a lower degree of
differentiation. They have higher proliferative potential, which makes them more clinically
useful. Our findings look promising and warrant the need for further research.

5. Materials and Methods

The study was conducted on a group of 30 women hospitalized in the Department of
Obstetrics and Pathology of Pregnancy of the Independent Public Clinical Hospital No. 1 in
Lublin. The age range of the patients was 24–46 years. The women had a section of the
umbilical cord sampled soon after delivery. The statistics with regard to the examined group
are presented in Table 1. The research was carried out with the consent of the Bioethics
Committee at the Medical University of Lublin no. KE-0254/128/2014. All methods were
carried out in accordance with relevant guidelines and regulations. Informed consent was
obtained from all subjects and/or their legal guardian(s).

Table 1. Statistics of pregnancy related factors.

Parameter N Mean Median Minimum Maximum SD

maternal age [years]

30

32.3 32.000 24.000 46.000 5.098
number of pregnancies 2.000 2.000 1.000 8.000 1.414

week of pregnancy 38.786 39.000 35.000 41.000 1.548
number of deliveries 1.862 2.000 1.000 7.000 1.187
newborn’s weight [g] 3383.793 3300.000 2140.000 4740.000 584.089

pH * 7.326 7.341 7.182 7.434 0.066
pCO2 [mmHg] * 45.268 43.800 32.600 66.500 8.098
PO2 [mmHg] * 24.643 23.200 14.600 42.700 7.887

cHCO3 [mmol/L] * 22.729 23.100 19.200 26.700 2.045

* Blood acid-base balance indicators were determined on an ABL90 FLEX gas analyzer (Radiometer, Denmark).

The study was carried out on mesenchymal stem cells of umbilical cord Wharton’s
jelly. The stem cells were obtained using the explant method. A section of an umbilical
cord removed soon after delivery was placed in a sterile container with an antibiotic and
culture medium. Next, the umbilical cord was sectioned into smaller fragments in the
laboratory and cultured for 10 days. Cell culture conditions: culture medium: DMEM
(1×) + GlutaMAX[+] 1 g/L D-Glucos [+], Pyruvate; Gibco, Paisley, UK; Serum: Heat Inac-
tivated FBS; Gibco, Carlsbad, CA, USA; Antibiotics: Amphotericin B 250 µg/mL + Peni-
cillin/Streptomycin (100×); PAA, Austria; Temperature: 37 ◦C; O2 concentration: 15%; CO2
concentration: 5%. The isolation procedure is described in the authors’ previous work [67].
The obtained cells were subjected to a cytometric analysis in order to confirm mesenchymal
character using antibodies against CD73 (PE-Cy7-labeled), CD90 (FTC-labeled) and CD105
(C7-labeled), CD146 (C5-labeled), CD34 (ECD), and CD45 (APC-A750-labeled) surface
antigens (DURAClone SC Mesenchymal Tube, BeckmanCoulter, France). The procedure of
cytometric analysis is presented in paper [68]. Total cellular RNA was isolated from the
cells using the modified method of Chomczyński and Sacchi [69]. The following reagents



Int. J. Mol. Sci. 2022, 23, 7630 10 of 13

were used for the isolation: TRI Reagent (Sigma-Aldrich, St Louis, MO, USA), Chloroform
(Sigma-Aldrich, USA), Isopropanol (Sigma-Aldrich, USA) and Ethanol (Poch, Poland). Sub-
sequently, reverse transcription was performed to obtain complementary DNA. The cDNA
synthesis was carried out in accordance with the manufacturer’s recommendation using
the High-Capacity cDNA Transcription Kits (Applied Biosystems, Foster City, CA, USA).
The synthesized cDNA was amplified in the qPCR reaction, using commercially available
TaqMan Hs0153049_s1 probes for the SOX2 gene and Hs99999905_m1 for GAPDH endoge-
nous control (Applied Biosystems, Foster City, CA, USA). The analysis of the obtained
results was performed using Expression Suite Software. The ∆∆Ct method [70] was used
to determine the relative level of expression of the examined gene. The statistical analysis
was performed using Statistica 13 software. Mann Whitney’s U test was used to assess the
differences in the studied groups. The correlation was assessed with Spearman’s rank test.
The p-value was set at p < 0.05.
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the Cell Cycle of Wharton’s Jelly Stem Cells (WJSCs). Oxid. Med. Cell. Longev. 2019, 2019, 5084689. [CrossRef]

28. Adachi, K.; Suemori, H.; Nakatsuji, N.; Kawase, N.N.A.E. The Role of SOX2 in Maintaining Pluripotency and Differentiation of
Human Embryonic Stem Cells. In Stem Cells in Clinic and Research; IntechOpen: London, UK, 2019. [CrossRef]

29. Liu, P.; Cai, J.; Dong, D.; Chen, Y.; Liu, X.; Wang, Y.; Zhou, Y. Effects of SOX2 on Proliferation, Migration and Adhesion of Human
Dental Pulp Stem Cells. PLoS ONE 2015, 10, e0141346. [CrossRef]

30. Russell, J.P.; Lim, X.; Santambrogio, A.; Yianni, V.; Kemkem, Y.; Wang, B.; Fish, M.; Haston, S.; Grabek, A.; Hallang, S.; et al.
ituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. eLife 2021,
10, e59142. [CrossRef]

31. Nunes, R.D.; Zandavalli, F.M. Association between maternal and fetal factors and quality of cord blood as a source of stem cells.
Rev. Bras. Hematol. Hemoter. 2015, 37, 38–42. [CrossRef]

32. Abdelrazik, A.M.; El Said, M.N.; Abdelaziz, H.E.M.; Badran, H.M.; Elal, E.Y.A.A. The impact of fetal and maternal physiologic
factors on umbilical cord blood quality as a source of stem cells in Egyptian population. Transfusion 2015, 55, 2882–2889. [CrossRef]
[PubMed]

http://doi.org/10.1038/ncb1589
http://doi.org/10.1038/74199
http://doi.org/10.4252/wjsc.v6.i3.305
http://www.ncbi.nlm.nih.gov/pubmed/25126380
http://doi.org/10.1016/j.bbagrm.2016.03.006
http://doi.org/10.1038/srep13533
http://www.ncbi.nlm.nih.gov/pubmed/26314899
http://doi.org/10.1128/MCB.25.14.6031-6046.2005
http://doi.org/10.1634/stemcells.2007-0951
http://www.ncbi.nlm.nih.gov/pubmed/18238855
http://doi.org/10.1016/j.bbrc.2007.08.033
http://doi.org/10.1016/j.cell.2011.08.038
http://doi.org/10.2298/SARH1304178T
http://doi.org/10.1002/jcb.20904
http://doi.org/10.1007/s12015-009-9094-9
http://doi.org/10.1111/j.1365-2184.2011.00770.x
http://www.ncbi.nlm.nih.gov/pubmed/21951286
http://doi.org/10.1016/j.joen.2010.12.012
http://www.ncbi.nlm.nih.gov/pubmed/21419292
http://doi.org/10.1002/stem.1188
http://doi.org/10.1038/srep12933
http://www.ncbi.nlm.nih.gov/pubmed/26255679
http://doi.org/10.1242/dev.091793
http://doi.org/10.1038/emboj.2012.321
http://doi.org/10.1155/2019/5084689
http://doi.org/10.5772/23094
http://doi.org/10.1371/journal.pone.0141346
http://doi.org/10.7554/eLife.59142
http://doi.org/10.1016/j.bjhh.2014.07.023
http://doi.org/10.1111/trf.13258
http://www.ncbi.nlm.nih.gov/pubmed/26331586


Int. J. Mol. Sci. 2022, 23, 7630 12 of 13

33. Wu, J.-Y.; Liao, C.; Chen, J.-S.; Xu, Z.-P.; Gu, S.-L.; Wu, S.-Q.; Lu, Y.; Xie, G.-E. Analysis of maternal and neonatal factors associated
with hematopoietic reconstruction potential in umbilical cord blood units. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010, 18, 1535–1541.
(In Chinese) [PubMed]

34. Chandra, T.; Afreen, S.; Kumar, A.; Singh, U.; Gupta, A. Does umbilical cord blood-derived CD34+ cell concentration depend on
the weight and sex of a full-term infant? J. Pediatr. Hematol. 2012, 34, 184–187. [CrossRef] [PubMed]

35. Caughey, A.B.; Sundaram, V.; Kaimal, A.J.; Cheng, Y.W.; Gienger, A.; Little, S.E.; Lee, J.F.; Wong, L.; Shaffer, B.L.; Tran, S.H.; et al.
Maternal and neonatal outcomes of elective induction of labor. Evid. Rep. Technol. Assess. 2009, 176, 1–257.

36. Mousavi, S.M.; Abroun, S.; Zarrabi, M.; Ahmadipanah, M. The effect of maternal and infant factors on cord blood yield. Pediatr.
Blood Cancer 2016, 64, e26381. [CrossRef]
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