

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3-Oxo-3*H*-benzo[*f*]chromen-1-yl)methyl N,N-dimethylcarbamodithioate

N. M. Mahabaleshwaraiah,^a H. R. Ravi,^b M. Vinduvahini,^c* H. R. Sreepad^b and O. Kotresh^a

^aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, ^bResearch Centre, Postgraduate Department of Physics, Government First Grade College (Autonomous), Mandya 571 401, Karnataka, India, and ^cDepartment of Physics, Sri D Devaraja Urs Government First Grade College, Hunsur 571 105, Mysore District, Karnataka, India Correspondence e-mail: vinduvahinim@yahoo.in

Received 21 August 2012; accepted 19 September 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.104; data-to-parameter ratio = 13.6.

In the title compound, $C_{17}H_{15}NO_2S_2$, the 3*H*-benzo[*f*]chromene ring system is distinctly twisted; the dihedral angle between the pyran ring and its opposite benzene ring is 9.11 (8)°. The N,N-dimethylcarbamodithioate residue lies almost perpendicular to the pyran ring [dihedral angle = 85.15 (7)°]. In the crystal, weak C–H···O hydrogen bonds link the molecules into C(10) chains propagating in [001].

Related literature

For a related structure and background to coumarins, see: Kant et al. (2012); For the synthesis of the title compound, see: Kumar et al. (2012).

14561 measured reflections

 $R_{\rm int} = 0.023$

2708 independent reflections

2387 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C17H15NO2S2	V = 1537.56 (4) Å ³
$M_r = 329.42$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 14.1575 (2) Å	$\mu = 0.35 \text{ mm}^{-1}$
b = 6.9399 (1) Å	T = 296 K
c = 15.9750 (2) Å	$0.24 \times 0.20 \times 0.12 \text{ mm}$
$\beta = 101.591 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.770, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	199 parameters
$wR(F^2) = 0.104$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
2708 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $C^2 = H^2 \cdots O^2$ 0.93 2.51 3.405 (3) 162

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for measuring the single-crystal X-ray data and providing the chemical analysis (GCMS, IR, CHNS and NMR data). NM is grateful to Karnatak Science College, Dharwad, for providing laboratory facilities. He is also grateful to P. C. Jabin Science College, Hubli and the UGC for support under the FIP.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6942).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Kant, R., Gupta, V. K., Kapoor, K., Kour, G., Kumar, K. M., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, o1104-o1105.

Kumar, K. M., Devarajegowda, H. C., Jeyaseelan, S., Mahabaleshwaraiah, N. M. & Kotresh, O. (2012). Acta Cryst. E68, 01657.

supplementary materials

Acta Cryst. (2012). E68, o3001 [doi:10.1107/S160053681203975X]

(3-Oxo-3*H*-benzo[*f*]chromen-1-yl)methyl *N*,*N*-dimethylcarbamodithioate

N. M. Mahabaleshwaraiah, H. R. Ravi, M. Vinduvahini, H. R. Sreepad and O. Kotresh

Experimental

The title compound was synthesized according to the reported method (Kumar *et al.*, 2012). It was recrystallized from an ethanol–chloroform solvent mixture as colourless plates. Yield = 81%, m.p. 435 K.

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H and C —H = 0.96 Å for methyl H, and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H.

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radii.

Figure 2

Packing of the molecules.

(3-oxo-3H-benzo[f]chromen-1-yl)methyl N,N-dimethylcarbamodithioate

Crystal data

C₁₇H₁₅NO₂S₂ $M_r = 329.42$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.1575 (2) Å b = 6.9399 (1) Å c = 15.9750 (2) Å $\beta = 101.591$ (1)° V = 1537.56 (4) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.770, T_{\max} = 1.000$

14561 measured reflections 2708 independent reflections 2387 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -16 \rightarrow 16$ $k = -8 \rightarrow 8$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.06	H-atom parameters constrained
2708 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 0.371P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. IR (KBr): 660 cm⁻¹ (C—S), 1251 cm⁻¹ (C=S), 1036 cm⁻¹ (C—O), 842 cm⁻¹ (C—N), 1279 cm⁻¹ (C—O—C), 1708.6 cm⁻¹ (C=O). GCMS: m/e: 335. 1H NMR (400 MHz, DMSO.D₆, δ , p.p.m.): 1.92 (m, 2H, C₁₀), 2.01 (m, 2H, C₁), 2.49 (m, 4H, C₂, C₁₁), 3.80 (s, 3H, C₉), 4.86 (s, 2H, C₄), 6.57 (s, 1*H*, C₁₂), 7.24 (m, 1*H*, C₁₅), 7.36 (t, 1*H*, C₇), 7.38 (s, 1H, C₁₆). Elemental analysis: C, 57.26; H, 5.07; N, 4.15.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
S 1	-0.10475 (3)	0.58858 (7)	0.13224 (3)	0.04867 (17)	
S2	-0.13511 (3)	1.01975 (7)	0.13357 (4)	0.05409 (18)	
01	0.15254 (9)	0.74478 (19)	0.41212 (8)	0.0436 (3)	
O2	0.01004 (11)	0.7691 (3)	0.44665 (9)	0.0652 (4)	
N1	-0.27082 (10)	0.7553 (3)	0.12911 (10)	0.0488 (4)	
C1	0.41046 (13)	0.7183 (3)	0.19340 (13)	0.0456 (4)	
H1	0.4754	0.7065	0.2185	0.055*	
C2	0.38414 (14)	0.7329 (3)	0.10721 (13)	0.0508 (5)	
H2	0.4303	0.7288	0.0733	0.061*	
C3	0.28694 (14)	0.7539 (3)	0.07027 (13)	0.0499 (5)	
H3	0.2688	0.7681	0.0113	0.060*	
C4	0.21747 (13)	0.7542 (3)	0.11888 (11)	0.0416 (4)	
H4	0.1532	0.7687	0.0921	0.050*	
C5	0.24097 (12)	0.7331 (2)	0.20858 (11)	0.0328 (4)	
C6	0.34099 (12)	0.7208 (2)	0.24588 (12)	0.0366 (4)	
C7	0.17168 (11)	0.7307 (2)	0.26443 (10)	0.0314 (3)	
C8	0.20897 (12)	0.7360 (2)	0.35158 (11)	0.0354 (4)	
C9	0.30765 (13)	0.7276 (3)	0.38766 (12)	0.0435 (4)	
H9	0.3286	0.7302	0.4467	0.052*	
C10	0.37191 (12)	0.7158 (3)	0.33586 (12)	0.0426 (4)	
H10	0.4373	0.7042	0.3595	0.051*	
C11	0.06649 (11)	0.7181 (2)	0.23967 (11)	0.0339 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	0.01393 (12)	0.7310 (3)	0.30092 (12)	0.0409 (4)
H12	-0.0529	0.7268	0.2842	0.049*
C13	0.05420 (13)	0.7508 (3)	0.38989 (12)	0.0446 (4)
C14	0.01533 (12)	0.6860 (3)	0.14798 (11)	0.0404 (4)
H14A	0.0544	0.5996	0.1213	0.048*
H14B	0.0123	0.8083	0.1181	0.048*
C15	-0.17873 (12)	0.7969 (3)	0.13185 (11)	0.0397 (4)
C16	-0.31006 (16)	0.5603 (4)	0.12493 (16)	0.0676 (6)
H16A	-0.3781	0.5660	0.1236	0.101*
H16B	-0.2789	0.4888	0.1742	0.101*
H16C	-0.2990	0.4977	0.0742	0.101*
C17	-0.34233 (14)	0.9085 (4)	0.12752 (16)	0.0668 (6)
H17A	-0.4046	0.8523	0.1258	0.100*
H17B	-0.3443	0.9873	0.0778	0.100*
H17C	-0.3249	0.9863	0.1779	0.100*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S1	0.0357 (3)	0.0472 (3)	0.0603 (3)	-0.00403 (19)	0.0030 (2)	-0.0062 (2)
S2	0.0350 (3)	0.0487 (3)	0.0741 (4)	-0.0002 (2)	0.0003 (2)	0.0049 (2)
01	0.0400 (7)	0.0563 (7)	0.0364 (6)	0.0031 (5)	0.0123 (5)	0.0014 (5)
O2	0.0541 (9)	0.0994 (12)	0.0492 (8)	0.0075 (8)	0.0273 (7)	0.0011 (8)
N1	0.0305 (8)	0.0658 (10)	0.0500 (9)	-0.0064 (7)	0.0073 (7)	-0.0073 (8)
C1	0.0313 (9)	0.0448 (10)	0.0642 (12)	0.0016 (7)	0.0176 (8)	0.0010 (9)
C2	0.0462 (11)	0.0542 (11)	0.0603 (12)	0.0013 (8)	0.0305 (10)	0.0005 (9)
C3	0.0536 (12)	0.0564 (11)	0.0447 (10)	0.0038 (9)	0.0214 (9)	0.0036 (9)
C4	0.0372 (9)	0.0475 (10)	0.0422 (9)	0.0035 (7)	0.0125 (8)	0.0037 (8)
C5	0.0327 (8)	0.0267 (7)	0.0406 (9)	0.0024 (6)	0.0107 (7)	0.0020 (6)
C6	0.0330 (9)	0.0291 (8)	0.0492 (10)	0.0002 (6)	0.0123 (7)	0.0009 (7)
C7	0.0294 (8)	0.0272 (7)	0.0385 (9)	0.0031 (6)	0.0090 (6)	0.0025 (6)
C8	0.0365 (9)	0.0336 (8)	0.0381 (9)	0.0015 (6)	0.0116 (7)	0.0017 (7)
C9	0.0397 (10)	0.0493 (10)	0.0393 (9)	-0.0007 (8)	0.0026 (7)	0.0006 (8)
C10	0.0291 (8)	0.0437 (10)	0.0525 (10)	0.0000 (7)	0.0025 (7)	0.0017 (8)
C11	0.0311 (8)	0.0318 (8)	0.0393 (9)	0.0039 (6)	0.0080 (7)	0.0027 (6)
C12	0.0295 (8)	0.0464 (10)	0.0476 (10)	0.0032 (7)	0.0097 (7)	0.0041 (8)
C13	0.0395 (10)	0.0511 (10)	0.0463 (10)	0.0044 (8)	0.0163 (8)	0.0042 (8)
C14	0.0305 (8)	0.0471 (10)	0.0439 (9)	0.0031 (7)	0.0082 (7)	-0.0025 (7)
C15	0.0298 (8)	0.0539 (11)	0.0334 (8)	-0.0012 (7)	0.0019 (6)	-0.0023 (7)
C16	0.0446 (12)	0.0797 (16)	0.0781 (15)	-0.0233 (11)	0.0115 (11)	-0.0075 (13)
C17	0.0313 (10)	0.0920 (18)	0.0773 (15)	0.0048 (10)	0.0113 (10)	-0.0135 (13)

Geometric parameters (Å, °)

S1—C15	1.7844 (18)	C6—C10	1.416 (3)
S1—C14	1.7997 (17)	С7—С8	1.387 (2)
S2—C15	1.6637 (18)	C7—C11	1.465 (2)
O1—C13	1.367 (2)	C8—C9	1.401 (2)
O1—C8	1.374 (2)	C9—C10	1.350 (3)
O2—C13	1.207 (2)	С9—Н9	0.9300

N1—C15	1.327 (2)	C10—H10	0.9300
N1—C16	1.460 (3)	C11—C12	1.346 (2)
N1—C17	1.465 (3)	C11—C14	1.514 (2)
C1—C2	1.356 (3)	C12—C13	1.428 (3)
C1—C6	1.415 (2)	С12—Н12	0.9300
C1—H1	0.9300	C14—H14A	0.9700
C2—C3	1.392 (3)	C14—H14B	0.9700
С2—Н2	0.9300	C16—H16A	0.9600
C3—C4	1.370 (2)	C16—H16B	0.9600
C3—H3	0.9300	C16—H16C	0.9600
C4—C5	1.412 (2)	С17—Н17А	0.9600
C4—H4	0.9300	C17—H17B	0.9600
C5—C6	1.424 (2)	C17—H17C	0.9600
C5—C7	1.453 (2)		012000
	(1)		
C15—S1—C14	103.50 (8)	C9—C10—H10	119.6
C13—O1—C8	121.63 (14)	C6—C10—H10	119.6
C15—N1—C16	124.41 (17)	C12—C11—C7	118.71 (15)
C15—N1—C17	120.92 (18)	C12—C11—C14	119.09 (15)
C16—N1—C17	114.64 (17)	C7—C11—C14	122.18 (14)
C2—C1—C6	121.25 (17)	C11—C12—C13	124.16 (16)
C2—C1—H1	119.4	C11—C12—H12	117.9
C6—C1—H1	119.4	C13—C12—H12	117.9
C1—C2—C3	119.01 (17)	O2—C13—O1	117.55 (17)
C1—C2—H2	120.5	O2—C13—C12	126.46 (18)
С3—С2—Н2	120.5	O1—C13—C12	115.97 (15)
C4—C3—C2	121.41 (19)	C11—C14—S1	116.43 (12)
С4—С3—Н3	119.3	C11—C14—H14A	108.2
С2—С3—Н3	119.3	S1—C14—H14A	108.2
C3—C4—C5	121.69 (17)	C11—C14—H14B	108.2
C3—C4—H4	119.2	S1—C14—H14B	108.2
C5—C4—H4	119.2	H14A—C14—H14B	107.3
C4—C5—C6	116.26 (15)	N1—C15—S2	124.15 (14)
C4—C5—C7	125.03 (15)	N1—C15—S1	113.33 (14)
C6—C5—C7	118.66 (15)	S2—C15—S1	122.51 (10)
C1C6C10	119.42 (16)	N1—C16—H16A	109.5
C1—C6—C5	120.26 (17)	N1—C16—H16B	109.5
C10—C6—C5	120.31 (15)	H16A—C16—H16B	109.5
C8—C7—C5	116.65 (15)	N1—C16—H16C	109.5
C8—C7—C11	115.72 (14)	H16A—C16—H16C	109.5
C5—C7—C11	127.61 (15)	H16B—C16—H16C	109.5
O1—C8—C7	123.37 (15)	N1—C17—H17A	109.5
O1—C8—C9	112.63 (15)	N1—C17—H17B	109.5
C7—C8—C9	123.98 (15)	H17A—C17—H17B	109.5
C10—C9—C8	119.30 (17)	N1—C17—H17C	109.5
С10—С9—Н9	120.4	H17A—C17—H17C	109.5
С8—С9—Н9	120.4	H17B—C17—H17C	109.5
C9—C10—C6	120.78 (16)		

$C_{6} - C_{1} - C_{2} - C_{3}$	11(3)	C8 - C9 - C10 - C6	30(3)
C_1 C_2 C_3 C_4	-20(2)	$C_1 C_2 C_1 C_2$	176.60(17)
C1 - C2 - C3 - C4	-2.0(3)		1/0.09 (17)
C2-C3-C4-C5	-0.1(3)	C5—C6—C10—C9	-1.8 (3)
C3—C4—C5—C6	2.9 (3)	C8—C7—C11—C12	6.2 (2)
C3—C4—C5—C7	-179.57 (17)	C5—C7—C11—C12	-175.55 (15)
C2-C1-C6-C10	-176.61 (17)	C8—C7—C11—C14	-172.20 (15)
C2-C1-C6-C5	1.9 (3)	C5—C7—C11—C14	6.1 (2)
C4—C5—C6—C1	-3.8 (2)	C7—C11—C12—C13	-1.9 (3)
C7—C5—C6—C1	178.55 (15)	C14—C11—C12—C13	176.53 (16)
C4—C5—C6—C10	174.68 (15)	C8-01-C13-02	-176.03 (17)
C7—C5—C6—C10	-3.0 (2)	C8-01-C13-C12	5.1 (2)
C4—C5—C7—C8	-171.14 (16)	C11—C12—C13—O2	177.5 (2)
C6—C5—C7—C8	6.3 (2)	C11—C12—C13—O1	-3.8 (3)
C4—C5—C7—C11	10.6 (3)	C12-C11-C14-S1	-20.2 (2)
C6—C5—C7—C11	-171.94 (15)	C7—C11—C14—S1	158.21 (12)
C13—O1—C8—C7	-0.7 (2)	C15—S1—C14—C11	86.48 (14)
C13—O1—C8—C9	-178.99 (16)	C16—N1—C15—S2	178.01 (16)
C5—C7—C8—O1	176.45 (14)	C17—N1—C15—S2	-0.1 (3)
C11—C7—C8—O1	-5.1 (2)	C16—N1—C15—S1	-1.3 (2)
C5—C7—C8—C9	-5.4 (2)	C17—N1—C15—S1	-179.39 (14)
С11—С7—С8—С9	173.06 (15)	C14—S1—C15—N1	-173.89 (13)
O1—C8—C9—C10	179.10 (16)	C14—S1—C15—S2	6.82 (14)
C7—C8—C9—C10	0.8 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C2—H2…O2 ⁱ	0.93	2.51	3.405 (3)	162

Symmetry code: (i) x+1/2, -y+3/2, z-1/2.