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Spontaneous emergence
of computation in network
cascades

Galen Wilkerson2*, Sotiris Moschoyiannis® & Henrik Jeldtoft Jensen?3

Neuronal network computation and computation by avalanche supporting networks are of interest
to the fields of physics, computer science (computation theory as well as statistical or machine
learning) and neuroscience. Here we show that computation of complex Boolean functions arises
spontaneously in threshold networks as a function of connectivity and antagonism (inhibition),
computed by logic automata (motifs) in the form of computational cascades. We explain the emergent
inverse relationship between the computational complexity of the motifs and their rank-ordering by
function probabilities due to motifs, and its relationship to symmetry in function space. We also show
that the optimal fraction of inhibition observed here supports results in computational neuroscience,
relating to optimal information processing.

The relationship between physical systems and information has been of increasing and compelling interest
in the domains of physics'~, neuroscience*®, computer science®'?, quantum computing>'*!%, and other fields
such as computation in social networks'>""7, or biology'®' to the point where some consider information to be
a fundamental phenomenon in the universe?*2, Often, physical systems operating on information take place
on, or can be modeled by, network activity?, since information is transmitted and processed by interactions
between physical entities.

The principle of Occam’s razor and goals of achieving a deeper understanding of these physical-information
interactions encourage us to find the simplest possible processes achieving computation. Thus we may conduct
basic research into understanding necessary and sufficient conditions for systems to perform information process-
ing. Cascades, particularly on networks, are such a simple and ubiquitous process. Cascades are found in a
great number of systems-the brain, social networks, chemical-, physical-, and biological-systems-occurring as
neuronal avalanches, information diffusion, influence spreading, chemical reactions, chain reactions, activity
in granular media, forest fires or metabolic activity, to name a few* 2%, The Linear Threshold Model (LTM) is
among the simplest theoretical models to undergo cascades. As a simple threshold network, the LTM is also
similar to artificial models of neural networks, without topology restrictions such as layering, or edge weights'2.

Since the work of Shannon?, the bit has been considered the basic unit of information. Therefore, whatever we
can learn about processing of bits can be extended to information processing in non-Boolean systems. The tools
of Boolean logic then allow us to begin to develop a formalism linking LTM and other cascades to information
processing in the theory of computing®. In systems of computation or statistical learning, patterns of inputs are
mapped to patterns of output by Boolean functions'>*!. Another way to express this is that a bit is the simplest
possible perturbation of a system. Bits can interact via some medium, these interactions can be represented by
edges in a network, and Boolean functions describe the results of possible interaction patterns.

Since we aim to study this topic from first principles, we are interested in how the combinatorial space of
possible networks interacts with the combinatorial space of possible Boolean functions, via cascades and the
control parameters. Particularly, we would like to understand the phase space of Boolean functions computed by
LTM nodes on the input (seed) nodes by the cascade action.

Two of the current authors have previously published a work on Boolean functions computed by the Linear
Threshold Model®?. In that work, the focus was to show universal computing, sources of efficiency, including
geometric constraints, and one way to consider the LTM as a statistical classifier that can be trained. Here, as
stated, we simply aim to understand the phase space of the logic functions computed by the LTM with respect
to network connectivity. The focus here is not on dynamics or learning in these networks.
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Inputs Functions

a b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1. Truth tables for binary functions. The truth tables of all possible unique binary (k = 2) Boolean
functions are shown (22" = 16 functions). The LTM can only compute monotonically-increasing Boolean
functions (columns 0, 1, 3, 5, 7), where the first row equals zero, since the seed nodes are unlabelled (here 0
and 1 correspond to unlabelled or labelled, respectively). Thus, it cannot compute functions 2, 4, 6, or 8 to 15.
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Figure 1. Logic motifs compute Boolean functions. The simplest LTM sub-networks are logical automata (logic
motifs) and compute the monotone functions for k = 2 inputs at node u on perturbations of a and b. Dashed
lines are network paths.

From a mathematical perspective, we can treat the brain or other natural systems having N elements in the
worst case as a random network, where there are N(N — 1)/2 possible connections, yielding 2N ™N=1/2) possible
networks. Meanwhile, the space of Boolean functions grows exceptionally quickly. There are 22" unique Boolean
functions on k inputs. This immediately makes us ask how this space behaves, and how large networks such as the
brain can navigate toward particular functions in this vast space. We also observe that for the all the functions
available on k inputs, the decision tree complexity (depth of decision tree computing them) appears exponentially
distributed, meaning that the vast majority of functions available are complex as k increases.

A somewhat surprising initial result in this investigation is that complex functions on inputs emerge spontane-
ously and seemingly inevitably as threshold networks are connected at random.

Linear threshold model (LTM), Boolean logic, and antagonism

The Linear Threshold model (LTM)? is defined as follows: A random (Erdos-Renyi-Gilbert) undirected graph
is constructed, having N nodes and p, the probability of an edge between each pair of nodes. Each node is then
assigned a random threshold ¢ from a uniform distribution, ¢ ~ UJ[0, 1]. Nodes can be unlabelled or labelled,
corresponding to 0 or 1 respectively, and are all initialized as unlabelled. To run the cascade, a small set of input
seed nodes are perturbed, marked as labelled. Now, each unlabelled node u is examined randomly and asynchro-
nously, and the fraction of its graph neighbors that are labelled( ﬁ(”)) )is determined, where L(u) 1s the number
of w’s neighbors that are labeled, and deg(u) is u’s degree. If u’s fraction reaches its threshold ( T () 5 = ¢), uis
marked labelled. This process continues until no more nodes become labelled. Here we note that the LTM may
be written in vector form, and bears some similarity to the artificial McCulloch-Pitts neuron'? It has been shown
that the LTM exhibits percolation, where a giant connected component (GCC) of easily-influenced vulnerable
nodes u (having ¢ < 1/deg(u), suddenly arises at the critical connectivity?.

We observe that cascades in the LTM compute monotone Boolean functions (the number of true outputs
cannot decrease in the number of true inputs) at each non-seed node on the input perturbation patterns®. In
our numerical experiments, we create the LTM as above, but choose input seed nodes a and b (for k = 2 inputs)
as the only possible loci of initial perturbation. In one trial, we create a network, freezing network edges and
thresholds across all possible input patterns (Table 1, cols. a, b). For each input pattern we reset non-seed nodes
to unlabelled, set seeds according to inputs, and run the cascade. We then identify the function computed by
each non-seed node (fo, .. .,fi5) (Table 1, cols. 0-15). Functions are numbered according to the integer value
of their bit string.

The zero function, fy(a, b) = 0 (False) is computed by a simple sub-network, where node u has no path
to either seed node (Fig. 1). Similarly, function fi(a,b) = a /\ b (AND) is computed by u with a sub-network
having paths from both seed nodes a, b, and a threshold ¢ > 1. Similar sub-networks allow us to obtain nodes
computing monotone functions f3, fs, f7 (Fig. 1). These sub-networks are therefore logical automata®***, and we
note that they form functional logic motifs in the network™®.

We find that an LTM network cascade will yield a distribution of Boolean functions on its input nodes, and the
possible functions computed by non-seed network nodes will partition the set of monotone Boolean functions
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Figure 2. LTM nodes compute Boolean functions in computational cascades. Iterating through all possible
perturbations of input seed nodes a and b, each non-seed network node must compute some Boolean function
on the inputs.
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Figure 3. Function frequency corresponds to probability of required paths in a rank-ordering. (a) Logarithmic
frequency of non-zero functions computed by the ensemble of LTM cascades for N = 10000 nodes, average
degree z = 4 and k = 2 inputs, over 500 realizations reveals an apparent rank-ordering (solid line). Mean
frequency is proportional to path probabilities, having a Pearson correlation of 1.0, both pre glcted by
probabilities derived from logic motifs using ppasm (‘+) [e.g. see Eq. (1)], and complexity pg (large dot)

Eq. (4) (rescaled, overlaid, both dashed). Thus Eq. (4) also well-predicts Eq. (1). Frequency therefore varies
inversely with decision tree complexity C (‘+). (b) Rank-ordering is more evident for k = 4 inputs, appearing
as a decreasing exponential with goodness of fit r> = 0.88. Here, Pearson correlation between p(f) and mean
frequency is 0.74. Shaded regions are one standard deviation. Probabilities have been centered and normalized.

(Fig. 2) (with the exception of f5). Thus the LTM carries out computational cascades on input perturbation
patterns.

We then obtain monotonically decreasing functions (negation of the LTM), by taking the logical complement
of the original LTM labellmg rule, so that some node u is instead activated when its fraction of labelled neighbors is
less than its threshold ( L(“ < ¢). We call such nodes antagonistic, from which we can construct an antagonistic
linear threshold model ( 7) ‘M). For 2 inputs, replacing u with an ALTM node —u, will compute fi5, fi4, f12, f10, and
fs (Table 1), and the sub-networks are antagonistic versions of those for fo, f1,3,fs,and f7, respectively (Fig. 1).

A sufficiently large ALTM, by composing monotone decreasing functions (e.g. NAND, NOR), can undergo
a cascade to compute any logical function on its nodes, forming a universal basis®'.

Statistics of attractors in the Boolean function space
We experiment first on the LTM, to investigate the observed frequency of Boolean functions in simu-
lation. We created networks having N = 10000 nodes and k = 2 inputs, in a range of mean degree
z = [0, é,l 2,4,8,16,64,256,1024, 4096, 10000], over 10000 trials for each z value. At mean degree z = 4, shortly
after emergence of the GCC, we observed that the frequency of functions is very skewed (Fig. 3a). Experiments
for k = 4 inputs, again for N = 10000 nodes at mean degree z = 4, ensembled over 500 realizations, also yield
an approximate exponential decay of the rank ordering function (Fig. 3b). (See Supplemental Information A.4.)
We investigate the skewed distribution of these functions by asking “What is the probability of obtaining
the simplest network to compute each of these functions?”. From (Fig. 1), we can derive the probability of each
monotone function. For example, if there is no path from seed nodes a and b to some node u we obtain fy, thus

P(fo) o< (1 — pparn)?,

where pyar is the probability of a path between two randomly chosen nodes.
The function f; requires paths from a and b to u, thus

PG X Do (1)

Scientific Reports |

(2022) 12:14925 | https://doi.org/10.1038/s41598-022-19218-0 nature portfolio



www.nature.com/scientificreports/

number of unique functions

7.5

u
o

N
¢

—— mean frequency 1
standard deviation
0 p(f) using pgcc (rescaled)
> 10
= 2
2 3
] 3
= _ o
8,10 ! =
10—2 0
) ) ) ) i " ' 12105 3 8144 1 2 1311 6 7 9
e Q Q Q Q Q O N Q %
TN AT W 07 T O \:,;J« function
loga(2) (b)

(a)

Figure 4. Antagonism fraction (6) agrees with biology; non-monotone functions also predicted by path
requirements. (a) For networks with N = 10000 nodes and k = 2 inputs, over 500 realizations, varying the
mean degree z and fraction of antagonistic nodes 6 € {0, é, %, ... 1}, we observe that the mean number of
unique functions per network is maximized over several orders of magnitude (z € [23,210)) by networks having
a fraction of antagonistic nodes 6 = % (triangles), coinciding with other findings®. (b) At6 = % and z = 2%, we
again observe a skewed frequency, and a proportional relationship between function frequency and probability
due to complexity Eq. (4), having Pearson correlation of 0.91. Shaded region is one standard deviation.
Probabilities have been centered and normalized. (Functions fy and fi5 have been removed, since in the ALTM
they can occur outside of the GCC).

However, with percolation in mind, we observe that for large graphs, the probability of paths between n nodes
approaches the probability that all n nodes belong to the giant connnected component (GCC)*?’.
This gives us, again from (Fig. 1),

P(fl) X Ppath(a,b,u) 0(pgra:’

where pg. is the probability for a random node to belong to the GCC.
Let’s define v = Pg... From™, we know that v is given implicitly by the following relation

v=1-—¢e7%, (2)

where z is the mean degree. (See Supplemental Information A.3 for more information.)

We subsequently observe that the number of required paths from seed nodes to node u, which computes
monotone function f, is equal to the decision tree complexity (C), the depth of the shortest decision tree to com-
pute f. In order for u to decide the value of a seed node, the seed’s perturbation information must be transmitted
along a path to u.

Taking a Boolean function’s Hamming cube representation, its decision tree complexity C is complementary
to the number of congruent axial reflections R along each of its axes D (details in Supplemental Information A.1).
That is, if a Boolean function’s Hamming cube is constant along an axis, it is independent of that axis, giving us

C=D-R 3)

In other words, the number of paths a monotone Boolean function requires is exactly the number of axial reflection
asymmetries of its Hamming cube. This allows us to relate a function’s symmetry to decision tree complexity and
then to its frequency. Recall that the critical percolation threshold in an arbitrarily large Erdos-Renyi-Gilbert
graph occurs at critical mean degree z. = 1, a very small connectivity. Since p, = {2, critical connection prob-
ability p, < 1. Therefore, the network will contain a GCC and remain tree-like even for substantial mean degree
above z; = 1, since the clustering coefficient C s =~ p*. (E.g. for N = 10000 and z = 10, C,s ~ 1/1000.) In a
tree, the number of nodes is one more than the number of edges N = |E| 4 1. Thus, as p — p,,

p(f) o pie ™. @
Indeed it appears that Eq. (4) is highly correlated with the probabilities derived from logic motifs Eq. (1), and
that observed function frequency is proportional to Eq. (4) as well (Fig. 3a), having a Pearson correlation of
approximately 1.0 for k = 2, and 0.74 for k = 4. This also shows, due to Eq. (4) an inverse rank ordering relation
between frequency and decision-tree complexity, appearing as a decreasing exponential in frequency. Given that,
as mentioned in the introduction, there is an increasing exponential distribution of decision tree complexity in
the truth table of all Boolean functions, this result is especially surprising.

Function distribution with antagonism. A similar simulation, having N = 10000 nodes, k = 2 inputs,
ensembled over 500 trials in a range of mean degree values z and fraction of antagonistic nodes 6 € {0, é, %, 1),
reveals a sudden increase in the number of unique non-zero functions vs. both z and 6 (Fig. 4a). The number of
unique functions is maximized over several orders of magnitude near criticality, for z € [2%,2!°], and 8 = 1/3.
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Figure 5. Motifs for non-monotone functions. Simplest logic motifs to compute non-monotone Boolean
functions {f2, f1, fs} (Table 1) in the ALTM at random node u, on seed nodes a, b. Dashed lines represent paths,
and dashed nodes are antagonistic. Functions fi3, fi1, and fo are negations of these, respectively, so have very
similar networks, negating each node.

Observing that antagonism and inhibition are interchangeable'? (Supplemental Information A.2) , this lends
support to optimal information processing around 30% inhibition, found in other research®, and why this frac-
tion of inhibitory neurons seems prevalent biologically.

For this mix of LTM and ALTM nodes, we again observe a similar rank-ordering of functions, here at
z = 64,0 = 1/3, and that, as in the LTM, frequency is again proportional to probability derived from function
complexity (Fig. 4b), having a Pearson correlation of 0.91.

We note, however, that Eq. (3) under-estimates the number of paths required for non-monotone functions.
For example, f6 (XOR) requires 6 paths between 5 nodes, all of which must be in the GCC (Fig. 5), so that
p(fs) x p> 2cc- However, this function’s decision tree complexity C = 2, predicting by Eq. (4) that p(fs) chc
Thereforé a more informative complexity measure is needed for non-monotone functions.

Discussion

As indicated in the title, we see the main result of interest as the spontaneous emergence of complex logic func-
tions in the minimally-constrained random threshold networks. This then implies that many physical, biological,
or other systems are able to perform such computation by ubiquitous avalanches or cascades.

We note that this result also begins to give us an explanation of the criticality hypothesis vis-a-vis
neuroscience®~*!. That is, at the critical threshold, with the emergence of the giant component, the number of
unique functions spontaneously increases. Along with that comes an increase in the number of complex func-
tions. As neuronal networks need to compute integrative complex functions on sensory information, or on
information passed between modular areas in the brain, the utility of this complexity is self-evident*. We note
that in computational neuroscience, there is also discussion of the integration of information and complexity
or consciousness*>**. These motifs therefore give us a starting point for the relationship between structure and
function as well.

Also, the present work connects to machine- or statistical-learning, where in classification, Boolean functions
are computed on high-dimensional data. Until now, however, despite their ubiquity in nature, neither criticality
nor cascades have played a large role in machine learning as a design paradigm or analytical framework!2. We
see this as a large potential opportunity to improve deep learning methods.

The spontaneous emergence of complex computation is an example of a symmetry breaking phase transition,
as the giant connected component (spanning cluster) comes into existence at the critical connectivity*#*>. We
conjecture that we are witnessing how complexity of functionality results from symmetry breaking in systems®.
This complexity takes on a distribution that reflects a hierarchy in an exponential rank-ordering law.

We also see that, from a larger theoretical perspective, the confluence of cascades (percolation branching
processes) and information processing by Boolean logic stands at the intersection between several very large and
highly developed areas of research—percolation- and computational automata-theory*”*.

The specific mechanism of the logical automata realized by logic motifs extends previous work about network
motifs and their function, mainly in the genetic domain®, into many other areas, again due to the ubiquity
of cascades in threshold networks. The observance of logic motifs as automata also allows us to change our
perspective on network percolation. In the past, we saw it perhaps only in terms of connected component size
distribution. Now, however, we may view these components as a zoo or library of functions, available to the net-
work by connection, much as importing a function occurs in programming languages. We note that the scale
invariance at criticality may exist at the Pareto-optimal point between complexity and diversity. That is, there
will be a small number of larger components computing complex functions, and a great number of very small,
simple components having a large variety of thresholds.

Future work. In developing this work, we inevitably stumbled across an overwhelming number of ideas and
directions that we can take. We can only briefly list them.

We have seen above that other complexity measures could be found for non-monotone functions, to better
predict their frequency in mixed LTM/ALTM networks. We suspect that Boolean Fourier analysis would be
fruitful here. We also expect that, for larger inputs, these non-monotone functions will dominate the function
space, and that the Hamming cube symmetries make it possible to write a partition function for them. Along
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with this, it should be possible to predict more exact probabilities of functions, which depend on the occurrence
of cascades being blocked, and of nodes inheriting their neighbors’ complexity, among other factors.

We would also like to generalize these predictions to k >> 2 inputs and much larger networks (N ~ 10°
nodes), while understanding mechanisms and heuristics for learning by studying re-wiring dynamics and self-
organized criticality* in these large combinatorial spaces. For example, we suspect that modularity develops as
a network’s capacity to extract complexity from inputs is exhausted. We also suspect that function distribution
can be understood in terms of multiple network density percolation thresholds, depending on function path
requirements, more evident for larger inputs.

Furthermore, we intend to study the relation between function and network symmetry in the context of
symmetry breaking. We conjecture, for example, that there is a conservation law of complexity or information,
meaning that what we call computation comes at the expense of lost information, rendering the network a kind
of information engine*’, whose output is computation, and that this lies at the heart of information creation.

Of course, it could also be fruitful to understand this work in terms of information processing, using measures
such as transfer entropy, of increasing use in computational neuroscience and automata theory'!. Along with
this we see an opportunity to formalize the criticality hypothesis in light of our results on computation. In the
hypothesis, avalanche criticality (the kind of percolation seen here) and so-called edge of chaos are convolved
qualitatively, by saying that information processing is optimized ‘near criticality’*5*.

We would like to research the effects of geographic energy constraints and other network topologies, found in
real-world systems, on the function phase space. For example we conjecture that both modularity and layering
will result from restricting geographic connection distance, with a result that complex functions appear at nodes
on the surface (or interface) of networks, convenient for passing to subsequent networks.

Finally, although we have used the term computation here, it would be useful to carefully study the linear
threshold model as a computing machine, especially when re-wiring, investigating its Turing completeness,
run-time, and related phenomena.

Conclusion

Here we have shown that the Linear Threshold Model computes a distribution of monotone Boolean logic func-
tions on perturbation inputs at each node in its network, and that with the introduction of antagonism (inhibi-
tion), any function can be computed. Notably, complex functions arise in an apparent exponentially decreasing
rank-ordering due to their requirements for perturbation information from seed nodes, and these requirements
correspond to their functional asymmetries. These asymmetries can be used to obtain their probability exponent
as a function of the probability of belonging to the network’s giant connected component. Finally, we observe that
the number of unique functions computed by an LTM of mixed excitatory and antagonistic nodes is maximized
near 1/3 antagonism, over several orders of magnitude of connectivity, coinciding with other research.

Data availability
Data from simulations is available here: https://github.com/galenwilkerson/Spontaneous-Emergence-of-Compu
tation-in-Network-Cascades Data is in numpy array format, saved as python .pkl files, then gzipped.
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