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Abstract: Interrogations of local germplasm and landraces can offer a foundation and genetic basis
for drought tolerance in wheat. Potential of drought tolerance in a panel of 30 wheat genotypes
including varieties, local landraces, and wild crosses were explored under drought stress (DS) and
well-watered (WW) conditions. Considerable variation for an osmotic adjustment (OA) and yield
components, coupled with genotype and environment interaction was observed, which indicates
the differential potential of wheat genotypes under both conditions. Reduction in yield per plant
(YP), thousand kernel weight (TKW), and induction of OA was detected. Correlation analysis
revealed a strong positive association of YP with directly contributing yield components under both
environments, indicating the impotence of these traits as a selection-criteria for the screening of
drought-tolerant genotypes for drylands worldwide. Subsequently, the association of OA with TKW
which contributes directly to YP, indicates that wheat attains OA to extract more water from the
soil under low water-potential. Genotypes including WC-4, WC-8 and LLR-29 showed more TKW
under both conditions, among them; LLR-29 also has maximum OA and batter yield comparatively.
Result provides insight into the role of OA in plant yield sustainability under DS. In this study,
we figure out the concept of OA and its incredible role in sustainable plant yield in wheat.

Keywords: drought tolerance; osmotic adjustment; physiological and morphological attributes;
grain weight; yield sustainability; screening tools; wheat (Triticum aestivum L.)
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1. Introduction

A major aspect of wheat breeding programs is the assessment of individual genotypes for
agronomic traits across a range of agro-ecological conditions. Plant growth and development is limited
by diverse environmental constraints including drought, extreme temperatures, and waterlogging
conditions. Breeding for stress-resilient crop varieties has prime importance for sustainable productivity
and food security. This is the case of wheat (Triticum aestivum L.), which is a staple food of more than
4.5 billion people of the world [1], supplying nearly half of their energy intake [2]. Improving wheat
grain yield is a challenging task to meet the population surge in the face of climate change. Therefore,
there is a dire need for breeding higher grain yield under harsh environmental conditions.

Prior to plant yield, drought stress affects physiological and morphological traits in plants
throughout their life cycle. Plant stability under water deficit conditions is largely dependent on
reduced water losses under harsh environments [3–5]. Progress in drought tolerance breeding is
not satisfactory due to the complexity of measuring drought tolerance, which limits the significant
yield improvement. There is no direct approach available to screen genotypes for drought stress
tolerance in wheat or any other crop. Therefore, screening and exploiting local germplasms for
physio-morphological attributes is a gateway to overcome this environmental constraint [6–8].

The utilization of diverse genetic resources has paramount importance in the genetic improvement
of wheat, as it results in increasing grain yield potential. The potential for improvement through breeding
and selection depends upon genetic diversity existing among genotypes of a breeding population in
terms of their responses to stress factors [9]. Physiological attributes, i.e., osmotic adjustment (OA),
and other important parameters, can be enhanced through selection and breeding [10]. It has been
considered that genotypes having higher OA gives higher yield as compared to having low OA capacity
under drought stress. Interestingly, a positive correlation has been observed among plant yield and
OA in wheat [11–13]. Therefore, OA is a key indicator to screen the wheat genotypes against drought
stress. In this regard, various studies of OA association with plant yield have been reported, which are
summarized in Table 1.

After consideration of the relationship of OA among yield and other morpho-physiological traits,
the next step is to know how OA conserves water balance and contributes to plant yield under osmotic
stress (Figure 1).
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Figure 1. Schematic concept of osmotic adjustment (OA) in plants: how drought coerces to plants for
osmotic adjustment under drought stress. Under osmotic stress, plants lose their turgor pressure and
water potential, the situation limits the cell activities, and overproduction of reactive oxygen species
(ROS) which stimulate the accumulation of water-soluble components for OA. Osmotic adjustment
promotes root growth and water extraction from the soil. It maintains the stomatal conductance
and turgor pressure to restore the cell activities, photosynthesis, and finally improved plant growth
and yield.
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Table 1. Evidence of osmotic adjustment (OA) association with plant productivity and yield.

Crop Effects of OA on Drought Tolerance and Yield Reference

Wheat Potassium, glycine betaine and proline contributors to the leaf OA under
DS condition and cumulatively assist to the grain yield [14]

Wheat Osmotic adjustment showed positive direct effects on shoot length, root
length, fresh root weight, sugar and glycine betaine under drought stress [15]

Wheat Plants with better OA capacity and high benzoxazinone content have better
field yields [11]

Wheat Overall, high osmoregulation increases grain yields in response to
osmotic stress [16]

Wheat Osmotic adjustment sustained turgor maintenance and hence the
yield-forming processes during moderate and severe water stress [17]

Wheat Indications of OA exist among wheat cultivars and associated with plant
production under drought stress [18]

Wheat and barley

Higher OA was found in genotypes exhibiting high yield stability across
contrasting environments. Additionally, relative water content, leaf osmotic

potential, and accumulation of soluble sugars were found to be highly
related to osmotic adjustment.

[19]

Wheat OA associated with the yield stability during the grain filling and ear
growth under the DS condition [20]

Wheat Plants with higher osmoregulation extract more water from the soil and
produce more dry matter and grain yield [21]

Wheat The yield of genotypes was 17% higher in bread wheat and 7% in durum
wheat having higher OA [21]

Wheat Osmotic adjustment, water use efficiency WUE, and tissue elasticity are
selection tools for the improvement of wheat drought tolerance [22]

Wheat The relationships suggested that direct selection for OA it may increase or
decrease yield under drought but it depends on stress intensity [23]

Here we have concluded the concept of OA from published studies which will help to understand
how and why OA affects plant growth and yield. Recently, our research group has illustrated
the association of OA with various physiological and seedling traits in the same panel of wheat
genotypes [15]. Plants attain OA through the accumulation of various solutes [24] including total
soluble sugars, organic solutes, inorganic solutes or osmolytes, total free amino acids, glycine betaine,
proline [25,26], sodium, potassium, and chloride [27,28]. Osmotic adjustment delays leaf rolling
prevents cell death [29], and maintains grain yield in crops under water-limited conditions. In multiple
ways, OA is involved in sustaining the yield under drought stress environment. Plants attain OA to
conserve higher relative water content (RWC) to meet transpiration demands [17] and ensure the cellular
membrane stability to control the electrolyte leakage under drought stress environment [30]. Finally,
these characters are subsidized for sustained photosynthesis [31] and growth deficit, which finally
helps to improve the grain yield in wheat (Figure 1).

The first step in wheat breeding is the comprehensive exploitation of local germplasm and the
exploration of genetic diversity. Knowledge about genetic diversity among wheat breeding materials
could be instrumental in making breeding strategies [32]. This allows plant breeders to select superior
genotypes and to incorporate elite genotypes in breeding programs. In this regard, the main objectives
of this study were (i) to investigate physio-morphological traits in local material to unravel drought
stress responses (ii) to identify the role of osmotic adjustment with yield and yield component
traits in local germplasm and, (iii) to select superior genotypes for breeding improved tolerance to
drought stress.
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2. Results

2.1. Analysis of Variance and Mean Performance

Analysis of variance showed significant (p < 0.05) effects of the environment, genotype,
and genotype × environment interaction for all traits with some exceptions (Table 2). Performance of
LLR-29 was noticeable among all selected drought-tolerant genotypes, having maximum thousand
kernel weight (TKW), OA, and yield per plant (YP) was also all-out under drought stress (DS) condition.
While “Blue Silver” was a consistently high-yielding cultivar under both environments with a lower
(0.57) drought susceptibility index for thousand kernel weight (DSITKW). The summary statistics
(Table 3) and mean performance of 30 wheat genotypes assessed under well-watered (WW) and DS
environmental conditions along with drought susceptibility index for plant yield (DSITKW) are given
in Supplementary Table S2.

Table 2. Analysis of variance (MS values) for all the traits under WW and DS conditions.

SOV DF OA PH SL NTL NSLS NGS TKW YP

Treatment 2 0.43 ** 1130.02 ** 169.80 ** 84.54 ** 146.95 ** 529.78 ** 917.28 ** 449.28 **

Genotype 29 0.04 ** 1433.06 ** 7.51 ** 6.18 ** 10.95 ** 327.63 ** 73.64 ** 8.93 **

G x T 58 0.03 ** 97.65 NS 2.53 ** 0.88 ** 4.14 80.75 * 48.80 ** 3.92 **

Error 178 0.002 76.93 0.79 0.55 2.77 15.68 9.61 2.25
NS = non-significant, * = Significant and ** = Significant at the 0.05.

Table 3. Summary statistics and principal component squared cosines values (last 3 columns) for
all traits.

Variable Minimum Maximum Mean Std. Deviation F1 F2 F3

OA 0.4057 0.9190 0.6841 0.1258 0.1299 0.3386 0.4093

NTL 2.8222 9.5167 5.1142 1.3146 0.5478 0.1639 0.0078

PH 83.5444 140.3778 107.7956 13.7760 0.1402 0.1125 0.6336

SL 4.9083 13.5083 10.7098 1.7890 0.7571 0.0379 0.0274

NSLS 14.7667 22.1667 18.2166 1.9255 0.5950 0.0192 0.0197

NGS 22.4889 54.4889 40.3834 7.2232 0.2302 0.5697 0.0026

TKW 20.6670 47.6967 33.8196 5.3032 0.4800 0.0270 0.0244

YP 3.6333 12.2356 8.0751 2.5313 0.8717 0.0157 0.0014

Here, OA for osmotic adjustment; PH, plant height; NTL, number of tillers; SL, spike length; NSLS, number of
spikelets per spike NGS, number of grains per spike; TKW, thousand kernel weight and YP Yield per plant.

2.2. Principal Component and Biplot Analyses

A multivariate, principal component analysis (PCA) biplot was conducted to investigate
variability, the response of wheat genotypes toward drought stress, and association among traits
and accessions. Variability of traits was explained for principal components 1 and 2, components
1 and 3, components 2 and 3, and 3D scatter-plot of components 1, 2, and 3 in both WW and DS
environments. Biplot indicating overall high variability (63%) of components 1 and 3, and (61%) of
components 1 and 3. While components 2 and 3 explained very low (32%) variability, which reflects
that the first two components are more important (Figure 2). Vector magnitude of OA, plant height
(PH), and YP clarified more variability relative to the rest of the traits under both environments,
which enhanced the importance of these candidate traits for selection of wheat genotypes under
drought stress. Drought stress has a significant effect on OA and gives a large vector than the other
yield contributing traits except for PH in biplot analysis, which suggested that plant drifts for OA under
the DS environment. Under drought stress condition, five genotypes including WC-4, WC-8, WC-22,
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LLR-39, and Blue Silver, showed positive and high responses to OA. Most of the genotypes remain
stable for yield and yield component traits under stress conditions and fall beyond the yield traits
vectors in biplot analysis. Few genotypes including WC-4, WC-22, LLR-14, LLR-29, and Blue Silver
are influenced for OA under DS and TKW under WW, so they performed well under both conditions.
Genotypes Shahkar-95, Punjab-96, and Kohistan-97 performed well for YP under WW condition butt
poorly performed for yield under the DS condition. WC-1, WC-3, LLR-4, LLR-13, and Sehar-06 were
the genotypes with the poorest performance under both conditions and stand drought susceptible
genotypes. See Supplementary Figure S1 and S2 for more detailed distribution of genotypes with tags
and overall PCA summary.
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Figure 2. Biplot (Principal component analysis) for all traits assessed in wheat genotypes under
well-watered (WW) and drought stress (DS) conditions. Scatter-plot shows the distribution of 30 wheat
genotypes for OA, yield and yield components according to principal components 1 and 2 (a),
components 1 and 3 (c), components 2 and 3 (d), and 3D scatter-plot of components 1, 2 and 3 (b).
Here red dots represent genotypes under irrigation and green dots under stress conditions. For trait
variables OA, osmotic adjustment; PH, plant height; NTL, number of tillers; SL, spike length; NSLS,
number of spikelets per spike NGS, number of grains per spike; TKW, thousand kernel weight, and YP,
yield per plant. Cubic Clustering Criterion is given in Supplementary Table S3.

2.3. Association among OA, DSITKW, Yield and Yield Components

Osmotic adjustment displayed a highly significant positive correlation among TKW and YP,
but non-significant positive relation with the rest of the traits except DSITKW and number of tillers
(NTL). OA negatively correlated with the number of grains per spike (NTL) and DSITKW under the
drought stress environment. While under WW condition OA showed non-significant correlation with
most of the traits except NTL. Among the yield components, TKW presented a significant positive
correlation with YP and PH including OA, while it had a negative association with DSITKW under
DS condition. On the other hand, under WW condition a negative correlation was observed among
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NTL, PH, and DSITKW with TKW. Yield per plant exhibited a significant positive correlation with most
of the yield components including number of grains per spike NGS, SL, NTL, and TKW and also
correlated with OA; a significant negative correlation was found with DSITKW under DS condition.
Meanwhile, a significant positive correlation was observed between DSITKW and YP under the WW
condition. Most of the traits showed a negative association with DSITKW under DS condition (Figure 3).
Overall correlation matrix among the all traits have given in Figure 4c.
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Figure 4. Hierarchical Cluster (a), Constellation Plot (b) and overall correlation matrix (c) of 30 wheat
genotypes assessed under WW and DS conditions. Genotypes are distributed in three major and
two minor groups in the WW condition. In contrast, genotypes evaluated under DS condition are
distributed in four major and 5 minor groups. Here, red color denoted to WW and green to DS.
The major and minor groups are classified as having genotypes >6 and >3 respectively.
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2.4. Variability and Diversity Estimation Analysis.

In this study, ridge regression analysis was applied to estimate regression coefficients in the
presence of multicollinearity, i.e., a situation of highly intercorrelated independent predictor variables.
There are several approaches to select the ridge parameter values in ridge regression analysis.
Ridge values suggested being determined from the ridge trace values (Supplementary Figure S3),
where a stable set of regression coefficients was attained in graphical options [33]. In Figure 3, the ridge
trace showed the values of the ridge parameter from 0 to 0.5, displaying the curves asymptotically,
and parallel to the X-axis for all parameters. The values were estimated at points 0.4 and 0.3 for DS
and WW conditions respectively according to Hoerl and Kennard [34]. Estimated ridge regression
coefficients were obtained at the selected values of the ridge parameter for both environmental
conditions. The ridge regression analysis indicated 54.54% variability of TKW explained by the seven
yield components under the DS environment while only 37.69% variability was observed under the
WW environment (Table 4).

Table 4. Thousand kernel weight (TKW) variability estimation model obtained by ridge regression
along with estimated regression and R square values.

Environment R.P Value NGS NTL PH SL NSLS YP OA R2

WW 0.3 0.065651 −0.91773 0.075970 0.391445 −1.10072 0.91381 10.4632 37.69%

DS 0.4 0.054466 −0.81762 0.070063 0.356197 −0.979303 0.878935 10.1628 54.54%

R.P Value = Ridge parameter value, R2 = R—Squared values in percentage.

There are several available analytical ways to estimate diversity among the germplasm under
contrasting environments. We applied Hierarchical Cluster analysis, Constellation Plot analysis,
and densities composition plot analysis for wheat genotypes under WW and DS conditions (Figure 4).
As shown in Figure 4, there are two distinct classifications of groups under WW and DS conditions.
These analyses provided a clearer distribution of genotypes among different environments and within
the same environments have different groups. The results indicated that a huge variability is present
among the studied genotypes and differential response to the contrasting environments. Genotypes are
distributed in three major and two minor groups in the WW condition. On the other hand, genotypes
under the DS condition are distributed in four major and 5 minor groups.

3. Discussion

Implementation of environmental variables like drought is quite challenging under the field
conditions in-regards to avoiding the other environmental effects such as rainfall and sunlight; although
they cannot be controlled but can be minimized through little efforts. We made a special structure
of tunnel covered with polythene sheet but open from sides to provide a natural environment but
controlled irrigation to applied drought stress. We have explored natural diversity of drought tolerance
to figure out the effects of drought stress on yield and its components, additionally the role of OA for
sustainability of yield under drought environment.

3.1. Variability and Effects of Drought Stress on Wheat Genotypes

Previously, just a few studies have been published on Pakistani wheat genotypes and local
landraces. Pakistan has a wide diversity in local wheat germplasm, which has been underexplored.
Here we conducted an experiment to screen and explore genetic diversity among a panel of 30 wheat
genotypes as local germplasm for drought tolerance. Recently, genetic diversity and variation for
drought tolerance of wheat have been explored by [35,36]. In this regard, the results of the present
study indicated a sustainable genetic diversity in the research material for OA, yield, and yield
components, which can be utilized for future breeding programs. The MS values of treatments also
indicated the significant results for all the traits (Table 2). Substantially, these results showed that WW
and DS treatments have positive effects on all traits, which indicate the existence of a huge variation
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among the genotypes over contrasting environmental conditions. Our results were consistent with
recent studies [35,37] regarding genetic variation and genotype x environment interactions for stress
tolerance. The ridge regression analysis indicated a significantly higher variability (54.54%) for TKW
explained by the seven traits including YP and yield components under DS condition as compared to
the WW environment (Table 3). The significant variation was also directed by principal component
analysis under DS condition. High positive loading of NTL, SL, NSLS, TKW, and PY indicates that
these traits have more influence and can be simultaneously selected because of their direct influence
among each other in the F1 principal component (Table 3) [38]. The response of selected tolerant
genotypes toward OA was noticeable in biplot which is clearer in Figure 2b,d; it also supports our
selection criteria. Distribution of genotypes among various groups in the Hierarchical Cluster and
Constellation Plot analysis indicated a huge variability and differential response of the genotypes to
the different environments.

Previously, yield per plant and kernel weight has been employed as a direct selection criterion for
improved yield in wheat. However, improvement for stress tolerance appears difficult through natural
selection due to the low heritability of YP under stress environments [37]. Drought susceptibility index
can help to screen more stable genotypes for drought tolerance. It has been applied to measure the
stress tolerance in wheat as a useful tool, for heat stress [37] and drought stress [39]. Drought tolerant
genotypes, identified on the bases of DSI (Supplementary Table S2), also showed response toward OA
in biplot analysis (Figure 2). This indicates the key role that OA plays in drought tolerance and yield
sustainability under a DS environment.

Wheat genotypes respond differently to both contrasting environments. In fact, the reduction in
YP, TKW, and other yield components was observed under DS. A significant genotype and environment
interaction were also present. Moreover, a significant reduction in yield and its components was
observed under drought stress, which also has been reported in previous studies [36,39]. Increased
OA was detected under DS as compared to WW condition in our experiment, which indicated that
wheat plants accumulate cell solutes under low water potential for OA to extract more water from the
soil under the DS environment (Figure 1) [40]. Osmotic adjustment sustains plant yield by interacting
with other physiological and morphological traits under drought stress environment. Variability in
wheat physiological traits associated with YP, reduction in photosynthetic activity attributed to yield
reduction, due to the less amount of assimilates which also affects seed growth [41], and in present case
reduction in TKW was observed under DS condition. Interestingly in some genotypes like WC-4, WC-8
and LLR-29 more TKW was observed under DS than the WW condition, among them LLR-29 also
have maximum OA and batter yield comparatively (Supplementary Table S2). These results indicate
the importance of the OA for sustainable yield under drought. Wheat acclimatizes itself under DS
condition through OA for growth recovery after experiencing the stress. Additionally, plants restore
their growth and carbon assimilation in new young leaves, which show more tolerance than older
leaves [42].

3.2. Association of Yield with Osmotic Adjustment and Other Yield Components

Yield per plant has a positive association with kernel weight, spike length, and numbers of grains
in a spike, which indicate these components directly contributed to grain yield in wheat under both DS
and WW environments. These are the important candidate traits for the selection of drought-tolerant
genotypes for dry land and arid areas of the world. In WW condition PH have a strong positive
relation with yield, it may be due to more biomass production, stem carbohydrates accumulation.
While under DS environment PH contributes to TKW and indirectly associated with plant yield.
Accumulation of water-soluble carbohydrate attributes for higher YP followed by a significant increase
in TKW in synthetic wheat, was also quantified by Mariano et al. [43]. It has been conveyed that
enhanced TKW could be a selection tool for higher YP in wheat. In the present study, TKW was
non-significantly and negatively correlated with NGS and NSLS respectively, which indicates that
both NGS and NSLS contributed independently to the YP under DS conditions. The reason may be
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due to less dry matter assimilation ability of single grain during the grain filling period under limited
availability of resources [44]. The ridge regression analysis indicated a significant variability (54.54%)
for TKW explained by the seven yield components under the DS environment. In our results, PH was
positively associated with OA, which indicates that the accumulation of solutes and higher biomass
also promotes OA in wheat under the DS environment. A significant positive correlation between OA
and biomass was reported by Blum et al. [18]. Subsequently, the association of OA with TKW and SL
contributes to the final yield under DS conditions. Perhaps, under stress conditions, the utilization rate
of stem stocks during the grain-filled period may contribute to more kernel weight and plant yield,
which is also explained by Leport et al. [45]. A positive correlation among OA and NGS was observed
which directly contributed to higher YP. More number of grains per spike may the result of higher
pollen-viability due to the OA under DS. Recently, the mechanism of OA and maintenance of turgor
pressure in wheat pollen grain have disclosed by Khlebova et al. [46], which enhance the confidence of
our results and importance OA in wheat under stress. Moreover, osmotic adjustment contributed to YP
through increasing the flag leaf area in wheat, as also reported by Farouk et al. [27]. On the other hand,
a negative association between DSI with YP and yield components, including OA, indicates its status as
a selection tool for drought-tolerant genotypes under DS conditions (Figure 4). Results provide insight
into the role of OA in PY sustainability under the DS environment. High yielding genotypes under
drought stress maintained higher OA having more TKW as compare to having less OA. Blue Silver,
LLR-29, WC-4, WC-1, and WC-8 are the high yielding genotypes under DS environment holding
less than 1 DSITKW and stand as drought-tolerant genotypes. Genotypes including LLR-13, Sehar-06,
LLR-39, WC-3, and Punjab-96 were drought susceptible genotypes holding higher DSITKW and fall far
away from the trait’s vectors in biplot analysis.

4. Material and Methods

4.1. Plant Material and Experimental Conditions

A panel of 30 wheat genotypes from Pakistan were screened during this study. This panel
included 14 varieties, 9 local landraces (LLR), 6 wild crosses (WC), and 1 advanced line (Supplementary
Table S1). A field experiment in a randomized complete block design (RCBD) was set up in different
environmental conditions of water regimes: WW (well-watered) and DS (drought stress). For WW
field conditions, all genotypes with three replications were hand-planted in the field and provided
with normal irrigations till maturity. For DS field condition, all genotypes were planted with three
replications under an iron frame tunnel covered by polythene sheet used as rain shelter. A 0.5 m
deep ditch was dug around the tunnel to prevent any seepage of rainwater. Drought stress was
imposed by withholding irrigations at four critical stages of wheat according to [47,48] with slight
modifications. DS was imposed before tillering stage (30–40 days after sowing (DAS)), at booting stage
(120–130 DAS), after ear emergence and grain filling phases by withholding irrigation as compare to
control. Two-meter-long rows were planted of each genotype in triplicate, maintaining an inter-row
spacing of 30 cm for both water regimes. The sowing was completed on1st November of the growing
year, to establish a uniform stand, 35–40 viable seeds were sowed with a small-plot grain drill for each
row. To ensure adequate nutrition, standardized agronomic practices were followed.

4.2. Evaluation and Data Recording

Data were recorded at physiological maturity for an osmotic adjustment. The osmotic adjustment
was measured by the rehydration method of [49] with few modifications according to CIMMYT
Guide [50]. Watering was provided to both water regimes to ensure the saturation before sampling.
The next day morning, sampling was done after this; the solute potential of the leaf sap was measured
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by osmometer. The OP (Osmotic potential) readings were obtained in mmol kg−1 unit, which was
converted to Mega Pascal (MPa) according to the Van’t Hoff equation:

OP (MPa) =
−R× T× osmoter reading

1000
(1)

Here, T was the laboratory temperature (30 ◦C) and R was the gas constant (0.008314). The osmotic
adjustment was calculated by formula:

OA = OP non− stressed – OP stressed (2)

according to [51]. Plant height (PH) (measured from the base of the plant to spike tip excluding awns),
spike length (SL) (the point where spike originates to the terminal portion of the last spikelet excluding
awns), number of tillers−1 plant (NTL) (randomly selected plants from each genotype), number of
spikelets−1 spike (NSLS) (randomly selected plants from each genotype). After harvest, number of
grains−1 spike (NGS) (grains on 10 random spikes from each genotype), thousand kernel weight (TKW)
(measured by weighing at least 500 kernels from each genotype twice) and grain—yield−1 plant (YP).
Drought susceptibility index for TKW (DSITKW) was calculated using formula:

DSITKW =
1− Y

YP

D
(3)

where Y is TKW of genotype under DS condition, YP is mean TKW of genotypes under WW condition,
D (stress intensity):

D = 1−
X
Xp

(4)

where X is the mean of Y of all genotypes and XP is the mean of YP of all genotypes. Genotypes were
rated tolerant (DSITKW ≤ 0.50), moderately tolerant (DSITKW > 0.50 ≤ 1.00) or tolerant (DSITKW > 1.00)
to drought stress.

4.3. Statistical Analyses

Statistix 8.1 software (Analytical Software, Tallahassee, FL, USA) was used to run an analysis of
variance (ANOVA). SAS version 9.4 (SAS Institute, Cary, NC, USA) was used to run ridge regression
analysis to determine yield predictability of the studied traits under WW and DS conditions. While JMP®

(Version (15.0), SAS Institute Inc., Cary, NC, USA, 1989–2019) was used to do principal component
analysis (PCA) and other diversity analyses (plots and graphs in Figures 2 and 4). Correlation analysis
and graphing were carried out by using the corrplot package of R 3.0 software.

5. Conclusions

Genotypes were holding a significant variation for deliberated traits suggesting the importance
of these candidate traits for the selection of drought-tolerant genotypes under DS conditions.
Results interpret that OA and TKW are significantly associated with yield per plant having a direct
and indirect effect on YP. Our study findings and previous reports comply that OA is a prime adaptive
engine for drought tolerance in support of plant yield. We identified Blue Silver, LLR-29, WC-4,
WC-1, and WC-8 comparatively high yielding genotypes under drought stress environment. A useful
variation is present in the wheat genotypes which can be used for genome-wide association studies to
identify the genomic regions for these important drought tolerant indicators. Additionally, the way of
OA assists to maintain the plant growth and yield, its effecters, pathways, and genetic bases can be
identified in future studies.
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Figure S1: Biplot (Principal component analysis) for all traits under WW and DS conditions. Figure S2 Summary
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standardized regression coefficients for increasing values of ridge parameter, for osmotic adjustment and yield
components, for drought stress (DS) and well-watered (WW) respectively. Table S1: List of 30 wheat genotypes
evaluated in this study. Table S2: Mean performance of 30 wheats genotypes under WW and DS environment
along with heat susceptibility index for yield per plant (HSIYP). Table S3: Cubic clustering criterion.
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