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Abstract

In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally
coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger,
less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and
function–hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most,
if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant
functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical
functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of
individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score
(HMS) to each node in the hierarchy of functional modules; the HMS score and its p{value measure functional coherence of
each module in the hierarchy. While existing methods annotate each module with a set of ‘‘enriched’’ functional terms in a
bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their
hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of
cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a
hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing
multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring
metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated.
We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other
computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://
code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13).
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Introduction

Network motifs are recurring, statistically significant patterns of

node interactions that act as building blocks of complex networks

[1]. In biological networks of molecular interactions in a cell, such

as protein-protein interaction (PPI) networks or gene transcrip-

tional regulatory networks (TRN), network motifs that are

biologically relevant are also functionally coherent, or form functional

modules [2], such as a ribosomal module synthesizing proteins or a

signal transduction system governing bacterial chemotaxis. These

functionally homogenous modules combine in a hierarchical

manner into larger, less cohesive subsystems, thus revealing one of

the essential design principles of system-level cellular organization

and function–hierachical modularity [3,4].

Hierarchical modularity manifests itself at various levels of

cellular organization. At the metabolism level, for example,

hierarchical modularity within Escherichia coli closely overlaps with

known metabolic functions, such as pyrimidine metabolism [3].

At the regulation level, for instance, in the E. coli TRN network,

network motifs without global regulators, such as feed forward

loops and bi-fan motifs, form the multi-layered hierarchical

structure without feedback regulation [5]. Analysis of the

hydrogen-producing Rhodopseudomonas palustris transcriptome [6]

also suggests the interplay between functionally coherent modules

related to electron transport (fixX, fixC, fixB, fixA, ferN, fer1), co-

factor synthesis (nifB, nifV, nifQ, nifN, nifE, nifX), assembly or

stability (nifW, nifS2, nifU), and regulation (nifA). Likewise, the

CD4+ T-cell modules involved in human immune protection and

regulation are made up of polarizing cues, lineage-specifying

transcription factors, homing receptors, and effector molecules [7].

At the protein-protein interaction level, the discovered func-

tional modules in the Saccharomyces cerevisiae PPI network consist of

sub-components in the form of protein complexes and other

macro-molecular assemblies [8]. For instance, the DNA replica-

tion, chromosome segregation, and chromatin assembly module

consists of several submodules including DNA repair, DNA

replication, chromosome segregation, origin recognition complex,

anaphase promoting complex, spindle pole body, and chromatin

assembly [9].

Thus, these examples provide a strong support not only for the

network modularity principle introduced by Hartwell et al. [2] but
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also for the hierarchical modularity as a generic principle of

system-level cellular organization and function [3].

Arguably, hierarchical modularity has not been explicitly taken

into consideration by most, if not all, functional annotation systems

[10,11]. Instead, a functional module is traditionally viewed as a

‘‘bag of genes,’’ and methods that assess its functional coherence, or

provide functional annotation, analyze this bag in its entirety. As a

result, the existing methods would often fail to assign a statistically

significant functional coherence score to biologically relevant

molecular machines (see Table 1).

To address this gap, we developed a methodology for

hierarchical functional annotation of biological network motifs.

Given the hierarchical taxonomy of functional concepts (e.g.,

Gene Ontology) and the association of individual genes or proteins

with these concepts (e.g., GO terms), our method will assign a

Hierarchical Modularity Score (HMS) to each node in the hierarchy of

functional modules; the HMS score and its p{value measure

functional coherence of each module in the hierarchy. While

existing methods annotate each module with a set of ‘‘enriched’’

functional terms in a bag of genes, our complementary method

provides the hierarchical functional annotation of the modules and

their components that are hierarchically organized.

A hierarchical organization of functional modules often comes

as a bi-product of cluster analysis of gene expression data or

protein interaction data. Otherwise, our method will automatically

build such a hierarchy by directly incorporating the functional

taxonomy information into the hierarchy search process and by

allowing multi-functional genes to be part of more than one

component in the hierarchy. In addition, its underlying HMS

scoring metric ensures that functional specificity of the terms

across different levels of the hierarchical taxonomy is properly

treated.

We have evaluated our method using Saccharomyces cerevisiae data

from KEGG [12–14] and MIPS [15] and several other

computationally derived and curated datasets [8,16–19]. We

compared our method with several biological significance analysis

methods [20–28]. The hierarchical modularity built by our

method from a set of genes in various KEGG pathways produces

biologically relevant modules, namely, at various levels of the

hierarchy, the corresponding modules match quite well with the

manually-curated hierarchy of pathways in KEGG. We have

obtained similar results for the protein complexes in the MIPS

database. We provide literature evidence for several functional

modules that have been identified by HMS as signicant both at the

protein pairs and at the module levels but have been missed by

some existing methods.

Results

Benchmark data and tools
To evaluate the performance of our method, we first need to

define (1) the model organism; (2) the benchmark data of known

functional annotations for this organism; (3) the hierarchical

taxonomy of functional terms, and (4) the state-of-the-art methods

that are most suitable for our comparative analysis.

Saccharomyces cerevisiae is our model organism. The reason is that

its genome annotation is mostly complete and manually curated by

human experts [22]. Apart from annotation quality, the

availability of functional module datasets, both manually curated

and experimentally generated, for S. cerevisiae is advantageous for

our method validation purposes.

For benchmark data, we plan to use both metabolic pathways

from KEGG database [12–14] and protein complexes in MIPS
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database [15] including experimental protein-protein interaction

data and protein complexes derived from this data [8,16–19].

For the hierarchical taxonomy of functional terms, we will rely

on the commonly-used functional annotation taxonomy provided

by the Gene Ontology consortium [10]. As such, we will limit

ourselves to the existing methods that are also based on GO

ontology. Namely, we will compare our method with the ones by

Pandey et al. [20,21], Chen et al. [22], and GS2 [23] methods. The

former makes use of the lowest common ancestor principle to

score functional coherence for a protein pair; it is based on Jiang

and Conrath’s scoring method [29], which is a normalized version

of the scoring method in Resnik et al. [30]. It has been shown that

Jiang and Conrath’s method is the best measure to capture semantic

relatedness [31]. The method by Chen et al. is based on a widely

used cosine similarity measure to assess functional coherence for a

protein pair and the authors provide a Matlab implementation for

the same. The GS2 [23] uses the overlap similarity measure, and

the authors provide a Python implementation for the same.

Additionally, we perform comparisons with methods described in

[23–28]. These methods [24–28] have web-based implementa-

tions. The p-value for our method is calculated using the Monte

Carlo procedure [32] and is discussed in detail in the Methods

section.

We conducted three major types of performance evaluation: (1)

at the level of functional coherency for protein pairs; (2) at the level

of functional coherency for protein functional modules (with two

or more proteins in each); and (3) functional annotation of

reconstructed hierarchical functional modules. Both large-scale

comparative analysis and small-scale literature mining based

validation are performed.

Functional coherency of protein functional modules
Detailed biological analysis of modules from Chen and

Yuan [8]. Two functional modules, M1 (Figure 1.A) and M3

(Figure 1.B), with the same ID’s as in [8], have been reported as

insignificant by several existing functional enrichment analysis

methods (see Table 2). We used the web-based implementations

for the functional enrichment analysis methods. However, the

modules were identified as significant by our HMS method. In the

following paragraphs, we provide biological evidence for the

subtrees in the functional hierarchy of the two modules.

In module M1 (see Figure 1.A), GAL1 is the galactose structural

gene and GAL3, GAL4, and GAL80 are transcriptional regulators

involved in activation of the GAL genes in response to galactose;

they form a sub-module in the hierarchy. The pair-wise functional

associations between these genes are well-documented. Transcrip-

tion of the galactose pathway genes in Saccharomyces cerevisiae (S.

cerevisiae) and Kluyveromyces lactis (K. lactis) is induced by galactose

through the activities of the regulatory proteins, GAL4, GAL80,

and GAL3 (S. cerevisiae) or GAL1 (K. lactis) [33,34]. GAL4 binds to its

binding sites in both the absence and the presence of galactose

[35]; it has the capacity to activate transcription, while GAL80

inhibits GAL4 in the absence of galactose [36]. At the presence of

galactose, GAL3 (GAL1 in K. lactis) binds to GAL80 that alleviates

the inhibition effect of GAL80 upon GAL4 [37].

PMA1 and PMA2 form another sub-module that encodes

plasma membrane H+-ATPase (PM-H+-ATPase), an enzyme with

Figure 1. Functionally coherent modules from the Chen and Yuan [8] study. (A) Module ID M1 and (B) Module ID M3.
doi:10.1371/journal.pone.0033744.g001

Table 2. Functional modules evaluated using existing enrichment analysis tools in comparison with HMS.

p-value

Module ID [25] [27,28] [26] HMS

M12 1.02E-12 3.4E-19 5.73E-01 0.00

M94 1.05E-07 4.0E-7 6.03E-04 0.00

M3 1.0 0.1 1.0 0.02

M1 1.0 0.18 1.0 0.04

The first two rows show two homogeneous functional modules and the next two rows of the table show heterogeneous functional modules that have coherent
submodules. Functional modules have been obtained from Chen and Yuan [8] of the Saccharomyces cerevisiae PPI network.
doi:10.1371/journal.pone.0033744.t002
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critical physiological roles both in the absence or presence of

environmental stress. PMA2, showing 89% identity to PMA1 at the

amino acid sequence level, encodes an H+-ATPase that is

functionally interchangeable with the one encoded by PMA1 [38].

The third sub-module involves DAP1, the damage response

protein, and YGP1 induced by nutrient deprivation-associated

growth arrest. DAP1 is required for growth in the presence of the

methylating agent methyl methanesulfonate (MMS). DAP1 is

required for cell cycle progression following damage [39], while

YGP1 is induced after exposing cells to nutrient limitation [39]. It

has already been demonstrated that exposure to one kind of stress

can activate protective mechanisms against other different stresses,

a phenomenon known as cross-protection [40]. Since DAP1 and

YGP1 act both in the process of stress response, cross-protection

might associate these two genes together.

The same relationship based on cross-protection can be

observed in another sub-module that consists of YBP2 that plays

the role in resistance to oxidative stress and HRT1 that is involved

in stress response. The transcription factor YBP2 and its

homologue play central roles in the determination of resistance

to oxidative stress [41], while HRT1 forms ubiquitin ligase

complex with other scaffold proteins [42]. The critical stress

response factor Nrf2 has been shown to be repressed by the

ubiquitin-proteasome system under normal, unstressed conditions,

with Nrf2 exploiting ubiquitin ligase complexes [43].

The next module is made up of PMA1 and TPO5 that are

involved in excretion of putrescine and spermidine. TPO5

functions as a suppressor of cell growth by excreting polyamines

[44]. PMA1 is a polytopic membrane protein, whose essential

physiological function is to pump protons out of the cell. Both the

excretion of putrescine by TPO5 and the delivery of PMA1 to cell

surface rely on secretory pathway. Furthermore, small portions of

TPO5 are co-localized with PMA1 in plasma membrane, which

indicates possible interactions between these two proteins [45].

PMA1 also forms a sub-module together with RVS161 that

regulates polarization of the actin cytoskeleton. RVS161 regulates

secretory vesicle trafficking [46] as well as cell polarity [47], actin

cytoskeleton polarization [48], and endocytosis [49]. It is already

known that the efficient delivery of PMA1 to cell surface relies on

secretory pathway [45]. Thus, RVS161 has a regulatory effect

upon PMA1.

Genes in this module have coherent functions, namely more

than half of the proteins in this module are related to stress

response, five out of 20 total have regulatory roles in cell cycle,

four out of 20 total are evolved in endocytosis. Stress conditions

are likely to cause cell cycle arrest, as well as endocytosis induction.

For module M3 (see Figure 1.B), the vast majority of the genes

in the module enjoy oxidative stress response as the common

theme. SOD2 protects cells against oxygen toxicity and TSA2,

responsible for the removal of reactive oxygen, directly protects

cells against oxidative stress, while PXR1 plays the role in negative

regulation of telomerase, and YKU80, a subunit of the telomeric

Ku complex, contributes to the maintenance of telomere stability,

since oxidative stress is likely to induce telomere attrition [50].

Meanwhile, proteolysis could also be the result of oxidative

stress: YNL311C is part of an ubiquitin protease complex, DEF1

enables ubiquitination, DMA1 is involved in ubiquitin ligation, and

DMA2 is involved in ubiquitination [51]. Since proteolysis involves

many protein transportation processes, the signal recognition

particles are essential to enable transportation: SRP14, SRP21,

SRP54, SRP68, SRP72, and SEC65 are all part of the signal

recognition particle (SRP) subunit, and appear in module M3.

Furthermore, Wu et al. [52] showed that repression of sulfate

assimilation is an adaptive response of yeast to the oxidative stress

of zinc deficiency, while we notice that MET1, MET10, MET14,

MET16, and YPR003C are basic proteins or protein subunits that

are required for sulfate assimilation. Finally, oxidative phosphor-

ylation produces ATP by utilizing electron transport trains. As a

result, the inhibition of electron transport chain will lead to

oxidative stress [53]. That is probably why ATP3, ATP5, and

ATP7 are all part of the enzyme complex required for ATP

synthesis. Also, STI1, ATPase inhibitor activity, and YBT1,

ATPase activity, coupled to transmembrane movement of

substances, are part of the module.

Large-scale analysis of protein functional

modules. Protein functional modules predicted by Chen et al.

using their betweenness-based network partitioning algorithm [8]

and protein complexes from CYS2008 database [19] are analyzed

as modules for their functional coherency. Table 3 summarizes the

results obtained by our HMS scoring method and GS2 [23]

method for both significant (p{valueƒ0:05) and highly significant

(p{valueƒ0:001) cut-offs. HMS predicted 96:7% of the CYS

complexes and 63:5% of the modules from Chen and Yuan study

to be significant. GS2 predicted 79:5% of the CYS complexes and

42:6% of the modules from Chen and Yuan [8] to be significant.

The results can be found in Supplement S1.

HMS comparison with protein-set semantic similarity

scoring metric. Protein pairs from the same protein complexes

in [15–18] or the same metabolic pathways in KEGG [12–14] are

assessed for functional coherency using HMS scoring method, the

cosine similarity metric [22], the Jaccard similarity metric [22],

and the GS2 [23] method. We filter our results as being significant

(p{valueƒ0:05, Figure 2.A) and highly significant

(p{valueƒ0:001, Figure 2.B).

For MIPS-curated data [15], HMS, cosine, and Jaccard

methods predicted nearly 100% of the protein functional modules

as being functionally coherent, while GS2 only predicted 84% to

be significant. For Ho et al. data [17], HMS, on average, provided

30% higher predictions than other methods. For Krogan et al. data

[16], HMS performed 20% better than the other methods, on

average. For KEGG data, our HMS method, on average,

performed 8% better than the other methods. For Gavin et al.

data [18], HMS performed about 15% better, on average.

Additionally, Chagoyen et al. [22] mentioned some complexes

and pathways that in spite of being functionally related were

predicted incoherent. We list some of those modules in Table 4

and show that our HMS method is able to predict them as

functionally related. The results can be found in Supplement S1.

Functional coherency of protein pairs
HMS comparison with pair-wise semantic similarity

metrics. We also calculated HMS score for 150 functionally-

Table 3. Percentage of significant (p-valueƒ0:05) and highly
significant (p-valueƒ0:001) functionally coherent modules
from Chen and Yuan [8] and CYS2008 [19].

Dataset Method Significant
Highly
significant

CYS2008 protein complex
database [19]

HMS 96.7% 82.9%

GS2 [23] 79.5% 40.1%

Chen and Yuan [8] HMS 63.5% 46.4%

GS2 [23] 42.6% 29.8%

doi:10.1371/journal.pone.0033744.t003
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associated protein pairs and compared these scores with the HMS

scores for an equal number of non-functional protein pairs in S.

cerevisiae. The former were obtained from STRING [54] with a

strong functional association score of 999 out of 999. The latter

were sampled from those pairs that were not scored in STRING

(i.e., there is no evidence for their functional association). We also

performed a similar analysis using four other pair-wise protein

similarity scores, Pandey et al. [20,21] metric, GS2 [23] metric,

overlap score [24], and cosine similarity [22,24]. The results of the

analysis are summarized in Table 5. For all methods, the mean

score for the functionally-associated pairs is significantly different

from the mean score for the non-functional pairs, but HMS has

the lowest p{value. Additionally, we calculated the percentage of

the total number of pairs whose score is lower than the maximum

score of the non-functional pairs but greater than the minimum

score of the functionally-associated pairs. We found that except for

HMS and Pandey et al. [20,21], all the other methods have an

overlap. This is one of the reasons why we selected Pandey et al.

[20,21] method for comparison in the next section. The results can

be found in Supplement S1.

We analyzed some functionally-associated protein pairs from

STRING that were classified as functionally coherent and thus

biologically relevant (p{valueƒ0:05) by our method, yet were

assessed as incoherent by Pandey’s et al. We found literature

support for biological relevance of these protein pairs. The results

are summarized in Table 1. RPB9 and SRB2 proteins are part of

RNA polymerase II holoenzyme in S. cerevisiae [55]. SNU13 and DIB1

proteins have been shown to be associated with the U4/U6U5

pre-mRNA splicing small nuclear ribonucleoprotein (snRNP)

complex [56]. HAP1 and RPM2 are related by the fact that

RPM2 is required for repression of the heme activator protein

HAP2 in the absense of heme [57]. When NSR1 was used as a bait

in the protein-fragment complementation assay (PCA), the

experiment pulled out DBP2 as one of its prey proteins [58].

Inferred hierarchy of functional modules
To assess the quality of the hierarchy of functional modules

derived from a given ‘‘bag of genes’’ using our HMS scoring

metric and the hierarchical modularity inference methodology

described in the Methods section, we assess the consistency between

the predicted hierarchy and the hierarchy of known functional

concepts in KEGG and MIPS databases. Remind that HMS, by

default, uses GO ontology as its hierarchical taxonomy of

functional terms.

Consistency analysis for KEGG metabolic

pathways. Note that each metabolic pathway is a functional

module. We consider the genes from several metabolic pathways

as one ‘‘bag of genes’’ to build the hierarchy of functional modules.

If the constructed hierarchy of functional modularity is biologically

relevant, then the genes in each pathway should form a subtree in

the hierarchy and not be ‘‘contaminated’’ by the genes from the

other pathways. We set the fuzziness to null before running the

algorithm in order to be able to use standard clustering validation

metrics like the Heidke Score [59], Gerrity Score [60], and Peirce

Score [61].

Since KEGG is organized into a three level hierarchy, the

pathways at the lower levels of the hierarchy are functionally more

coherent. Hence, they should be harder to separate into different

subtrees. This hierarchical specificity of the KEGG knowledgebase

provides us with an opportunity to check both the specificity and

the sensitivity of our hierarchical modularity inference method.

We build contingency tables to provide a mathematically and

statistically sound way for assessing the performance at large-scale.

To construct a contingency table, the inferred hierarchy is first cut

Figure 2. Functional coherence analysis of protein complexes and pathways. Functional coherence analysis of protein complexes from
MIPS-curated [15], Ho [17], Gavin [18], and Krogan [16] as well as metabolic pathways from KEGG. Comparison between our HMS scoring, cosine
similarity with different p-value methods from [22], Jaccard similarity with different p{value methods from [22] and GS2 [23] methods. (A) Significant
Modules (p{valueƒ0.05 and (B) Highly Significant Modules (p{valueƒ0:001).
doi:10.1371/journal.pone.0033744.g002

Table 4. HMS results for some KEGG metabolic pathways and MIPS protein complexes [22] classified as insignificant by Chagoyen
et al. [22].

Chagoyen et al. [22] HMS

Pathway or Complex Name Size pv1 pv2 pv3 SHMS p-value

DNA helicases 2 4.12E-01 5.36E-01 5.36E-01 0.21 0.0

Mitochondrial processing complexes 4 1.05E-01 1.46E-01 2.73E-01 0.35 0.0

Tryptophan metabolism 16 7.67E-02 4.12E-01 5.08E-01 0.34 0.0

Lipoic acid metabolism 3 4.09E-01 4.69E-01 4.69E-01 0.50 0.0

Limonene and pinene degradation 6 2.59E-01 4.13E-02 1.66E-01 0.30 0.0

doi:10.1371/journal.pone.0033744.t004

Functional Annotation of Hierarchical Modularity

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e33744



at the level that produces s subtrees that are then compared with s
pathways used as input to the algorithm. In the ideal scenario, all

the genes in a given pathway (or row in the contingency table) will

end up in the corresponding subtree (or the column in the

contingency table) and vice versa; or the contingency table will

form a diagonal matrix with the number of pathway genes along

the diagonal and zero’s on the off-diagonal elements of the table.

By completing such a contingency table, we could then utilize

various skill metrics, such as Heidke Score [59], Gerrity Score

[60], and Peirce Score [61], to measure the goodness of the

predicted hierarchical modularity.

We also performed all the experiments by replacing the SHMS

scoring metric with the one proposed by Pandey et al. [20,21] and

compiled the results in Table 6. We found that at ‘‘Level 1’’ in the

KEGG hierarchy, both methods had a perfect score of 1:0 for all

three metrics, but as we moved down the hierarchy, we found that

our method performed consistantly better than Pandey’s et al.

[20,21]. At ‘‘Level 2,’’ we found that our method performed 6%,

7%, and 8% better in terms of the Heidke score, the Pierce score,

the Gerrity score, respectively. At ‘‘Level 3,’’ which is probably the

hardest of the three in terms of pathways seperability, we

performed about 13%, 6%, and 2% better for the same skill

metrics. The results can be found in Supplement S2.

Consistency analysis for MIPS protein

complexes. Protein complexes are functionally coherent

modules, and hence experiments similar to the ones preformed

using KEGG pathways can be designed. The results can be found

in Table 7. We compared the mean score reported for our method

and the one proposed by Pandey et al. We found that at ‘‘Level 1’’

in the MIPS hierarchy, our method performed 12% better than

Pandey’s et al. for both the Heidke and Pierce scores and 13%
better for the Gerrity score. At ‘‘Level 2,’’ our method performed

approximately 26% better in terms of the Pierce Score and 35%
and 26% better in terms of the Heidke and Gerrity scores,

respectively. The results can be found in Supplement S2.

Effect of fuzziness
To evaluate the effect of incorporating fuzziness into the

reconstruction of hierarchical modularity, we selected several

KEGG pathways with common genes and then reconstructed the

hierarchy with the fuzziness parameter m~0:90. For each

pathway, we identified the corresponding cluster with the

maximum gene overlap (at least 75%). We analyzed multi-

pathway genes in terms of their membership in the corresponding

clusters. Table 8 summarizes the results of the analysis for multi-

pathway genes. Except for UGA1 gene, which was missed in the

cluster corresponding to the Valine, leucine and isoleucine degradation

pathway, all the other genes were properly identified in their

corresponding clusters.

Choosing vl value
Our vl selection strategy aims to optimize the method

performance on a validation set of protein complexes, that are

essentially known functional modules (Figure 3). This prior

knowledge is derived from manually curated set of complexes

from MPact-MIPS [15] database. Starting with the most

conservative value of 1 for the vl value, for each vl value, we

calculate the accuracy of identifying known protein complexes

from the validation set as being statistically significant. We pick a

value that is lenient enough to classify most of the known

functional modules (manually curated protein complexes) as

significant, while being stringent enough to avoid predicting

random modules from getting high SHMS scores. Thus, we select

the largest vl (in this case (vl~10)) value that ensures that at least

95% of the validation protein complex set is predicted as being

Table 5. Comparison of pair-wise semantic similarity metrics using functionally-associated and non-functional protein pairs.

Method Ref.

Functionally-associated
Pairs Non-functional Pairs

Mean Std Median Mean Std Median
Overlap
(%) p-value

HMS 0.56 0.06 0.53 0.02 0.03 0.0 0 3.89E-61

GS2 [23] 0.78 0.18 0.79 0.38 0.13 0.36 63.2 8.42E-74

Pandey [20,21] 0.71 0.23 0.73 0.07 0.02 0.06 0 6.53E-29

Overlap Score [24] 0.91 0.13 1.00 0.41 0.33 0.25 54.8 8.59E-40

Cosine similarity [22,24] 0.78 0.17 0.80 0.20 0.08 0.20 6 3.05E-94

doi:10.1371/journal.pone.0033744.t005

Table 6. Skill metrics for Saccharomyces cerevisiae KEGG
experiments.

KEGG Heidke Score Pierce Score Gerrity Score

HMS Level 1 1+0 1+0 1+0

[20,21] 1+0 1+0 1+0

HMS Level 2 0.97+0.04 0.98+0.05 0.98+0.05

[20,21] 0.91+0.1 0.91+0.12 0.90+0.12

HMS Level 3 0.90+0.03 0.90+0.05 0.90+0.06

[20,21] 0.77+0.14 0.84+0.10 0.88+0.07

doi:10.1371/journal.pone.0033744.t006

Table 7. Skill metrics for Saccharomyces cerevisiae MIPS
experiments.

MPact-
MIPS Heidke Score Pierce Score Gerrity Score

HMS Level 1 1+0 1+0 1+0

[20,21] 0.88+0.25 0.88+0.25 0.87+0.26

HMS Level 2 0.89+0.14 0.90+0.13 0.90+0.13

[20,21] 0.54+0.37 0.64+0.27 0.64+0.27

doi:10.1371/journal.pone.0033744.t007
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statistically significant. The significance of a protein complex score

is calculated using the Monte Carlo method discussed in the

Methods section (using a p{value threshold of 0:05).

Discussion

Functional coherency analysis and functional enrichment analysis are two

important concepts in genome annotation. Functional coherency

analysis assesses if a set of genes or proteins are biologically

relevant. Functional enrichment analysis determines if the

distribution of a functional term in the set of genes is significantly

different from the distribution of the same functional term in a

background set of genes. Thus, functional coherency analysis

scores a functional module, whereas functional enrichment analysis

scores a functional term.

With functional enrichment analysis, it is sometimes difficult to

conclude whether the set of genes is coherent. For example, for a

set of 14 genes, one Gene Ontology (GO)-based functional

enrichment analysis tool could infer that 9 out 14 genes are

enriched with GO term A with a p{value of 0.001 and 11 out of 14

genes are enriched with GO term B with p{value of 0.434. Such

inference creates ambiguity in deciding whether the set of genes is

coherent. Therefore, it is functional coherence analysis that often

determines whether the given functional module is biologically

significant.

Most existing functional enrichment analysis methods

[25,26,62–70] assume that proteins in the same functional module

perform the same function, or they are functionally coherent. Hence,

for functionally coherent modules, all the proteins are annotated

with the same functional term.

One of the main limitations of the existing functional

enrichment analysis methods is that they require the use of a

background set of annotated genes. As discussed by Shah and Fedoroff

[63], the background could severely affect the assigned p{value,

because this background information is directly incorporated into

the scoring mechanism. Thus, functional enrichment scores that

require a background set must be interpreted with caution. Unlike

these functional enrichment analysis methods, we analyze

functional coherency of proteins in the functional module without

incorporating a prior knowledge about a background set into the

scoring metric.

Both functional coherency analysis and functional enrichment

analysis often rely on functional annotation taxonomies, such as

the Gene Ontology (GO) [10] or FunCat [11] that are hierarchical

by nature. Hence, any protein or gene associated with the child

node is also associated with the parent node in the taxonomy. As

discussed by Khatri and Dra
^
ghic [64], some tools [65–67] only

utilize direct annotations, or functional terms associated with the

child node. Yet, other tools [71–73] use functional terms

associated only with the nodes at the user-specified hierarchical

level; the more specific functional terms associated with the nodes

below this level are replaced with a more generic parent’s term at

the user-defined level. Likewise, some methods take into

consideration only the parent’s term but not all its ancestors’

[74]. And other tools use both [25,26,62,67,75–77]. Unlike these

methods, we take all the levels of the hierarchy (a node and all its

ancestors) into consideration while assessing a module for its

functional coherence.

One of the drawbacks of these hierarchical taxonomy-based

tools is their inability to differentiate between the functional terms

that directly annotate the gene and those that annotate its

ancestors; basically, they assign the same weight to both. Some

methods [68,69] make this differentiation but in a statistically non-

sound manner [69]. Unlike these methods, we utilize the

hierarchical taxonomy of functional terms in its entirety, by

discriminating between direct annotations and those associated

with gene’s ancestors.

Existing functional coherency analysis methods including the

ones by Pandey et al. [20,21] and Chagoyen et al. [22] assess

Table 8. Consistency of multi-pathway genes across clusters that enrich the corressponding pathways.

Genes

Pathways ALD4 ALD5 ALD6 ERG10 ERG13 SHM1 SHM2 UGA1 POX1

Propanoate metabolism 1/1 1/1 1/1 1/1 0/0 0/0 0/0 1/1 0/0

Valine, leucine and isoleucine degradation 1/1 1/1 1/1 1/1 1/1 0/0 0/0 1/0 0/0

Cyanoamino acid metabolism 0/0 0/0 0/0 0/0 0/0 1/1 1/1 0/0 0/0

Methane metabolism 0/0 0/0 0/0 0/0 0/0 1/1 1/1 0/0 0/0

beta-Alanine degradation 1/1 1/1 1/1 0/0 0/0 0/0 0/0 1/1 0/0

Synthesis and degradation of ketone bodies 0/0 0/0 0/0 1/1 1/1 0/0 0/0 0/0 0/0

Lysine degradation 1/1 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0

Biosynthesis of unsaturated fatty acids 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1

Fatty acid metabolism 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 1/1

doi:10.1371/journal.pone.0033744.t008

Figure 3. Effect of different values of vl on the SHMS() score.
doi:10.1371/journal.pone.0033744.g003
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functional coherence of a pair or of a set of genes using GO term

annotations. The methods by Pandey et al. [20,21] are heavily

based on Resnik’s [30] information-theoretic score and its

extension by Lin et al. [78]. This scoring incorporates the

functional term’s distribution for the background set directly into

the scoring. The method by Chagoyen et al. [22] utilizes the cosine

similarity to assess functional similarity between a pair of proteins.

The number of functional terms that the protein is annotated with

affects the scoring; multi-functional proteins will probably have

more 1’s in their term-vector. The method weighs the term’s

specificity but the weighting scheme is still based on the

distribution of the term in the background set, and thus it has its

drawbacks. In addition, these methods do not annotate the

functional module. Unlike these methods, we do not measure

functional specificity based on any background set. We calculate

the specificity based on the position of a node in the hierarchical

functional taxonomy. We also provide functional annotation for

the module.

An important requirement for a good functional coherence

scoring method is its ability to distinguish the number of levels

traversed in the taxonomy to identify the common ancestor for a

pair of proteins. This requirement is currently not incorporated

into any of the existing methods. Also, the existing techniques

assess functional coherency of the module in its entirety and do not

take into consideration any structural information of the module.

In contrast, our method addresses those and some other

limitations.

The methods discussed so far directly rely on functional

annotation taxonomies. In contrast, there are methods [79–81]

that suggest mining biomedical literature and infer functional

Figure 4. Functional annotation and coherence of hierarchical modules. The figure shows the overview of the methodology to assess
functional coherence and assign annotation to hierarchical functional modules.
doi:10.1371/journal.pone.0033744.g004
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similarity of proteins in the set based on the semantic similarity of

biological concepts, or topics, covered by various literature sources

that reference these proteins. In this regard, these methods are

complementary to the aforementioned ones. They are particularly

suitable for gene sets with missing annotations (e.g., no GO terms

are assigned). They could also be used for validating and/or

comparing against the GO-based inference methodologies. It is

worthwhile observing that, while biomedical literature is abun-

dant, the analysis quality is dependent on the quality of the

literature used. Additio’nally, some organisms are more heavily

studied than others, and hence protein sets may be evaluated as

insignificant purely on the basis that the knowledge about that set

is not yet available. This problem can be compared to the problem

of incomplete annotations of certain genomes, and hence the

disadvantage of using functional annotation taxonomies is also

present here.

The number of functional modules output by a computational

method is in the order of hundreds and all of them cannot be

tested via experimenatation by a biologist. Hence, functional

coherence and significance methods can help narrow down the

search space by only selecting the most promising modules. Our

method goes one step further in that, given a hierarchical module

it provides a global functional view, i.e., the entire picture about all

the functions within a module and suggests clues on how various

submodules within the module could relate to each other.

Additionally, it scores the module keeping in mind the existing

hierarchical structure.

A well-known hierarchical modularity principle suggests that

protein modules are hierarchically organized; multi–functional

proteins further suggest that such modules could be overlapping.

Moreover, hierarchical taxonomies of functional terms manifested

by GO ontology or by KEGG knowledgebase further suggest a

possible hierarchical functional organization of the consituent

submodules of the target module. Hence, given a bag of genes as a

functional module, our method recreates its putative hierarchical

functional view, while taking into consideration the fact that some

proteins could be multi–functional. This kind of functional

hierarchy could help with understanding the functioning of the

module at various levels of functional specificity. For example, the

overall function of the target module could be chromosome segregation,

but at lower level of the functional hierarchy, we could find a

submodule responsible for proper alignment and attachment of

chromosomes and another submodule responsible for translating the

force generated by microtubule depolarization into movement to facilitate

chromosome segregation [8].

Additionally, our functional coherence method scores each

submodule and uses this information to score the overall functional

coherency of the module. Building the functional hierarchy for a

bag of genes in a target module could additionally provide a clearer

picture about the core and peripheral proteins for the functioning

of this module. Since the method allows fuzziness, the core protein’s

interaction with a peripheral protein (that may not interact with

any other protein in the module) could thus be captured. For

example, if the ‘‘bag of genes’’ contains CHD1, RAD16, VPS1,

NHP10, ISW2, NHP6B, ISW1, and RSC6, then the core of this

module could include CHD1, VPS1, NHP10, ISW2, NHP6B, and

ISW1 [82], while the peripheral protein RAD16 [82] could be

functionally associated only with VPS1 and the peripheral protein

RSC6 [82] could be associated with ISW1. Such information could

thus be explicitly captured in the hierarchy, because both VPS1

and ISW1 could be associated with the core and the peripheral

proteins when ‘‘fuzziness’’ is allowed.

Figure 5. Overview of fuzzy reconstruction of hierarchical modularity.
doi:10.1371/journal.pone.0033744.g005

Figure 6. An illustration of a hierarchical taxonomy T over the
set of functional annotation terms A~ft0,t1,t2,t3,t4,t5g. (A) A
DAG view. (B) A level set view.
doi:10.1371/journal.pone.0033744.g006
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Methods

Our method provides two main functionalities:

1. Given a hierarchical module and a hierarchical functional

taxonomy, our method can assess the functional coherence of

the module and provide a hierarchical functional annotation.

The overview of this functionality is provided in Figure 4.

2. Given a module as a ‘‘bag of genes’’ and a hierarchical

functional taxonomy, our method can build the functional

hierarchy of the module, i.e, provide a global functional view of

the module. The overview of this functionality is provided in

Figure 5.

In the following subsections we discuss the technical details of

the two functionalities.

Hierarchical taxonomy of functional terms (HTFA)
Let A = {t0,t1, . . . ,tn}, n [ N, be a set of functional annotation

terms. A functional annotation term (e.g., LYASE ACTIVITY)

describes a function that a gene or a protein can carry out in

the cell. A gene g can be annotated with a subset Ag(A of

functional annotation terms. If DAg Dw1, then g is multi-functional.

If Ag~1, then g is called a hypothetical or unannotated gene. A

functional term ti is more specific than a functional term tj , if it is a

subtype of tj . For example, lyase activity is a subtype of catalytic

activity. Moreover, the same term can be a subtype of multiple

terms. To capture functional specificity of terms, we will next

define a hierarchical taxonomy of functional terms (HTFA).

A hierarchical taxonomy Tt0
of functional terms A is a directed

tree or a directed acyclic graph (DAG) with the set V of labeled

nodes (see Figure 6.A), such that

1. The labeling function l : V (Tt0
)?A is a bijection, i.e., every

node v [ V(Tt0
) is labeled with only one term t [ A, and each

term t is assigned to only one node v, and

2. Label t0 is assigned to only one node that is called the root

node.

Whenever the context is clear, T and Tt0
will be used

interchangeably. Likewise, we will simply use t to refer to the

node v with label t (i.e., l(v)~t).

Due to its hierarchical nature, T can be represented as a level

set L(T)~fL0,L1, . . . ,LDT
g (see Figure 6.B), where L0~ft0g and

level Ld(V is a set of nodes visited at distance d from the root t0

during the depth-first traversal of T , and DT [ N is the tree depth.

Note that if T is a DAG (e.g., the Gene Ontology [10]), then

Li\Lj=1 for some i=j. In other words, the node can occur at

different levels in the taxonomy.

A pair of nodes ti and tj in Tt0
forms an ancestor relationship

(ti[tj), if there is a simple directed path from ti to tj in Tt0
. An

ancestor relationship between a pair of nodes ti and tj in Tt0

represents a functional specificity relationship, namely, a functional

term of the child node is a subtype of the functional term of its

parent, grandparent, grandgrandparent, and so on. This relation-

ship is transitive, i.e, ti[tj and tj[tk imply ti[tk. Also, a child

can have multiple parents, as in a DAG.

Given this fact, we next introduce the functional term specificity score

SFTS(t) for a node t [ T as follows:

SFTS(t)~

P
t [ L SLS(L)P
L [ L d(t,L)

, ð1Þ

where SLS(L) (see Figure 6.B) is the level specificity score

associated with level L [ L and defined as

SLS(Ld )~
d

DT

, ð2Þ

and d() is a term characteristic function that specifies whether the

term t occurs at level L:

d(t,L)~
1, if t [ L

0, if t 6[ L

�
ð3Þ

A distinct pair (ti,tj) [ A|A of functional terms is called related,

if the corresponding nodes in T form an ancestor relationship, i.e.,

ti[tj . More generally, a set of terms U(A is called an unrelated

set, or an unrelated term set in T , if no distinct pair (ti,tj), s.t.

ti,tj [ U , is related in T .

Let U be an unrelated functional term set in T . Then, as

defined by Equation 4, the ancestor functional term set U of U is the set

of all the functional terms t [ T on any simple path from any node

t̂t [ U to the root node t0 [ T :

U~U|P|ft0g,

P~fVt,t[T : Âtt[U : t̂t[t[t0g
ð4Þ

For example, consider an unrelated functional term set

Au~ft4,t6g in Figure 6. According to Equation 4, its ancestor

functional term set is Au~Au|ft0,t2,t3g.

Hierarchical gene module (HGM)
Given a set of genes G~fg1,g2, . . . ,gmg, a hierarchical gene

module (HGM) M is an undirected tree over the set G of leaf

nodes. Given the hierarchical taxonomy T of functional terms A,

let an unrelated term set Ag, Ag5A, denote the functional

annotation of gene g.
Hierarchical functional annotation. Given an HTFA

taxonomy T and an HGM module M with a functional

annotation Ag5A for each leaf node gene g, hierarchical functional

annotation of M is the function h : V (M)?2(A) that maps each

node v in V (M) to the set Av from the power set of A such that:

1. Av is the set of the most specific common functional terms among v’s

children, and

2. Av is an unrelated functional term set in T .

Next, we will formally define the first condition, i.e., the set of

the most specific common functional terms among the child nodes

of v. Let Cv be the set of child nodes of v. Note that if Cv~1, then

v is a leaf node g and Av~Ag. Otherwise, as defined by Equation

Figure 7. Hierarchical functional annotation of a gene module
M for a gene set G~fg1,g2,g3,g4g given the taxonomy T in
Figure 6. (A) Functional annotation of genes in G by unrelated term
sets in T . (B) A hierarchical gene module M . (C) The resulting
annotation of the internal (non-leaf) nodes in V (M).
doi:10.1371/journal.pone.0033744.g007
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5, Av is derived from the intersection of the ancestor functional

term sets of v’s children (see Equation 4) by maximizing the size of

the unrelated functional term set U in the power set of this

intersection:

Av~ÛU , ð5Þ

ÛU~
argmax

U [ 2 (ACv ) && (U is unrelated)
Uj j,

ACv~
\

w [ Cv

Aw

For a hierarchical functional module M in Figure 7 and a

taxonomy T in Figure 6, consider v[V(M) as an example with Cv~

fg1,g2g and ACv
~ft0,t1,t2,t3,t4,t5g\ft0,t2,t4,t5g~ft0,t2,t4,t5g.

Then the maximum size unrelated term set in the power set of this

intersection defines the functional annotation set Av~ft4,t5g for the

internal node v.

Functional coherence. Existing functional coherence

analysis techniques analyze the input functional module in its

entirety without considering its hierarchical structure.

Additionally, most methods depend on a reference set by

incorporating its annotation distribution and size into their

scoring formula [20–22]. A reference set is a group of proteins

that forms a superset of the functional module. Khatri et al. discuss

the difficulties with selecting the right reference set [64].

Here, we introduce a method that accounts for the hierarchical

structure of the module M when determining its functional

coherence. Additionally, the scoring function does not directly rely

on any reference set. More specifically, given the hierarchical gene

module M and its functional annotation, the functional coherence

score, called hierarchical modularity score (HMS), SHMS(M) of M is

defined by Equation 6:

SHMS(M)~
1

V (M)j j|
X

v [ V (M)

l(v)|
1

Avj j
|
X

t [ Av

SFTS(t)

" #
, ð6Þ

where the functional term specificity SFTS(t) is defined by

Equation 1, and the penalization factor l(v) is discussed in the

following section.

Penalization factor (l). Consider a hierarchical gene

module M with its hierarchical functional annotation (see

Figure 8.A), as described in Hierarchical functional annotation

section. Let p[V (M) be a parent node with its children Cp.

Given the functional annotation term sets, Ap and Ac, for the

parent p and its child c [ Cp, respectively, a dissimilarity score

y(p,c) between p and c is defined by Equation 7 (see Figure 8.B):

y(p,c)~
1

Ap

�� ��| X
t [ Ap

min
t’ [ Ac

d(t,t’), ð7Þ

where the distance d(t,t’) is the length of the shortest simple path

(t’[t) from node t’ to t in T , or d(t,t’)~?, if t’ and t are not

related.

Given Equation 7, the penalization factor l(p) for the parent

node p [ V (M) is then defined by Equation 8:

l(p)~ 1z
1

vl
max
c [ Cp

y(p,c)

� �{1

ð8Þ

For the example in Figure 8, l(v)~0:95 for vl~10, because the

dissimilarity scores between v and its children g1 and g2 are 0.5

and 0, respectively. Also, Figure 9 depicts the behavior of l(p)
for different values of vl in Equation 8, as the maximum value

of y(p,c) varies from zero to its maximum possible value of the

tree depth DT in the taxonomy T . If vl increases from one to

100, then node score’s penalty decreases from 50% (even for

immediate neighbors in y()) to 13% (for the largest taxonomy

depth DT~15 in the Gene Ontology [10]). More information

on choosing vl values can be found i Choosing vl value section.

Assessing statistical significance
To provide a robust assessment of statistical significance for

SHMS(M), we measure an empirical p{value for SHMS(M) score

assigned to each hierarchical module M using the Monte Carlo

procedure described in [32]. Specifically, for hierarchical module

M over a set of Gj j genes from organism O, we randomly sample

N subsets of size Gj j from the entire genome of organism O, build

the hierarchy, and compute the SHMS(). Then, we estimate an

empirical p{value for SHMS(M) as p{value = R=N, where N is

the total number of random samples (N*1000) and R is the

number of the samples that produce a test statistics SHMS() greater

than or equal to the SHMS(M).
Figure 8. llustration of penalization factor calculation. (A)
Hierarchical annotation of the functional module defined in Figure 7.
(B) Dissimilarity score y(p,c) for a parent p~v and a child c~g1 .
doi:10.1371/journal.pone.0033744.g008

Figure 9. Comparison between the three penalization factor
functions considered.
doi:10.1371/journal.pone.0033744.g009
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Fuzzy reconstruction of hierarchical modularity
In Hierarchical gene module section, the hierarchical structure for a

gene module M was provided as an input. Based on this structure

and the hierarchical taxonomy of functional annotation terms

(Hierarchical taxonomy of functional terms section), we provided means

both for inferring M’s hierarchical functional annotation (Hierar-

chical functional annotation section) and for estimating M’s functional

coherency via hierarchical modularity scoring (Functional coherence

section).

In contrast, here we consider a somewhat inverse problem,

namely, the reconstruction of a hierarchical structure of a

functional module M defined by its gene set G. G is often

referred as a ‘‘bag of genes.’’ On the one hand, it seems that any

hierarchical clustering method could be used to reconstruct the

hierarchical functional modularity from such a ‘‘bag of genes.’’ On

the other hand, the presence of multi-functional genes suggests

that the same gene could belong to multiple subtrees in the

hierarchy–the property that is not often guaranteed by any

hierarchical clustering method. Therefore, we will first need to

introduce ‘‘fuzziness’’ into the process of building a functional

hierarchy for G. For example, in Figure 5, a bag of genes

containing SPC24, TID3, NUF2, and FHL1 and a functional

annotation taxonomy T are provided as input to the method. It is

known that SPC24, TID3, and NUF2 are functionally related

because they are part of the Ndc80 protein complex but SPC24 is

also trnascriptionally regulated by FHL1 [83] and so SPC24 is part

of multiple subtress and, hence, fuzziness is introduced.

Existing fuzzy clustering schemes typically introduce some

fuzziness into some known clustering algorithm. C-means [84,85]

is a typical example of this kind. Others are typically partitional by

nature [27,28,86]. Agglomerative fuzzy clustering algorithms are

not common, because agglomerative techniques are considered

‘‘hard clustering,’’ i.e., it becomes difficult to move an element

from an existing cluster to a new cluster. Ideally, any fuzziness in a

clustering procedure should be introduced, while the hierarchy is

being built and not as a post-processing step.

To meet these requirements, we propose a taxonomy-based,

agglomerative, fuzzy inference (TAFI) of the hierarchical gene module

M from a gene set G, provided each gene g[G is annotated with

an unrelated functional term set Ag5A in a hierarchical

taxonomy T of functional annotation terms A (see Hierarchical

taxonomy of functional terms section). The overview of this method is

provided in Figure 5.

Similar to an agglomerative hierarchical clustering (AHC)

process, TAFI starts with assigning each gene to its own cluster

and proceeds building the hierarchy in an iterative, bottom-up

manner, but it introduces fuzziness by allowing multiple cluster

pairs to merge simultaneously at each iteration. The two user-

defined parameters control this fuzziness process at each iteration:

(a) the merging factor m and (b) the stopping criterion ts. The former

defines what cluster pairs get merged at a given iteration it.
Namely, unlike traditional AHC that merge the pair of clusters

with the maximum similarity Smax(it), TAFI allows for clusters

with suboptimal similarity to be merged as well. Suboptimality is

defined by the percentage m of Smax(it). In addition, TAFI

prevents the formation of unrelated clustering modules by

stopping the bottom-up cluster merging process at iteration îit as

soon as Smax (̂iit) value falls below ts.

Note that Horng et al. [87] proposed to merge the cluster pairs

whose similarity is greater than Smax(i){D unlike TAFI ‘s way of

restricting to
m

100
|Smax(i) similarity threshold. The reason

behind our choice of multiplicative factor rather than additive/

subtractive factor is the following. If D~0:1 and Smax(i)~0:5,

then any cluster pair with inter-cluster similarity greater than 0:4
would be merged. The value of 0:4 is 80% of 0:5. However, if

Smax(i)~0:2, then any cluster pair with inter-cluster similarity

greater than 0:1 would be merged, but the value of 0:1 is only 50%
of 0:2. The criterion becomes more stringent with a larger value of

Smax() and, conversely, it becomes more lenient, as Smax() gets

smaller. In contrast, our choice of the merging factor allows for

resolving this inconsistency issue.

Also, observe that multiple merges at each iteration can

sometimes result in the same subtree being formed repeatedly.

This leads to redundancy. Thus, TAFI employs pruning, where a

merge is allowed only if the merge results in a subtree that has not

been already formed.

In addition, we need to make two important decisions in order

to apply TAFI: (1) the inter-cluster similarity measure and (2) the

linkage algorithm. For the inter-cluster similarity measure, we use

Equation 6 that calculates the hierarchical modularity score

SHMS(M) for a hypothetical module M that could be formed if

the two clusters, or hierarchical tree modules M1 and M2, were

merged by adding a new root node vnew and making the root

nodes v1[V (M1) and v2[V (M2) to be the children of vnew.

It is worth noticing that SHMS(M) is a semi-metric, and this

property has direct implications on our choice of the base

clustering algorithm. Since semi-metrics do not adhere to the

triangle inequality principle, we can resort to an average, single,

complete, or centroid linkage algorithm as our base clustering

technique. Therefore, the effective clustering techniques, such as

Ward’s method cannot be used in conjunction with semi-metrics

[88].
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