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Abstract: Based on unsteady state heat conduction, a mathematical model has been developed to
describe the simultaneous heat and moisture transfer during potato frying. For the first time, the
equation was solved using both enthalpy and Variable Space Network (VSN) methods, based on a
moving interface defined by the boiling temperature of water in a potato disc during frying. Two
separate regions of the potato disc namely fried (crust) and unfried (core), were considered as heat
transfer domains. A variable boiling temperature of the water in potato discs was required as an
input parameter for the model as the water is evaporated during frying, resulting in an increase in
the soluble solid concentration of the potato sample. Pulsed electric field (PEF) pretreatment prior to
frying had no significant effect on the measured moisture content, thermal conductivity or frying
time compared to potatoes that did not receive a PEF pretreatment. However, a PEF pretreatment at
1.1 kV/cm and 56 kJ/kg reduced the temperature variation in the experimentally measured potato
center by up to 30%. The proposed heat and moisture transfer model based on unsteady state heat
conduction successfully predicted the experimental measurements, especially when the equation
was solved using the enthalpy method.

Keywords: potato; frying; PEF; variable space network method; enthalpy method; approximate
quasi-steady-state analysis; explicit finite difference

1. Introduction

Deep-oil frying is one of the most common processes used for food preparation, which
is estimated as a billion-dollar industry worldwide [1]. Accordingly, monitoring and simu-
lation of the temperature time distribution in food during frying is important to warrant
the final quality of the fried food products [2]. Depending on the processing intensity,
moisture in foods is removed partially or fully during frying. In fact, a phase change from
liquid to vapor happens due to absorbing heat from hot oil during frying. Therefore, in the
food frying process, heat and mass transfer phenomena take place simultaneously.

Deep fried potatoes are among the most popular of food products owing to their avail-
ability, convenience, price and taste [3]. Several researchers have developed mathematical
models to describe the frying process of potatoes [4–6]. These models have been developed
to describe heat and mass transfer mechanism for potato frying based on either single or
two-phase systems. Based on the assumption that heat and mass transfer processes occur
independently, an analytical correlation for heat and moisture transfer coefficients based on
different potato geometries was developed by Dincer [7], who used a single-phase model
by solving the diffusion equation for both the heat and mass transfer phenomena, without
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coupling the two phases together. Costa and Oliveira [8] developed a two-phase model
(crust and core) with a time-dependent boundary condition to define the water loss in
fried potato discs. In their model system, dynamics were described as a general first-order
response to an exponential input, where the rate constants of both phases (crust and core)
were highly dependent on the thickness of potato discs while the rate constant of the
unfried phase (core) was impacted by the frying temperature. These researchers reported
that 63% of the initial moisture content in a potato still resides in the unfried phase.

Farkas et al. [9] developed a two-phase domain model to describe the heat and
mass transfers in food frying, including potato frying. In this model it was assumed
that water boiling occurs at a moving interface similar to the process of melting and
solidification [10]. To avoid complicated and time-intensive models, some researchers
have assumed that the process can be described by heat transfer equations only. For
example, Farid and Chen [4] employed the unsteady state heat conduction equation and
used the finite difference method of Murray and Landis [11] to solve the equation. Their
model eliminated the use of excessive parameters such as diffusion coefficient and mass
transfer coefficient (in addition to heat transfer parameters) which are difficult to measure
analytically. Their work successfully described the frying process but failed to predict the
gradual increase of potato center temperature in the final period of frying. To address
this issue, Southern et al. [12] defined the center of the potato disc as a region, rather than
a point, based on the cross-section area of the thermocouple used. Then, an integration
was carried out within that location. This assumption reduced the errors caused by the
displacement of the thermocouple from the center of the potato disc. They also considered
a variable surface heat transfer coefficient, which was high during boiling and lower
during sensible heating. Lastly, they considered the oil penetration effect, which altered
the properties of the fried potato discs and thus slowed down the increase in the center
temperature of the potato during the final sensible heating period. However, with this
approach, the agreement between predicted and measured temperature was poor during
this final heating period.

The use of pulsed electric field (PEF) technology as a pre-treatment in the potato
industry, especially for the production of deep-fried potato products (e.g., French fries and
potato crisps), has shown promise as a means to: achieve better process performance as
the texture of PEF-treated potatoes are more flexible, easier to cut and have a smoother cut
surface; reduce energy and water consumption during production as the integration of
PEF into existing process line can speed up the production time and reduce energy and
water use compared to conventional processing; produce better quality end product as PEF
facilitates uniform browning after frying an reduced oil uptake; and minimize food waste,
as PEF-treated potatoes have less tissue damage and are less prone to breaking [13,14]. PEF
treatment involves applying short (µs or ms in duration) and repetitive electric pulses of
high voltage across the potato which is positioned between two conducting electrodes [15].
Electric field strength, pulse frequency, pulse number, pulse shape and polarity, pulse
width and duration are important operating parameters of PEF processing [16]. When the
electric field strength of the applied pulses exceeds thresholds electrical potential of the cell
membrane, existing pores in the membrane can enlarge which affects its microstructure [17].
These changes will also impact heat, mass and momentum transfers, and affect the rate
of chemical reactions, moisture content and oil uptake during the subsequent frying
process [18]. However, heat and mass transfers during frying of PEF-treated potatoes has
not yet been reported.

To accurately model the frying process of potatoes is not trivial, as it is postulated
that the water boiling temperature will increase as the boiling interface moves towards the
potato center owing to increases in the concentration of solid soluble matters in the potato
discs as water is evaporated. To address this, an empirical correlation for water boiling
temperature as a function of interface position of fried (crust) and unfried (core) regions
was developed in the current study. The unsteady state heat conduction equation was then
solved using the enthalpy method, for the first time for potatoes, in addition to the well-
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known Variable Space Network (VSN) method previously used by other researchers [19].
The enthalpy method or the effective heat capacity method has previously been widely
used to describe melting and solidification of materials [10,20] and unlike the VSN method,
it has been applied to two- or three-dimensional geometry samples [21,22]. The enthalpy
method was applied to help overcome the computation limitations of the VSN method
when an explicit finite difference method is used in the solutions. However, a limitation
of the enthalpy method is the assumption that water boils within a very narrow range
of temperature. Both the enthalpy method and the VSN method were used in this study
to predict temperature-time distribution at different locations of the potato disc. The
complete frying time was also measured directly using the method developed by Michael
and Farid [23] for flat geometries.

Thus, this study aims to test whether the enthalpy and VSN methods based on a
moving interface defined by the boiling temperature of water in potato during frying can
describe the temperature-time distribution of PEF-treated potatoes.

2. Materials and Methods
2.1. Sample Preparation and PEF Treatment

All potatoes used in this study were harvested together, graded, washed and stored
in jute potato bags at 10 ◦C until use. Thirty individual potatoes were randomly allocated
to either untreated or PEF treated. Potatoes were PEF-treated using the batch mode of an
ELCRACK-HVP 5 (German Institute of Food Technologies, Quakenbrueck, Germany) unit
by positioning each potato tuber in the middle of the batch treatment chamber (100 mm
length × 80 mm width × 50 mm height, 400 mL capacity) consisting of two parallel
stainless-steel electrodes of 5 mm thickness separated by a distance of 80 mm. To standard-
ize the transmission of the electric currents, the whole potato tuber was fully submerged
in sodium phosphate buffer (10 mM; pH 7) [24]. Potatoes were treated with PEF at an
electric field strength of 1.1 kV/cm, pulse frequency of 50 Hz, and pulse width of 20 µs at
varying pulse numbers of 1100 and 3100 that resulted in specific energy inputs at either
54.8–57.7 kJ/kg (thereafter referred as “PEF Low”) or 149.2–159.6 kJ/kg (“PEF High”),
respectively. During PEF treatment, the pulse shape (square wave bipolar) was moni-
tored on-line using an oscilloscope (Model UT2025C, Uni-Trend Group Ltd., Dongguan,
China). The output voltage, output current, pulse energy, pulse number and load resistance
was monitored during treatment and the temperature and electrical conductivity of the
conducting medium were measured before and after PEF treatment, using a conductiv-
ity/temperature meter (CyberScan CON 11, Eutech Instruments, Queenstown, Singapore).

2.2. Moisture Content Measurement

To determine their moisture content (w), samples were cut from the surface and center
of each potato (either untreated or PEF-treated) and placed in a convection oven (Binder
drying and heating chambers ED115, Tuttlingen, Germany) at 140 ◦C for 4 h. Potato mass
was measured over time until a constant mass was achieved and the moisture content was
calculated for triplicates independent samples.

2.3. Thermal Conductivity Measurements

Thermal conductivity was measured using a ThermTest TC-30 (Fredericton, NB,
Canada), which works based on transient heat conduction. Fresh or fried potatoes were
cut in rectangular shapes (50 mm length × 25 mm width × 5 mm height) and their thermal
conductivity was measured as shown in Figure 1. Briefly, the sample was placed on the
spring-loaded sensor (Figure 1A,B) and a weight placed on top of it to ensure proper contact
(Figure 1C,D). A heat reflectance sensor was used so that the heating element was supported
on an insulated backing and surrounded by a guard ring for one-dimensional heat flow.
Heat was generated when a current was applied to the sensor coil. Simultaneously, the
rate of temperature increase was monitored by the voltage drop in the sensor, which was
calibrated to the temperature change. The thermal conductivity of the sample was inversely
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proportional to the rate of increase in the temperature. In other words, samples with a
lower thermal conductivity showed a steeper rise in temperature. Thermal conductivity
was measured in triplicate using independent samples.
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Figure 1. Stepwise potato sample preparation for the thermal conductivity measurement: (A) the
empty ThermTest TC-30 machine; (B) placing sample in the machine; (C) a weight added to the
sample; and (D) when the weight was on the sample.

2.4. Potato Frying Experiment

Both the PEF-treated and the untreated potatoes were peeled and cut in circular discs
(40 mm diameter and 5 mm thickness). A K-type thermocouple (IEC K 0.5 × 150 mm) was
inserted into the center of the potato disc to measure its temperature during frying. The
potato disc was placed in a 4 L temperature-controlled deep fryer (Brabantia Deep Fryer
BBEK1130, Valkenswaard, The Netherlands, 393 × 280 × 280 mm) as shown in Figure 2.
The oil was held at 180 ◦C [25] using a temperature controller. Frying temperatures were
recorded over time using PicoLog TC-08 data logger (Cambridgeshire, UK) (Figure 2).
The potato preparation including skin removal, cutting and thermocouple insertion in the
center of potato discs is shown in Figure 3.
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Figure 3. Stepwise sample preparation for the potato frying experiment: (A) intact potato after
PEF treatment; (B) removal of skin; (C) cutting sample in a circular disc form; (D,E) position of
thermocouple inserted into the sample before frying; and (F) position of thermocouple in the sample
upon completion of frying experiment.

2.5. Measurement of Water Boiling Temperature of Potato

The water content of a potato ranges between 70% to 80% [26] and during frying most
of it is evaporated when the water temperature reaches “boiling” [27]. However, since
the soluble matter in a potato such as sugar and potassium become more concentrated
during frying, the water boiling temperature in the potato is expected to increase over time.
This temperature elevation is expected to continue until a major proportion of free water
is removed from potato and the center temperature reaches the targeted oil temperature
(180 ◦C). To understand the elevation mechanism of water boiling temperature, potato discs
were fried in the same fryer as outlined in Section 2.4. As soon as the center temperature
of the potato disc started to rise above the water boiling temperature (i.e., >100 ◦C as
monitored using the data logger), the disc was removed immediately from the hot oil. The
water content remaining in each partially fried potato disc was determined by placing
them in an oven at 140 ◦C to dry, until a constant weight was achieved, which amount
was calculated based on the known initial moisture content of potato (Equations (1)–(3)).
Equation (3) represents the moisture content of potato in which water boiling point started
to deviate from 100 ◦C.

Initial water mass (g) = Initial potato mass before drying (g) − Potato mass after drying in an oven (g) (1)

Water remained after partial frying (g) = Potato mass when frying stopped (g) − Potato mass after drying in an oven (g) (2)

% Water remaining after partial frying =
Water remained after partial frying (g)

Initial water mass (g)
× 100% (3)

An additional experiment was conducted to estimate the boiling temperature ele-
vation of the water in potatoes. To achieve this, liquid was extracted from almost 2 kg
of potatoes, using a juicer (Nutribullet Juicer 800W, Los Angeles, CA, USA), heated and
its boiling temperature over time was recorded using a data logger. The change in the
mass of the liquid was measured at regular intervals, using an electronic kitchen scale
(Wiltshire, NSW, Australia). A correlation was developed to estimate the boiling temper-
ature elevation as a function of potato mass. It should be noted that the data obtained
was used to approximate the correlation between the water loss during frying and the
boiling temperature elevation since potato liquid does not have the same physicochemical
properties as a potato. Furthermore, it was difficult to conduct experiments above 120 ◦C as
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the liquid solution became very viscous and starch gelatinization occurred which hindered
water evaporation.

3. Mathematical Modeling

An approximate quasi-steady state was used to estimate the complete frying time of
potato and the frying process modeled by VSN and enthalpy methods using MATLAB
software (version R2020b, The MathWorks Inc., Natick, MA, USA).

3.1. VSN Method

In the VSN method, it is assumed that there are two regions of the potato discs
separated by an interface namely the “core” and “crust” regions [4]. The physical properties
of potato for the two regions of core and crust used in this study are summarized in Table 1.
The potato disc sample was assumed to be an infinite slab comprised of a porous solid
structure filled with water. The effect of shrinkage and water diffusion in the core region
were assumed to be minimal as they were fully saturated with water [4].

Table 1. Physical properties of potato discs.

Property Core Crust Reference

Thermal conductivity of potato, k (W/m·K) 0.73 0.11 Current work
Potato density, ρ (kg/m3) 1132 386 [4]

Specific heat capacity of potato, Cp (kJ/kg·K) 3.450 1.790 [4]

Parameter Value

Convection heat transfer coefficient 250 W/m2·K [4]
Boiling heat transfer coefficient 500 W/m2·K [4]

Initial moisture content 0.738 Current work

To determine the temperature of the potato discs over time, the heat conduction
equation (Equation (4)) in the form of sensible heat was first solved for the whole potato,
explicitly using a finite difference method:

∂T
∂t

= α
∂2T
∂y2 (4)

where T and t are temperature and time, respectively; α is thermal diffusivity of potato and
y refers to the position from the surface of potato disc.

As soon as the surface temperature of the potato disc reached its boiling point, a thin
layer was assumed to form a crust region needed to start the computation with the presence
of two regions as required by the VSN method [4]. Following this, Equation (4) was then
solved for both crust and core regions using the following initial and boundary conditions
(Equations (5)–(9)):

T = 0 T = Ti where Ti= 20 ◦C (5)

y = 0 h (T0 − Ts) = −kcr
∂Ts

∂y
where T0 = 180 ◦C (6)

y =
δ

2
∂T∞

∂y
= 0 (7)

y = Yn Tco = Tcr= 103 ◦C (8)

y = Yn ρco λw w
dYn

dt
= kcr

∂Tcr

∂y
− kco

∂Tco

∂y
(9)

where subscripts “s”, “cr” and “co” represent the surface, crust, and core of potato disc,
respectively. Subscript “i” refers to initial condition of potato and “o” refers to oil. δ
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denotes the full thickness of potato disc. w and λw define the moisture content, and
latent heat of boiling of water, respectively. Yn represents the interface position at each
timestep, and h and k are convective heat transfer coefficient and thermal conductivity of
the potato, respectively.

The two regions were then divided into equal space increments. To start the com-
putation, a linear temperature distribution was assumed within the initial crust layer.
The magnitude of error raised by this simplification was negligible if the assumed crust
thickness was small. An extremely small initial crust layer should be avoided; otherwise,
computation time would increase substantially to satisfy the stability requirement of the
explicit finite difference method. An initial crust layer of between 1% and 2.5% of the
potato disc thickness was deemed to be sufficient [4].

As frying proceeds, the crust thickness will increase and hence the space increment
width will expand, while the space increment width of core region will decrease. Us-
ing the explicit finite difference formulation described by Murray and Landis [11], the
nodal equations for both regions are formulated and used to calculate the dimensionless
temperature. Equations (10) and (11) represent the nodal discretization of crust and core
regions, respectively.

θj,n+1= θ j,n+j
(
θj+1,n − θj−1,n

)
× (Yn+1 − Yn)

2Yn
+αcr∆tJ2(θj−1,n − 2θj,n + θj+1,n

)
Y2

n (10)

θj,n+1 = θj,n + (2J − j)
(
θj+1,n − θj−1,n

)
× Yn+1 − Yn

δ − Yn
+ αco∆tJ2(θ j−1,n − 2θ j,n + θj+1,n)(δ − Yn)

2 (11)

where θ is the difference between temperature and the water boiling temperature (T − Tb)
and subscripts “j” and “n” are space and time increments, respectively. J represents the
number of spatial increments in the crust and core regions. The interface position may be
calculated from Equation (12).

Yn+1 = Yn +

{
∆t

ρco w λw

}
×
[(

0.5 kcr J
Yn

)(
θJ−1,n − 4θ J,n

)
+

0.5 kco J
(
θJ+3,n − 4θ J+2,n

)
δ − Yn

]
(12)

During the two-region period (when both core and crust are present), heat is assumed
to transfer from the hot oil to the potato disc surface through a convection boiling process
with a coefficient higher than the convection coefficient used for a single region of core
or crust, in this case 500 versus 250 W/m2·K (Table 1) [4]. As the interface position
approaches the center of the potato disc (i.e., a distance equivalent to 1% to 2.5% of potato
disc thickness [4]), the two region computation changes to a single region computation as
only the crust is being considered. The sensible heating of the crust region was calculated
using Equation (4).

3.2. Enthalpy Method

In the enthalpy method, water evaporation is assumed to occur over a narrow arbitrary
region of boiling (Tb ± ε) ◦C, where ε is a small value (in the order of 0.5 ◦C) representing
half the phase change temperature [28]. Since a potato disc was assumed to be an infinite
slab [4], the assumption of one-dimensional heat transfer became valid. This assumption
meant that Equation (13) could be solved using initial and boundary conditions defined by
Equations (5)–(7), using an explicit finite difference method (detailed explanation referred
to the study of Gholamibozanjani and Farid [29] for modeling melting and solidification).
To guarantee stability of the finite difference method, the condition set by Equation (15)
need to be met.

ρ
∂H
∂t

= k
∂2T
∂y2 (13)

where H is enthalpy as described by Equation (14).
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H =


CcoT, T < Tb − ε

(T − (Tb − ε)) ×
(

Cco+Ccr
2 + w λw

2 ε

)
+Cco × (Tb − ε), Tb − ε < T < Tb+ε

Ccr T + w λw + (Cco − Ccr) × Tb, T > Tb+ε

(14)

α
∆t

∆y2 ≤ 1
2

(15)

where subscript “b” denotes the water boiling temperature.
In this single-phase method, computation is conducted for three periods: First the

sensible heating of the potato until its core temperature reaches the lower bound of the
evaporating point of water, (Tb − ε) ◦C. During this sensible heating period, the specific
heat capacity and other physical properties of the potato are assumed to be constant in
the core region (Table 1). Once the potato temperature reaches (Tb − ε) ◦C, it is assumed
that a two-phase region (liquid and vapor) is formed, and evaporation starts. During this
water evaporating period, between (Tb − ε) ◦C and (Tb + ε) ◦C, enthalpy rises dramatically.
Finally, the sensible heating of the potato crust starts when the potato temperature reaches
(Tb + ε) ◦C.

3.3. Approximate Quasi-Steady State

Farid et al. [23] developed an analytical method to calculate the approximate time
required for complete frying as defined by Equations (16) and (17):

β =
(To − Tb)

ρ λw ε
(16)

t =
1
β
(

δ

2 h
+

δ2

8 kcr
) (17)

Equation (17) is derived by ignoring sensible heat, based on the assumption that the
temperature reaches the boiling point of water very fast, compared to the time required
to complete frying. This sensible heat is considered to be negligible compared to the high
latent heat of water vaporization since it accounts for less than 2% of heat absorbed during
frying [30].

4. Results and Discussion
4.1. Experimental Measurements
4.1.1. Effect of PEF Pre-Treatment on the Moisture Content, Thermal Conductivity and the
Temperature-Time Profile of Potatoes during Frying

The average moisture content of the potatoes (considering both the surface and center)
in the absence of PEF treatment was 73.5 wt %. As PEF Low- and PEF High treated potatoes
a moisture content of 74.4 wt % and 73.3 wt %, respectively, this data shows that that PEF
treatment had little effect on the moisture content of the potatoes (Table 2). The results also
showed negligible difference for moisture content within the potato from surface to center
based on the measurement technique used in this current study.

Table 2. Average, minimum and maximum moisture content (wt %) of the surface and center of
PEF-treated and untreated potatoes before frying.

Potato Surface Potato Center Overall
Average †Average * Min Max Average * Min Max

Untreated 72.7± 2.8 69.8 76.9 74.3 ± 3.3 70.1 81.6 73.5
PEF Low 75.6 ± 4.2 71.2 80.2 73.3 ± 3.1 68.1 76.0 74.4
PEF High 73.6 ± 4.7 68.6 80.2 73.1 ± 3.8 68.3 79.0 73.3

* Data presented as average ± standard deviation from 5 independent potato tubers (n = 5). † Overall average
considering the potato surface and potato center for each pre-treatment applied to the potatoes.
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The thermal conductivity of both untreated PEF treated potatoes was estimated before
and after frying and the values obtained were used in Equations (4), (10)–(13), (15) and (17)
and the boundary conditions were calculated from Equations (6) and (9). The predicted
thermal conductivities of untreated and PEF-treated potatoes are shown in Table 3. It
was found that thermal conductivity of fried discs from untreated and PEF-treated potato
tubers were in the range between 0.10 and 0.11 W/m·K. The average value for the thermal
conductivity of fresh potatoes (without frying) was 0.73 W/m·K, with a variation from
0.68 to 0.78 W/m·K. Hence, PEF treatment was concluded not to have a clear impact on
thermal conductivity of potato (Table 3). The water content in food is known to be a key
factor influencing its thermophysical properties [31,32]. Therefore, negligible difference in
the thermal conductivity for untreated and PEF-treated potatoes is expected as they had a
similar moisture content (Table 2). Note that the average values of thermal conductivity
(0.73 W/m·K for fresh potato and 0.11 W/m·K for fried potato) were used as the basis of
modeling in Section 4.2.

Table 3. Average, minimum and maximum thermal conductivity (W/m·K) of fresh and fried potatoes.

Fresh Potato Fried Potato

Average * Min Max Average * Min Max

Untreated 0.73 ± 0.04 0.68 0.75 0.11 ± 0.01 0.10 0.11
PEF Low 0.73 ± 0.03 0.71 0.76 0.11 ± 0.01 0.10 0.11
PEF High 0.78 ± 0.01 0.77 0.78 0.10 ± 0.00 0.10 0.10

* Data presented as average ± standard deviation from 5 independent potato tubers (n = 5).

The temperature-time profiles of untreated and PEF-treated potatoes during frying
were obtained when the 5 mm-thick potato disc samples were fried in an oil bath at 180 ◦C
(as described in Section 2.4). The measured center temperature for both untreated and PEF
treated potato discs are depicted in Figure 4, where different experimental measurements
are shown in gray dashed lines and the average of all measurements is shown with a
black solid line. The average center temperature of the potato disc for the untreated and
PEF-treated potatoes shared very similar temperature-time profiles.

As frying proceeded, the center temperature of the potato experienced an initial sharp
ascending (sensible heating) period, followed by a leveling off at around 103 ◦C (Figure 4,
see red arrows) (evaporation), and a final moderate ascending period (sensible). In the
initial period, the water temperature of the potato increased sensibly to its boiling point
and then stayed constant at around 103 ◦C for an extended period. All experimental
values measured in the current study as well as those reported by other researchers
consistently show that the initial boiling temperature of water in potatoes is approximately
103 ◦C [2,4,33,34]. The elevation of the boiling point is believed to occur as a result of
nucleation of steam bubbles in the superheated interface separating crust and core [34].
Therefore, the initial boiling temperature of water (Tb), in both untreated and PEF-treated
potatoes, was set to 103 ◦C, throughout the following modeling section (in Equations (14),
(16) and (21)).
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Figure 4. Experimental measurements of center temperature of potato discs fried at 180 ◦C for (A) untreated, or PEF-treated
at (B) PEF Low (1.1 kV/cm, 54.8–57.7 kJ/kg) or (C) PEF High (1.1 kV/cm, 149.2–159.6 kJ/kg), where water in the potato discs
typically boiled at 103 ◦C (red arrows) and starts rising after around 550 s (blue arrows). Gray dash lines in (A–C) represent
experimental measurements from 10 independent potatoes. Black solid lines in (A–C) show the average measurements
(n = 10 independent potatoes).

As the interface moves close to the center of the potato, the water inside the potato was
concentrated with soluble matters such as sugar and potassium, leading to an elevation in
water boiling temperature [35,36]. In this study, the elevation of water boiling temperature
was observed to occur at around frying time of 550 s (Figure 4, see blue arrows) and then
the average center temperature of the potato discs rose steadily after about 550 s.

In the current study, a huge variation in the temperature-time profiles between individ-
ual potato discs occurred, probably due to the biological difference between the (untreated)
potatoes. Figure 5 illustrates the extent of variation in the center temperature as a function
of frying time for untreated and PEF-treated potatoes. During the first 500 s of frying, all
the potato disc samples, regardless of pre-treatment, experienced similar temperature-time
profiles from the start of the frying until the center temperature of the disc reached the
water boiling temperature. This was illustrated by the low standard deviations obtained
for the data over the first 500 s of frying where the center temperatures of different potato
discs were situated very close to the average value (Figure 5). As the frying lapsed after
550 s, and the center temperature of the disc rose above the water boiling temperature until
it reached the oil temperature, a considerable variation in the experimental measurements
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between individual potatoes was observed. At this stage, the standard deviations of the
experimental temperature measurements between individual potatoes were high, where
the center temperature values spread out over a wider range, of 26, 18 and 26 ◦C above
the boiling temperature for untreated, PEF Low treated and PEF High treated potatoes,
respectively (Figure 5). It is important to note that the standard deviation of the measured
center temperature for different potato discs showed that the PEF Low treatment has
reduced the experimental variation, by up to 30% compared to untreated potatoes and
those pre-treated with PEF High. Potatoes pre-treated with PEF Low had a lower variation
in their temperature-time profiles than previously reported in the literature. This result
could be because PEF causes loss of cell compartmentalization and allows water to be
redistributed across various cell compartments in plant tissue [37], including extracellular
spaces [38]. Changes in the water distribution within potato cells would likely influence the
water evaporation process from potato discs during frying. In contrast, the high standard
deviation in the center temperature measurements of potato discs pre-treated under PEF
High may have occurred because the high intensity treatment had severely disrupted the
potato cell, ultimately leading to the collapsed of the cell walls [24,39,40].
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Figure 5. Averaged standard deviation of the measured center temperature for untreated and PEF
treated potato discs (n = 10 independent potatoes for each treatment).

4.1.2. Increase in the Boiling Temperature of Water in Potato during Frying

The potato discs were removed from the fryer (at 180 ◦C) when the center temper-
ature exceeded 103 ◦C and the percentage of water remaining in them was estimated
(Table 4). Approximately 72% to 86 % of the water in potato was removed during the initial
frying period.

Table 4. Average, minimum and maximum percentage of water remained in partially fried potatoes
when the center temperature exceeded 103 ◦C.

Experimental Measurements Average * Min Max

Initial potato mass before drying (g) 6.4 ± 0.9 5.6 7.5
Initial water mass (g) a 4.8 ± 0.7 4.0 5.6

Water remained after partial frying (g) b 1.0 ± 0.3 0.6 1.4

% of water remaining after partial frying c 21.0 ± 5.3 14.0 28.0
% of water removed after partial frying d 79.0 ± 5.4 71.5 85.6

* Data presented as average ± standard deviation from 5 independent potato tubers (n = 5). a Calculated based
on Equation (1). b Calculated based on Equation (2). c Calculated based on Equation (3). d Percentage of water
removed after partial frying = 100% − percentage of water remaining after partial frying.

Following the potato liquid boiling experiment described in Section 2.5, an exponential
trend between water boiling temperature elevation and the water loss percentage was
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found as water was removed due to evaporation (Figure 6). The obtained curve was shifted
along the temperature elevation axis by 3 ◦C to compensate for the nucleation of steam
bubbles in the superheated interface separating crust and core which occurs during frying
(but not in the potato liquid). It was then extrapolated to achieve a 100 wt % water loss, as
it was difficult to obtain from the experiment explained in Section 2.5.
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) and 3 ◦C temperature correction expected (�) due to the effect of steam bubble nucleation in the
superheated interface separating crust and core.

Based on the results reported in Table 4, the experimental measurements of the potato
liquid boiling temperature (measured data in Figure 6) and data extrapolation to 100 wt %
water losses, Equation (18) was developed. It was assumed that the location of the boiling
interface determined the water remaining in the potato disc during frying and hence its
boiling point.

∆Tb= 7 × 10−10 exp(25.455 × Ym

δ/2
) (18)

It has to be noted that Equation (18) is an oversimplification of the frying process of
potato discs. During frying, not only water evaporates that causes an increase in the soluble
sugar and salt concentration, but the potatoes also experience reactions such as starch
gelatinization and protein denaturation [41] which have not been considered in this study.
Then, the fixed water boiling temperature (Tb) in Equations (10)–(12) and Equations (13)
and (14) were replaced with the variable boiling temperature of Equation (18) to be solved
via the VSN and enthalpy methods, respectively.

4.2. Mathematical Modeling Results

In the current study, the frying process of untreated and PEF-treated potatoes was
modeled following three methods (VSN, enthalpy and approximate quasi-steady state) as
described in Section 3. These models were applied for two conditions, namely: (i) at the
constant boiling temperature of water in potato at 103 ◦C (fixed conditions, based on the
results in Figure 4) and (ii) when the boiling temperature of water in the potato increases
(variable conditions) following Equation (18). Figure 7 shows the application of the VSN
method using a fixed and variable water boiling temperature to predict the measured center
temperature of untreated and PEF-treated potato discs. In the VSN model, as the interface
position moves towards center, the space increment width in the core side becomes very
small, requiring a very small time-step that otherwise would create numerical instability.
To overcome this computational problem, when the space increment reached a distance
about 2% of the potato thickness from the center, the computation was carried out based on
a single phase of crust region. As a result, a jump in the center temperature of the potato
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disc was observed as shown in Figure 7 (indicated by red and blue arrows when fixed and
variable boiling temperatures were used, respectively).
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Figure 7. Model prediction (colored lines) of measured center temperature for untreated, PEF Low and PEF High treated
potato discs (5 mm thickness) fried at 180 ◦C, using VSN method, considering at fixed (those indicated with red arrows) and
variable (those indicated with blue arrows) boiling temperatures of the water in the discs.

The modeling results were validated against the experimental measurements of un-
treated, PEF Low and PEF High-treated potatoes considering the average values of moisture
content and thermal conductivity reported in Section 4.1.1 (Tables 2 and 3 respectively).

The measured center temperature of the potato disc was also predicted using the
enthalpy method described in Section 3.2. In this method, each location went through three
regions namely core, mushy (mixture of core and crust) and crust. Thermal diffusivity for
core and crust regions was calculated using Equation (19):

αcr =
kcr

ρcr Ccr

αco =
kco

ρco Cco

(19)

In the mushy phase, the density of the crust and core was defined according to
Equation (20) [29]. In fact, as frying proceeds, oil penetrates into the potato disc making it
difficult to measure its density and hence its thermal diffusivity.

ρmushy = (1 − Xn,m)ρco + Xn,mρcr (20)

where X denotes the crust fraction of potato and is calculated from Equation (21).

Xn,m=
Tn,m − (Tb − ε)

2 ε
(21)

where subscript “mushy” refers to the phase where a mixture of core and crust exists.
Figure 8 illustrates the model prediction based on the experimental measurements of

5 mm-thick untreated, PEF Low and PEF High treated potato discs fried at 180 ◦C, using
the enthalpy method under the conditions of fixed and variable water boiling temperature.
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Unlike previously developed models [2,4], the current model predicted the experimental
temperature-time measurements of potatoes reasonably well, especially at the final stage
of frying. Grid and time-step independence analysis was also assured for the enthalpy
method following the approach explained in a study conducted by Gholamibozanjani and
Farid [29].
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Figure 8. Model prediction (colored lines) of measured center temperature for untreated, PEF Low
and PEF High treated potato discs (5 mm thickness) fried at 180 ◦C, using enthalpy method and the
density of the mushy region (Equation (17)), considering fixed and variable boiling temperatures of
the water in the discs.

By increasing the space increments and applying smaller mesh sizes during computa-
tion, a smoother graph was achieved as shown in Figure 9. In general, increasing the space
increments does not contradict the grid independency analysis [29], as the latter verifies
the stability of the numerical solution, whereas increasing space increments makes the
profile smoother.

Moisture content is an important factor in determining the temperature-time profile
of a potato disc. Figure 10 shows the model prediction of the temperature of potatoes
based on the minimum, average and maximum measured moisture contents, at both the
surface and center of the potatoes, of 69 wt %, 73.8 wt % and 80 wt % for the untreated,
PEF Low and PEF High treated potatoes, respectively (Table 2). Along with the effect of
other phenomena occurring during the frying process of potato such as gelatinization and
PEF pretreatment, the difference in the potato moisture content explains the variation in
experimental measurements as shown in Figure 10.
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Figure 9. Effect of more fine mesh size during the computation of enthalpy method on the smoothness
of graph using untreated temperature-time profile as an example.
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Figure 10. Model prediction (colored lines) of center temperature for untreated, PEF Low and PEF
High treated potato discs (5 mm thickness) according to their minimum, average and maximum
measured moisture contents (MC) (see Table 2), when fried at 180 ◦C.

The advantage of the enthalpy method compared to the VSN method is that the former
does not face any computational problems and it can be applied to multi-dimensional
geometry samples, which is not the case with the VSN method. The approximate quasi-
steady state method (Equation (17)) of Smith and Farid [23] which considers core density
and crust thermal conductivity as the basis of calculations, shows that the complete frying
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of a 5 mm-thick potato disc happens after 809 s, which is compatible with those obtained
from VSN and enthalpy methods based on keeping the water boiling temperature constant.

5. Conclusions

The developed model, which integrated a variable water boiling temperature into
the conduction heat transfer equation and was solved by the enthalpy method, predicted
the experimental measurements during potato frying reasonably well. The VSN method
suffers from numerical instability when the explicit finite difference is used in its solution.
This limitation was eliminated via the use of enthalpy method. The enthalpy and the
Variable Space Network (VSN) methods based on a moving interface defined by the boiling
temperature of water in potato during frying could adequately describe the temperature
time distribution of untreated and PEF-treated potatoes even though PEF treatment did not
dramatically change the initial moisture content, thermal conductivity or the total frying
time for the potatoes to reach the targeted oil temperature. It was pleasing to note that PEF
treatment reduced the variations in the experimental measurements of the potato center
temperature time profile by up to 30%, when a low PEF treatment intensity (1.1 kV/cm and
54.8–57.7 kJ/kg) was used. This finding implies that it will narrow the confidence interval
between the predicted and measured temperature time distribution. As a consequence, the
process uniformity of PEF processing can be more controlled and the changes in quality
attributes of potato discs during frying, such as brown color formation and crispiness, can
be predicted more accurately.
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Abbreviations

Nomenclature
C specific heat capacity (J/kg·K)
H convection/boiling heat transfer coefficient (W/m2·K)
H enthalpy (J/kg)
k thermal conductivity of potato (W/m·K)
t time (s)
J number of spatial increments in the crust and core regions
T temperature (◦C)
w moisture content (dimensionless)
X crust fraction (dimensionless)
y distance from the surface of potato disc sample (m)

Y
distance of the interface from surface of potato disc sample
which separates the core and crust regions (m)
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Greek symbols
α thermal diffusivity of potato (m2/s)
δ full thickness of the potato disc (m)
ε an arbitrary value representing half the phase change temperature (◦C)
θ difference between temperature and the water boiling temperature (◦C)
∆ increment
ρ density (kg/m3)
λw latent heat of boiling of water (J/kg)
Subscripts
b boiling
co core
cr crust
i initial state
j space increment
n time increment
mushy a region with a mixture of core and crust
o oil
p potato
s surface of the potato disc sample
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