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Background: Development of new tools in artificial intelligence has an outstanding performance in the recognition of multi
dimensional patterns, which is why they have proven to be useful in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD).
Methods: This was an observational analytical single-centre study in patients with spirometry performed in outpatient medical care. 
The segment that goes from the peak expiratory flow to the forced vital capacity was modelled with quadratic polynomials, the 
coefficients obtained were used to train and test neural networks in the task of classifying patients with COPD.
Results: A total of 695 patient records were included in the analysis. The COPD group was significantly older than the No COPD 
group. The pre-bronchodilator (Pre BD) and post-bronchodilator (Post BD) spirometric curves were modelled with a quadratic 
polynomial, and the coefficients obtained were used to feed three neural networks (Pre BD, Post BD and all coefficients). The best 
neural network was the one that used the post-bronchodilator coefficients, which has an input layer of 3 neurons and three hidden 
layers with sigmoid activation function and two neurons in the output layer with softmax activation function. This system had an 
accuracy of 92.9% accuracy, a sensitivity of 88.2% and a specificity of 94.3% when assessed using expert judgment as the reference 
test. It also showed better performance than the current gold standard, especially in specificity and negative predictive value.
Conclusion: Artificial Neural Networks fed with coefficients obtained from quadratic and cubic polynomials have interesting 
potential of emulating the clinical diagnostic process and can become an important aid in primary care to help diagnose COPD in 
an early stage.
Keywords: artificial neural networks, machine learning, diagnosis, accuracy, COPD

Introduction
Chronic Obstructive Pulmonary Disease (COPD) is a respiratory condition that causes persistent airflow obstruction, due 
to alterations in the airways and/or in the alveoli, which result in chronic respiratory symptoms such as cough and 
dyspnoea.1 Even though COPD is a preventable and treatable disease, it is the third leading cause of death worldwide, 
with a higher burden on low- and medium-income countries.2 For example, in Latin America, the PLATINO Study found 
a 14.3% COPD prevalence, ranging from 7.8% in Mexico City to 19.7% in Montevideo, Uruguay.3 Globally, more than 
3 million deaths were attributed to COPD in 2019 alone,4 and the disease prevalence is only expected to increase in the 
following years, because of the world’s population aging and continuous exposure to noxious particles or gases, like 
tobacco smoking and air pollution.5 Due to its progressive nature, timely diagnosis of COPD is key to manage disease 
development by taking protective measures and treating symptoms, improving the prognosis for the patient.6

Current international guidelines indicate that any subject exposed to at least one risk factor should be tested for COPD 
with spirometry, and the ratio between the Forced Expiratory Volume in the first second (FEV1) and the Forced Vital 
Capacity (FVC), after applying a bronchodilator, is evaluated. If this ratio results to be under 0.7 (70%), the patient is 
diagnosed with COPD.1 However, authorities like the American Thoracic Society (ATS) and the European Respiratory 
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Society (ERS) advise considering the statistically derived lower limit of normal (LLN) as well.7 Even though there has 
been a global effort in improving its diagnosis, COPD still has high underdiagnosis and misdiagnosis rates. For instance, 
the PUMA Study, which was conducted in Argentina, Colombia, Uruguay, and Venezuela in 2016, found an under
diagnosis prevalence of 77% and a misdiagnosis rate of 30.4%.8

The FEV1/FVC ratio only considers two instantaneous measures of the spirometry, but more information can be 
gathered from the flow-volume curve shape. Previous studies have been conducted to quantify and analyse the curvature 
of this trace with promising results in COPD diagnosis.9–14 Meanwhile, other researchers have leveraged the increase in 
computational power and the development of new tools in artificial intelligence. These tools have an outstanding 
performance in recognizing multidimensional patterns, so they have been proved to be useful in diagnosing respiratory 
diseases.15–20 We developed a new COPD diagnostic system that combines these two approaches by modelling the 
curvature of the expiratory flow-volume trace and feeding the resulting coefficients to different machine-learning 
techniques to classify patients between those with COPD and those without it. This paper presents the results of the 
diagnostic accuracy of the proposed system, when tested in patients who are >40 years old and have respiratory 
symptoms and/or risk factors, in comparison to the classification made by an expert pneumologist.

Methods
Study Design
This was an observational analytical single-centre study that followed the Declaration of Helsinki and was approved by 
the Ethics Committee of Clínica Universidad de la Sabana. These patients had signed an Informed Consent, in which 
they authorized the use of their personal data for research purposes. Their records were collected between August 2017 
and August 2019.

Eligibility Criteria
The inclusion criteria were patients included in the spirometer database, with signed informed consent and under study 
due to suspicion of respiratory disease. The exclusion criteria were patients younger than 40 years, having less than 3 
post-bronchodilator spirometric trials, incomplete clinical information, or illegible spirometry according to the expert 
pneumologist. In particular, the record needed to have all the clinical variables that were deemed relevant for COPD 
diagnosis in a previously conducted expert consensus Supplementary Table 1.

Variables
All included patients had raw spirometry data stored in the same spirometer (Vmax Encore 22, CareFusion, Yorba Linda, 
California), and demographic information and answers regarding risk factors and respiratory symptoms were collected 
through questionnaires validated for COPD diagnosis. Spirometry raw data were stored in .fvl format, and each file 
included the patient’s name and ID, date of test, as well as the registration of flow and volume in time for up to 8 pre- 
bronchodilator and 8 post-bronchodilator forced-manoeuvre spirometry trials. Each file also had the selection of the best 
pre-bronchodilator trial and the best post-bronchodilator trial, according to a professional in respiratory therapy, who 
chose the best traces according to the ATS/ERS criteria (the curve with the largest sum of FVC + FEV1 that fulfilled the 
Acceptability, Usability, and Repeatability ATS/ERS Criteria for FEV1 and FVC).21 An expert pneumologist evaluated 
each patient’s record and determined which patients had COPD and which did not. This classification was used as 
a reference test to evaluate diagnostic accuracy.

Study Sample Size
Since this is a study that compares two diagnostic tests, the sample size calculation was performed as indicated by Machin 
et al.22 With a significance level of 5%, a power of 20%, an increase in sensitivity from 80% in the imperfect gold-standard 
to 90% in the new test, and a proportion of diseased patients of 30%, we obtained a minimal sample size of 657.
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Test Methods
We extracted the raw signals from the spirometer for all the patients, verified the fulfilment of all inclusion/exclusion 
criteria, selected the best prebronchodilator and postbronchodilator trial traces as tagged by the respiratory therapist and 
modelled the expiratory phase from the peak expiratory flow to the forced vital capacity, by means of four techniques:

- quadratic polynomial: F = C2V2+C1V+C0

- cubic polynomial: F = C3V3+C2V2+C1V+C0

- one-term exponential: F = aebV

- two-term exponential: F = aebV+cedV

The goodness of fit for the obtained models was calculated separately for prebronchodilator and postbronchodilator traces 
by four metrics: Sum Squared Error (SSE), Coefficient of Determination (R2), adjusted Coefficient of Determination 
(adjR2) and Root Mean Square Error (RMSE).

Then, the subjects were randomly assigned to training or testing, in a 90/10 ratio.23 This was done to set aside a group 
of samples (testing) that will not be used to train the machine learning techniques. This allows the evaluation of the 
performance of the system in the samples used for training and in samples the system has not seen before, to emulate 
what would occur in a real-life setting. The coefficients of training samples were fed in three groups (prebronchodilator 
coefficients, postbronchodilator coefficients and all coefficients) to 5 different machine learning techniques: two 
unsupervised techniques (k-means clustering and hierarchical clustering) and three supervised techniques (Decision 
Trees – DT, Support Vector Machines – SVM and artificial neural networks – ANN). The artificial neural networks to be 
tested were fully connected feedforward networks, and the input layer changed depending on the number of coefficients 
chosen to feed it. The training of all 5 techniques was performed using 10-fold cross-validation.24

Next, the classification made by these techniques on both training and testing groups was compared to the 
classification made by the expert. The diagnostic performance of each of the machine learning methods was determined 
based on the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value calculated from the 
confusion matrix.25

Statistical Methods
Categorical Variables were characterized by absolute and relative frequencies. Quantitative variables were described by 
medians and interquartile ranges if they were not normal according to the One-sample Kolmogorov–Smirnov test. To 
compare the groups of patients with COPD and without COPD, we used Chi-Squared Pooled Estimate of Proportion for 
categorical variables and Wilcoxon Rank Sum Test in quantitative variables.

Data Analysis and Modelling Software
Data were processed using MATLAB Release 2022a (The MathWorks, Inc., Natick, Massachusetts, United States).

Results
The available database had spirometric records and questionnaire answers of 765 patients. After reviewing inclusion/ 
exclusion criteria, 695 patient records were included in the analysis Figure 1.

The 695 subjects were divided into two groups (COPD and No COPD), according to the diagnosis made by the 
expert, and 34% (237/695) had COPD Table 1. The COPD group was significantly older than the No COPD group, and 
women were the majority in the No COPD group. Most of the subjects (595/695) reported having respiratory symptoms. 
Out of the whole sample, 27% of the subjects informed having a previous COPD diagnosis, 14% stated they had been 
diagnosed with asthma, but less than half (46%) claimed they had gone through a spirometry study before. The COPD 
group had a higher proportion of smokers or ex-smokers (52% vs 42% in the No COPD group), and dyspnoea was the 
most frequently reported symptom (62%). Also, in the COPD group, the most common risk factor was exposure to wood 
smoke (68%), followed by tobacco smoking (52%), with a median pack-year of 29, without considering non-smokers.

International Journal of Chronic Obstructive Pulmonary Disease 2024:19                                                https://doi.org/10.2147/COPD.S456390                                                                                                                                                                                                                       

DovePress                                                                                                                       
1335

Dovepress                                                                                                                                            Maldonado-Franco et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 2 shows an example of each of the techniques used for curve fitting. The spirometric curve was modelled from 
the Peak Expiratory Flow (PEF), or maximum flow, to the Forced Vital Capacity (FVC), or maximum volume.

Table 2 displays the summary of the goodness-of-fit evaluation for each of the modelling techniques, discriminated on 
prebronchodilator (PreBD) and postbronchodilator (PostBD) traces. The cubic polynomial had the highest goodness-of-fit 

Figure 1 Patient selection process.

Table 1 Patient Demographic Data

COPD n = 237 No COPD n = 458

Age in years, m(IQR) 71 (63–78) 63 (55–71)*

Women, n (%) 112 (47) 280 (61)*

Occupation - Homemaker, n (%) 88 (37) 175 (38)
Smoker/Ex-Smoker, n (%) 124 (52) 192 (42)*

Years Smoking (Without Non-Smokers), m(IQR) 29 (13–41) 20 (10–33)*

Daily Cigarettes (Without Non-Smokers), m(IQR) 9 (3–20) 4 (2–10)*
Pack-Year (Without Non-Smokers), m(IQR) 10 (3–30) 4.98 (1.65–14.2)*

Passive Smoker, n (%) 42 (18) 100 (22)

Daily Cigarettes of Other Smoker (Only Passive Smokers), m(IQR) 11 (4–20) 10 (5–20)
Wood Smoke Exposure, n (%) 160 (68) 249 (54)*

Years of Wood Smoke Exposure, m(IQR) 20 (10–30) 17 (10–25)
Daily Hours of Wood Smoke Exposure, m(IQR) 5 (3–9.5) 6 (3–10)

(Continued)
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metrics, while the 1-term exponential had the worse fit performance. Since both SSE and RMSE are measures of error, the 
smaller they are, the better the fit. On the other hand, R2 and adjR2 are unity bound and a measure of one means perfect fit.

Table 3 compares, in terms of median and interquartile range, the behaviour of the coefficients between the COPD 
and No COPD groups, and it shows that most of the proposed coefficients have statistically significant differences 
between both groups.

The methods that displayed the highest accuracy (<85%) when evaluated in the test samples are summarized in 
Table 4. The highest accuracy was obtained by the Artificial Neural Network, fed by the coefficients of the quadratic 
polynomial model applied to the postbronchodilator traces, with an accuracy of 92.9%.

Out of this selection of well-performing methods, this neural network configuration also displayed the highest 
sensitivity (88.2%) and highest specificity (94.3%). The architecture of this ANN is a 3-neuron input layer and three 
hidden layers (18, 272 and 1 neurons, respectively), both with hyperbolic tangent as activation function. The output layer 
has two neurons, one for each class, and the activation function is softmax. Full Results regarding diagnostic accuracy are 
in the Supplementary Tables 2.1–2.10

For comparison, we analysed the classification made by the current gold standard (FEV1/FVC <0.7) on the 70 patients 
that were chosen for testing the artificial neural network. Table 5 displays the confusion matrix for the gold standard 
classification for the testing samples, using the best PostBD curve. Table 6 displays the classification made by the artificial 
neural network trained with the coefficients from the quadratic polynomial in the same curve and in the same samples.

These two classifications yield the diagnostic accuracy metrics that are summarized in Table 7.

Discussion
The goal of this study was to develop an automated tool that leverages the information contained in the curvature of the 
spirometry traces to assist the process of diagnosing COPD, particularly in primary care settings, where medical profes
sionals might not be as familiarized with spirometric patterns as specialists. We proposed a new COPD diagnostic system 
that models the curvature of the expiratory flow-volume trace through a mathematical model and feeds the coefficients of 
the model to a machine-learning technique to classify patients between those with COPD and those without it. We evaluated 
the combination of four mathematical models and five machine learning techniques. Out of the different combinations, the 
best diagnostic performance was obtained with a quadratic polynomial and an artificial neural network.

From the goodness-of-fit scores, we found that cubic polynomial model had the best fit to the spirometric traces, 
while the 1-term exponential model had the worst. Nonetheless, we chose to use the coefficients from all four models 
because they all had an acceptable fit to the curves. Then, to get an idea of the proposed variables’ capabilities to 

Table 1 (Continued). 

COPD n = 237 No COPD n = 458

Previous Diagnosis of COPD, Chronic Bronchitis, or Emphysema, n (%) 100 (42) 88 (19)*

Previous Diagnosis of Asthma, Asthmatic, or Allergic Bronchitis, n (%) 38 (16) 58 (13)
Previous Spirometry, n (%) 131 (55) 186 (41)*

Presence of Respiratory Symptoms, n (%) 209 (88) 386 (84)

Years With Symptoms, m(IQR) 6 (2–20.75) 4 (2–12)*
History of Atopy, n (%) 61 (26) 123 (27)

Presence of Wheezing, n (%) 94 (40) 112 (24)*

Frequency of Wheezing - Sometimes, n (%) 72 (30) 96 (21)*
Presence of Dyspnoea, n (%) 148 (62) 261 (57)

Frequency of Dyspnoea During Physical Activity - Very Frequent, n (%) 65 (27) 89 (19)*

Presence Of Chronic Cough, n (%) 116 (49) 204 (45)
Chronic Cough in The Morning, n (%) 92 (39) 126 (28)*

Chronic Expectoration, n (%) 79 (33) 118 (26)*

Notes: * p<0.05 Wilcoxon Rank Sum Test or Chi Squared Pooled Estimate of Proportion, as appropriate. 
Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; m, median; IQR, interquartile range; n, number.
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distinguish between the two groups, we compared the behaviour of the coefficients between the COPD and No COPD 
groups, and we found that most of the coefficients had a low p-value, when evaluated individually. This result indicated 
that these features had the potential to correctly classify our subjects. Regardless of this result, we used all of them to 
feed the machine-learning techniques.

We chose five machine learning techniques to cover a wide range of possibilities. We used clustering techniques to 
explore the behaviour of our variables, but their diagnostic performance was not as good as that for supervised methods. 
Regarding the supervised techniques, we tried the simple decision tree because this algorithm could be easily understood 
and used in the clinical practice. Support Vector Machines were in the mid-range complexity, and we used it because it 
usually performs well in separating data in multi-dimensional spaces. Finally, the artificial neural network, the most 
complex technique, is difficult to interpret but it is the most used in the available literature, and it is the most powerful.23 

As expected, the artificial neural network had the best performance. Surprisingly, the best artificial network was the one 
fed by the coefficients of the quadratic polynomial, when the modelling is applied to the postbronchodilator curves.

Figure 2 Example of curve fitting by quadratic polynomial, cubic polynomial, one-term and two term exponentials when applied to the spirometric curve.
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As shown in Table 7, our proposed system displays better diagnostic accuracy metrics than the current gold standard 
FEV1/FVC <0.7. Particularly, the specificity and the NPV show outstanding performance, which would make our 
classification system very valuable in a screening stage of the diagnostic process, such as in primary care.26

In a previous study, we proposed seven new measures of spirometry and evaluated their diagnostic accuracy.27 Three 
of these measurements (slope at 50% of FVC, slope at PEF and slope at 75% of FVC) had an outstanding 95% accuracy 

Table 2 Curve Modelling Goodness of Fit

Model SSE R2 adjR2 RMSE

Quadratic polynomial – PreBD, m(IQR) 4.855 (2.342–10.309) 0.989 (0.978–0.994) 0.988 (0.978–0.994) 0.117 (0.082–0.17)
Quadratic polynomial – PostBD, m(IQR) 5.926 (2.641–11.972) 0.989 (0.978–0.994) 0.988 (0.978–0.994) 0.13 (0.085–0.19)

Cubic polynomial – PreBD, m(IQR) 2.169 (1.101–4.07) 0.995 (0.991–0.997) 0.995 (0.991–0.997) 0.08 (0.055–0.107)

Cubic polynomial – PostBD, m(IQR) 2.504 (1.263–4.71) 0.995 (0.992–0.997) 0.995 (0.992–0.997) 0.084 (0.06–0.119)
1-term exponential -PreBD, m(IQR) 20.214 (7.165–55.219) 0.955 (0.919–0.976) 0.955 (0.919–0.976) 0.238 (0.139–0.4)

1-term exponential – PostBD, m(IQR) 30.196 (11.283–72.742) 0.943 (0.907–0.971) 0.943 (0.907–0.971) 0.304 (0.179–0.47)

2-term exponential – PreBD, m(IQR) 4.77 (1.789–18.949) 0.989 (0.971–0.995) 0.989 (0.971–0.995) 0.117 (0.07–0.238)
2-term exponential – PostBD, m(IQR) 7.119 (2.492–23.785) 0.987 (0.969–0.994) 0.987 (0.968–0.994) 0.148 (0.084–0.266)

Abbreviations: m, median; IQR, interquartile range; PreBD, Prebronchodilator; PostBD, Postbronchodilator; SSE, Sum Squared Error; R2, Coefficient of 
Determination; adjR2, Adjusted Coefficient of Determination; RMSE, Root Mean Square Error.

Table 3 Coefficient Statistical Description

Variable COPD No COPD

Poly2-C2-PreBD, m(IQR) 0.852 (0.609–1.295) 1.182 (0.751–1.769)*

Poly2-C1-PreBD, m(IQR) −4.421 (−5.627- −3.135) −7.049 (−8.718- −5.65)*

Poly2-C0-PreBD, m(IQR) 5.145 (3.569–7.677) 10.446(8.507–13.192)*
Poly2-C2-PostBD, m(IQR) 0.887 (0.622–1.381) 1.106 (0.69–1.772)*

Poly2-C1-PostBD, m(IQR) −4.938 (−6.117- −3.674) −7.274 (−9.071- −5.649)*

Poly2-C0-PostBD, m(IQR) 6.375 (4.182–8.985) 11.447 (9.43–14.043)*
Poly3-C3-PreBD, m(IQR) −0.296 (−0.563- −0.085) 0.095 (−0.162–0.409)*

Poly3-C2-PreBD, m(IQR) 2.454 (1.141–3.779) 0.345 (−1.618–2.398)*

Poly3-C1-PreBD, m(IQR) −6.121 (−8.451- −4.125) −5.036 (−9.399- −1.594)*
Poly3-C0-PreBD, m(IQR) 5.86 (3.997–8.771) 9.326 (7.158–12.111)*

Poly3-C3-PostBD, m(IQR) −0.183 (−0.456- −0.046) 0.241 (0.015–0.608)*

Poly3-C2-PostBD, m(IQR) 1.828 (0.972–3.374) −0.736 (−2.589–1.188)*
Poly3-C1-PostBD, m(IQR) −6.183 (−8.994- −4.309) −3.862 (−7.541–0.251)*

Poly3-C0-PostBD, m(IQR) 7.295 (4.75–9.518) 9.385 (6.87–12.218)*
Exp1-A-PreBD, m(IQR) 7.24 (4.715–11.981) 17.357 (13.322–22.683)*

Exp1-b-PreBD, m(IQR) −1.605 (−2.019- −1.239) −1.411 (−1.848- −1.082)*

Exp1-A-PostBD, m(IQR) 9.639 (6.091–14.017) 18.603 (14.934–25.287)*
Exp1-b-PostBD, m(IQR) −1.478 (−1.95- −1.148) −1.367 (−1.804- −1.057)*

Exp2-A-PreBD, m(IQR) 0 (−66.788–12.045) 6.341 (−109,949.792–160,430.449)*

Exp2-b-PreBD, m(IQR) −1.108 (−2.279- −0.358) −1.161 (−2.643- −0.486)*
Exp2-c-PreBD, m(IQR) 4.292 (−0.689–31.1) 0 (−160,420.368–109,965.042)

Exp2-d-PreBD, m(IQR) −1.447 (−2.296- −0.878) −1.272 (−2.643- −0.526)

Exp2-A-PostBD, m(IQR) 1.808 (−176.863–22,970.854) 8.593 (−103,208.119–185,791.764)
Exp2-b-PostBD, m(IQR) −1.295 (−2.408- −0.557) −0.846 (−2.411- −0.385)*

Exp2-c-PostBD, m(IQR) 3.052 (−22,965.667–204.025) 0 (−185,780.719–103,215.61)

Exp2-d-PostBD, m(IQR) −1.522 (−2.408- −0.803) −0.858 (−2.412- −0.406)*

Note: *p<0.05 Wilcoxon Rank Sum Test. 
Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; m, median; IQR, interquartile range; Poly2, 
Quadratic polynomial; Poly3, Cubic polynomial; Exp1, 1-term exponential; Exp2, 2-term exponential; PreBD, 
prebronchodilator; PostBD, postbronchodilator.
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when compared to the FEV1/FVC ratio. Other studies have also proposed new metrics for the curvature of the spirometry 
trace. For example, Das et al9 found in a cohort of patients with COPD that the area under the forced expiratory flow- 
volume loop had good accuracy to detect severe hyperinflation. Mochizuki et al10 proposed the obstruction index and 
found that it is very well correlated with emphysema in Computed Tomography (CT). In 2018, Bhatt et al11 explored 
mathematical modelling using exponentials in the volume–time curve and found that Parameter D had a higher 
sensitivity than FEV1/FVC for light obstruction when CT is used as reference.

Table 4 Best Diagnostic Performance Results in Test Samples

Model Accuracy Sensitivity Specificity PPV NPV

DT - Poly2 – PreBD 0.886 0.647 0.962 0.846 0.895
DT - Poly2 – PostBD 0.871 0.824 0.887 0.7 0.94

DT - Exp1 – PreBD 0.857 0.706 0.906 0.706 0.906

DT - Exp1 – All 0.857 0.706 0.906 0.706 0.906
SVM - Poly2 – PreBD 0.857 0.706 0.906 0.706 0.906

SVM - Poly2 – PostBD 0.857 0.706 0.906 0.706 0.906

SVM - Poly2 – All 0.886 0.706 0.943 0.8 0.909
SVM - Poly3 – PreBD 0.857 0.765 0.887 0.684 0.922

SVM - Poly3 – PostBD 0.857 0.647 0.925 0.733 0.891
SVM - Poly3 – All 0.886 0.765 0.925 0.765 0.925

SVM - Exp1 – PreBD 0.886 0.706 0.943 0.8 0.909

SVM - Exp1 – PostBD 0.857 0.647 0.925 0.733 0.891
SVM - Exp1 – All 0.886 0.706 0.943 0.8 0.909

ANN - Poly2 – PreBD 0.871 0.765 0.906 0.722 0.923

ANN - Poly2 – PostBD 0.929 0.882 0.943 0.833 0.962

ANN - Poly2 – All 0.914 0.824 0.943 0.824 0.943
ANN - Poly3 – PreBD 0.9 0.824 0.925 0.778 0.942

ANN - Poly3 – PostBD 0.9 0.824 0.925 0.778 0.942

ANN - Poly3 – All 0.871 0.882 0.868 0.682 0.958
ANN - Exp1 – PreBD 0.871 0.706 0.925 0.75 0.907

ANN - Exp1 – PostBD 0.857 0.706 0.906 0.706 0.906

ANN - Exp1 – All 0.871 0.706 0.925 0.75 0.907

Notes: The highlighted result is the Artificial Neural Network that was fed with the coefficients from the 
quadratic polynomial post-bronchodilator, which had the best diagnostic performance. 
Abbreviations: PPV, Positive Predictive Value; NPV, Negative Predictive Value; DT, Decision Trees; SVM, 
Support Vector Machines; ANN, Artificial Neural Networks; Poly2, Quadratic polynomial; Poly3, Cubic 
polynomial; Exp1, 1-term exponential; Exp2, 2-term exponential; PreBD, Prebronchodilator; PostBD, 
Postbronchodilator.

Table 5 Confusion Matrix for the Gold Standard FEV1/FVC 
<0.7 on the Same 70 Patients That Were Used to Test the 
Machine-Learning Algorithm

Expert Classification

COPD No COPD

FEV1/FVC<0.7 COPD 27 6 33

No COPD 4 33 37

31 39 70

Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; FEV1, Forced 
Expiratory Volume at the first second; FVC, Forced Vital Capacity.
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On the other hand, machine learning techniques have been used for over a decade to facilitate the detection of 
respiratory diseases. Tang et al15 evaluated the diagnostic performance of deep residual networks to automate COPD 
detection in low-dose CT and found that this technique can obtain very good accuracy and positive predictive values. 
Bodduluri et al16 compared a deep neural network and a random forest classifier against traditional spirometric measures 
in their capabilities to differentiate among COPD structural phenotypes, showing the great potential of artificial 
intelligence for this diagnostic task. Finally, Ioachimescu et al17 proposed the squared root of the area under the curve 
to feed an artificial neural network and it had a misclassification rate under 9% in patients with COPD diagnosis obtained 
through spirometry, plethysmography, and Helium dilution.

The main strength of this study is that we had access to raw spirometry data, which allowed us to work with actual 
spirometric data. Another of our strengths is that all studies were conducted in the same pulmonary lab, so all the records 
were acquired by professionals in respiratory therapy who had the same training and applied the same protocols.

One of the limitations of this study is that it was conducted with the data from a single centre, which may limit the 
extrapolation of the results. Finally, we did not have other more conclusive tests to diagnose COPD in the patients (such 
as Computed Tomography or Carbon monoxide diffusing capacity), which would guarantee a more certain diagnosis by 
the pneumologist.

Conclusion
This study explored the diagnostic performance of a combination of several curve modelling techniques and machine- 
learning techniques to diagnose COPD, based on spirometry alone. We found that an Artificial Neural Network fed with 
coefficients obtained from quadratic polynomial coefficients had 92.9% accuracy, 88.2% sensitivity and 94.3% specificity 
to detect COPD. The proposed system had better diagnostic accuracy performance than the current gold standard FEV1/ 
FVC <0.7 in a sample of 70 patients. Hence, Artificial Neural Networks fed with quadratic and cubic polynomial 
coefficients have interesting potential for assisting the clinical diagnostic process, becoming an important aid in primary 
care to diagnose COPD in an early stage.

Table 7 Diagnostic Accuracy Comparison Between FEV1/FVC <0.7 and the 
Artificial Neural Network Trained with the Coefficients from the Quadratic 
Polynomial After Applying Bronchodilator

Classification Accuracy Sensitivity Specificity PPV NPV

FEV1/FVC<0.7 0.857 0.871 0.846 0.818 0.892

ANN Poly2 PostBD 0.929 0.882 0.943 0.833 0.962

Abbreviations: PPV, Positive Predictive Value; NPV, Negative Predictive Value; FEV1, Forced 
Expiratory Volume at the first second; FVC, Forced Vital Capacity; ANN, Artificial Neural 
Networks; Poly2, Quadratic polynomial; PostBD, Postbronchodilator.

Table 6 Confusion Matrix for the Testing Samples of the Artificial 
Neural Network Trained with the Coefficients from the Quadratic 
Polynomial After Applying Bronchodilator

Expert Classification

COPD No COPD

ANN-Poly2-PostBD COPD 15 3 18

No COPD 2 50 52

17 53 70

Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; ANN, Artificial 
Neural Network; Poly2, Quadratic polynomial model; PostBD, Postbronchodilator.
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