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Abstract

When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance
response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the
avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that
underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the
inositol 1,4,5-trisphosphate receptor (IP3R), encoded by itr-1, functions in the reversal responses to nose touch and
benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cb (EGL-8) and
phospholipase Cc (PLC-3), which catalyse the production of IP3, both function upstream of ITR-1 in the response to nose
touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1
function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH.
Imaging of nose touch–induced Ca2+ transients in ASH confirms these conclusions. In contrast, the response to
benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP3R in two specific responses
mediated by ASH.
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Introduction

Like other animals, C. elegans negotiates its environment by

responding to a range of noxious stimuli, by changing its direction

of movement to avoid the source of the stimulus and thus avoid

imminent injury. Mechanical stimulation is one type of stimulation

that exerts such an effect. Depending on the position and strength

of the mechanical stimulus, the neuronal circuitry responsible for

this response differs. The response to nose touch relies primarily

on the ASH pair of sensory neurons [1], which output to the

command interneurons, AVA, AVB, AVD, AVE and PVC, which

control forwards and backwards movement [2,3]. These com-

mand neurons interact synaptically with one another and

ultimately output to the motor neurons that control the body wall

contractions necessary for sinusoidal movement. In contrast, the

response to light anterior body touch relies on the ALM and AVM

sensory neurons, which act upon these same command neurons.

The ASH neurons are particularly interesting in that they are

polymodal nociceptive neurons, implicated in avoidance responses

to a diverse range of sensory cues, namely, high osmotic strength,

nose touch, high ambient oxygen, volatile compounds and non-

volatile repellents such as heavy metals, protons and detergents [4–

8]. ASH is thus analogous to human nociceptors, capable of

responding to heat, mechanical stimulation and chemicals such as

capsaicin. So understanding the signalling pathways that underlie

the polymodal function of ASH is proving important to our

understanding of human pain sensation. The molecular mecha-

nisms that enable ASH to sense such a wide range of inputs are still

poorly described. Work thus far has identified ‘‘general’’

components that are required for responses to all stimuli, and

has also identified ‘‘specific’’ molecules that are required for single,

or a small subset of, responses. The transient receptor potential

vanilloid (TRPV)-related channel proteins OCR-2 and OSM-9

[9,10], for example, appear to be required for all ASH-mediated

responses, while GPA-3, a G-protein a subunit, is required for only

a small subset [11]. Thus ASH utilises specific signalling pathways

for individual stimuli, but these may converge on a common

pathway.

In the present study, we identify signalling through the inositol

1,4,5-trisphosphate receptor (IP3R) (Figure 1A) as a specific

component, required for a small subset of ASH-mediated

responses. IP3Rs in Caenorhabditis elegans are encoded by a single

gene, itr-1, and are widely expressed throughout the animal,

including in the nervous system [12–14]. A wide range of functions

for itr-1 have been identified. Genetic approaches have identified

roles for itr-1 in ovulation and meiotic maturation ([13,15,16],
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defecation [13,16,17], male mating [18] and in ventral enclosure

[19]. We used a dominant-negative construct (IP3 sponge), as well as

loss-of-function mutants and RNA interference, to demonstrate that

IP3 signalling and IP3Rs function in the regulation of pharyngeal

pumping rate and in multiple stages of embryogenesis [20].

For some of these functions, we have some insights into the

nature of events upstream of itr-1 and in particular into the

member(s) of the phospholipase C (PLC) family responsible for IP3

production (Figure 1A). For example, PLC-3 (PLCc) appears to

act upstream of ITR-1 in the regulation of gonadal sheath

contraction (with the receptor tyrosine kinases LET-23 and VAB-1

presumably acting further upstream, [16]), and also during the

defecation motor program [17]. We also know that PLC-1 (PLCe)
acts upstream of ITR-1 to regulate ventral enclosure [21]. Finally,

there is evidence that EGL-8 (PLCb) functions upstream of ITR-1

in the control of sperm transfer [18].

In the present study we have used transgenic approaches to

disrupt either IP3 signalling or itr-1 function in the nervous system,

and demonstrated a role in the avoidance responses to nose touch

and benzaldehyde. Our evidence indicates that, for nose touch,

two PLCs, PLC-3 and EGL-8, act as the source of IP3 upstream.

We use cell-specific expression of an IP3 sponge and cell-specific

rescue to show that itr-1 and both PLCs are acting in the ASH

neurons; and demonstrate that all three genes function in the

production of nose touch-induced Ca2+ transients in ASH. Thus

Author Summary

In order to avoid potential hazards, animals detect and
discriminate between a wide range of aversive stimuli. To
detect some of these stimuli, animals use polymodal
sensory neurons, that is neurons of a single type that can
detect a range of different stimuli and transmit an
appropriate signal to the downstream nervous system.
Pain-sensing nociceptors in humans and the ASH neurons
in C. elegans are both polymodal. The ASH neurons
mediate responses to high osmotic strength, nose touch,
high ambient oxygen, and volatile and non-volatile
compounds. It remains unclear how these cells detect
and discriminate between these different stimuli. We show
that signalling through the second messenger inositol
1,4,5-trisphosphate (IP3) and its receptor (IP3R) is required
in ASH for animals to respond to nose touch. We also show
that IP3Rs are required for the response to the volatile
compound benzaldehyde. However, these signalling com-
ponents are not required for a range of other ASH-
mediated responses. Thus, we have identified a signalling
mechanism that is specific to a small subset of ASH-
mediated responses. These results add to our understand-
ing of how ASH discriminates between a variety of stimuli
and thus to our understanding of polymodal neurons in
general.

Figure 1. Disruption of IP3 signalling in the nervous system. (A) Schematic diagram showing the IP3 signalling cassette. Stimulation of a
receptor (R) at the cell surface leads to the activation of phopholipase C (PLC), which catalyses the hydrolysis of phosphatidylinositol 4,5-
bisphosphate to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 diffuses to the endoplasmic reticulum (ER), where it activates
the IP3 receptor (IP3R), resulting in the release of Ca2+ into the cytoplasm. Expression of an IP3 sponge [see (B)] should mop up free IP3, thus
interfering with its ability to activate IP3Rs. (B) Strategy used to disrupt IP3 signalling in the nervous system using IP3 sponges. ITR-1, the C. elegans
IP3R subunit, consists of 3 functional regions, including an IP3 binding domain. Overexpression of the binding domain allows it to act as an IP3

sponge. Expression under the control of the unc-119 promoter leads to nervous system-wide expression of the IP3 sponge. (C) Strategy used to
express dsRNA, and thus disrupt itr-1 expression, in the nervous system. Forward and reverse copies of an itr-1 cDNA fragment are expressed under
the control of the unc-119 promoter. A ‘‘linker’’ region allows the complementary RNA regions to form dsRNA.
doi:10.1371/journal.pgen.1000636.g001

IP3 Signalling Regulates Nose Touch in C. elegans
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we have identified signalling components that are specific to two of

the group of stimuli sensed by ASH.

Methods

Strains and constructs
The C. elegans strains used in this study are listed in Table S1.

Strains containing the plc-3(tm1340) allele were maintained as

balanced heterozygous strains, and assayed as homozygotes. itr-1,

egl-8 and plc-3 strains carrying the sra-6p::YC2.12 construct were

made by crossing the appropriate strain with AQ1444 [22].

Strains carrying itr-1(sy290gf) also carry a closely linked allele of

unc-24, unc-24(e138), which results in a locomotion (weak kinker)

phenotype, which may interfere with the avoidance response.

When using this allele we therefore rescued the unc-24 deficiency

by transgenic expression of a genomic fragment containing the

wild type unc-24 gene under the control of its own promoter. As a

control, we rescued unc-24(e138) animals in the same way [18].

To construct sra-6, glr-1 and unc-119 promoter plasmids, we

used 3.8 Kb [23], 5.2 Kb [24] and 1.3 Kb [25], respectively, of

upstream DNA. IP3 sponge derivatives were constructed as

described previously [20]. RNAi inverted repeat constructs were

constructed using pHAB200 [12] by inserting forward and reverse

copies of the same region of E. coli lacZ or itr-1 cDNA either side of

a ‘‘linker’’ made from gfp or a unique part of lacZ, respectively. plc-

3 rescue plasmids were constructed using a full length genomic

fragment. itr-1 and egl-8 rescue plasmids were constructed using

the Gateway system (Invitrogen), using the full-length cDNA (itr-1)

or a ‘‘minigene (egl-8, as in [26]). These were introduced, along

with the relevant promoter, into the destination vector pHP2 (see

Table S1).

Constructs were introduced into C. elegans by injection [27] with

a mec-7p::gfp marker plasmid, pPD117.01 (a gift from A. Fire).

RNA-mediated interference (RNAi) of itr-1
RNA-mediated interference (RNAi) of itr-1 was carried out

using E. coli HT115 carrying derivatives of the vector pPD129.36

[28], which contains two flanking T7 RNA polymerase promoters.

For RNAi of PLC genes we used derivatives of pPD129.36,

pHAB301 (egl-8) and pHAB303 (plc-3) [18]. As a control we used a

derivative of pPD129.36 with an E. coli chloramphenicol

acetyltransferase (CAT) DNA insert. Plasmids were transformed

into E. coli HT115 (DE3) and these strains used to perform RNAi

feeding experiments [28].

Behavioural assays
The response to nose touch was assayed on food at 20uC using

an eyelash, as described by Kaplan and Horvitz [1]. The response

to anterior body touch was assayed similarly. Reversal responses

(initiated within 3 seconds of the stimulus) were quantified as

distance reversed, expressed in worm lengths. Three categories of

response were used, .1 worm length, which corresponds to a

‘‘good’’ reversal response, .0.1 worm length and 0 worm lengths,

considered ‘‘poor’’ avoidance responses. A minimum of 40

animals were assayed for each genotype or condition shown.

The response to repellents was assayed using the ‘‘dry drop’’ test

[6], except for octanol, which was assayed using a ‘‘smell-on-a-

stick’’ assay [23], as described by Chao et al. [29]. Results were

analysed using Chi-squared tests.

In vivo Ca2+ imaging
Optical recordings were performed essentially as described

[30,31] on a Zeiss Axioskop 2 upright compound microscope

equipped with a Dual View beam splitter and a Uniblitz Shutter.

The following filters and dichroics were used: excitation: 400–

440 nm bandpass; excitation dichroic: 455 nm; CFP emission:

465–495 nm bandpass; emission dichroic: 505 nm; YFP emission:

520–550 nm bandpass. Individual adult worms (,24 h past L4)

were glued with Nexaband S/C cyanoacrylate glue to pads

composed of 2% agarose in extracellular saline (145 mM NaCl,

5 mM KCl, 1 mM CaCl2, 5 mM MgCl2, 20 mM D-glucose,

10 mM HEPES buffer, pH 7.2, 2 mM serotonin). Fluorescence

images were acquired using MetaVue 6.2. Acquisitions were taken

at 28 Hz (35 ms exposure time) with 464 or 262 binning, using a

636Zeiss Achroplan water immersion objective.

Nose touch stimulation was performed as described [32]. A

rounded glass needle was placed perpendicular to the worm’s body

at a distance of 150 mm from the side of the nose, displaced 8 mm

into the side of the worm’s nose, held in position for 1 second, and

then pulled back to its original position. For each strain, we

recorded 2 responses for 10 animals, with 5 minutes between

stimuli. Results were compared using a Mann-Whitney rank sum

test.

Results

Disruption of itr-1 function in the nervous system
In order to investigate the role of IP3 signalling in the nervous

system, we expressed the cDNA encoding the IP3 binding domain

of itr-1 (an ‘‘IP3 sponge’’, [20]) under the control of the promoter

of unc-119, which is widely, and exclusively, expressed in the

nervous system [25]. Two derivatives of the IP3 sponge were used,

as described previously [33]. The ‘‘control sponge’’ (K579Q,

R582Q), is deficient in IP3 binding and therefore should not

disrupt IP3 signalling, while the ‘‘super sponge’’ (R511C) has

increased affinity for IP3. In a second approach, to disrupt IP3R

function rather than IP3 signalling, we used the unc-119 promoter

to control expression of an itr-1 dsRNAi ‘‘snapback’’ construct

[34]. Figure 1 illustrates these approaches.

IP3 signalling and itr-1 function in the aversive response
to nose touch

We determined the role of IP3 signalling and itr-1 in the

avoidance response to nose touch. Mechanical stimuli were

delivered to the nose of moving animals using an eyelash,

essentially as described by Kaplan and Horvitz [1]. In order to

detect differences in the type of movement response exhibited, we

used a scoring system in which the length of reversal was expressed

in worm lengths (see Methods). Three categories of response were

used, .1 worm length, .0.1 worm length and 0 worm lengths.

The first is considered a ‘‘good’’ response, while the latter two

correspond to ‘‘poor’’ responses. This scoring method is similar to

that used by Kindt et al. [32], with the .0.1 worm length category

usually corresponding to a ‘‘head withdrawal’’ response [32,35].

As Figure 2A shows, when cDNA encoding the IP3 super

sponge is expressed under the control of the unc-119 promoter, the

reversal response to nose touch is severely disrupted, while

expression of the control sponge in the same way has no effect.

However, the response to light anterior body touch, which uses a

different neuronal circuitry but relies on the same command

neurons and muscle groups, remains unaffected, indicating that

the defect is specific to nose touch, rather than a general

movement defect. The avoidance responses to harsh anterior

body touch and both harsh and light posterior body touch are

similarly unaffected (DSW and HAB, unpublished). Thus, IP3

signalling functions in the avoidance response to nose touch.

As Figure 2B shows, when an itr-1 dsRNAi ‘‘snapback’’

construct is expressed in the nervous system, the response to nose

IP3 Signalling Regulates Nose Touch in C. elegans
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touch is significantly disrupted. A dsRNAi construct for the E. coli

lacZ gene, expressed in the same way, has no effect. As Figure 2C

shows, itr-1(sa73) (temperature sensitive, loss-of-function) animals

also demonstrate a defective response to nose touch at 20uC, a

partially restrictive temperature. In both cases, the response to

light anterior body touch is unaffected, as were the responses to

other types of mechanical stimuli (DSW and HAB, unpublished).

Since the vast majority of animals still exhibit a slight movement

response (.0.1 worm length), head withdrawal appears to be

unaffected. Thus, itr-1 functions specifically in the reversal

response to nose touch.

itr-1 functions in the avoidance response to a volatile
repellent, benzaldehyde, but not in other ASH-mediated
responses

The response to nose touch is largely mediated through the

ASHL and ASHR pair of amphid sensory neurons, although

minor roles appear to be played by FLP and OLQ neurons [1].

The ASH neurons are polymodal in function, with roles identified

not only in the avoidance of nose touch, but also in the avoidance

of high osmolarity and both volatile and non-volatile repellents

[4,6,8]. To determine whether itr-1 has a global role in ASH

responses or is specifically required for nose touch, we tested

whether it has a similarly important role in other responses known

to be mediated by ASH. As Figure 3A–3F shows, expression of the

itr-1 dsRNAi construct under the control of the unc-119 promoter

does not significantly disrupt the avoidance responses to high

osmolarity (fructose), SDS, copper, quinine or glycerol (although

our experiments do not exclude more subtle roles). However, the

response to the volatile repellent benzaldehyde is disrupted

(Figure 3G). Similarly, itr-1(sa73) animals display a defective

response to benzaldehyde (Figure 3H). Interestingly, however, the

use of an IP3 sponge failed to disrupt the aversive response to

benzaldehyde (Figure 3I), suggesting that this response could be

independent of IP3. We tested another volatile repellent, octanol,

and found that, in the presence of food, the responses to 30% and

100% octanol are unaffected (Figure 3J) whilst wild type, and tph-1

and mod-5 mutants, behave as expected [29]. Thus itr-1 appears to

function in a very limited subset of ASH-mediated avoidance

responses, to nose touch and benzaldehyde.

PLCb and PLCc function in the aversive response to nose
touch through the production of an IP3 signal

PLCs catalyse the hydrolysis of PIP2, to produce IP3 (Figure 1)

and are therefore good candidates for the source of signal that

activates the IP3R. We therefore investigated the role of C. elegans

PLCs in the avoidance response to nose touch. In C. elegans five

PLC genes and one further PLC-like gene have been identified in

the genome [18]. They correspond to vertebrate PLC-b (egl-8

[26,36,37]), PLC-d, PLC-c (plc-4 and plc-3, respectively [16]),

PLC-e (plc-1 [37]), and an unusual, b-like protein (plc-2 [18]). As

Figure 4A shows, both egl-8 and plc-3 loss-of-function mutants

exhibit a significant defect in the aversive response to nose touch,

while loss-of-function mutants for the other PLC genes remain

unaffected. The response to light anterior body touch is

unaffected, as were the responses to other types of stimuli (data

not shown). Thus, egl-8 and plc-3 function specifically in the

aversive response to nose touch.

Figure 2. IP3 and itr-1 function in the aversive response to nose touch. The reversal response (measured in worm lengths) of animals
exposed to nose touch or light anterior body touch. (A) Animals expressing IP3 sponge derivatives under the control of the unc-119 promoter. (B)
Animals expressing dsRNA under the control of the unc-119 promoter. IR, inverted repeat. (C) Animals carrying the itr-1(sa73) loss-of-function allele.
All three methods of disrupting ITR-1 function significantly disrupt the nose touch response in comparison to wt animals (P,0.001, Chi-squared test,
in each case). The control sponge (A) and lacZ control IR (B) do not disrupt the response (P.0.05).
doi:10.1371/journal.pgen.1000636.g002

IP3 Signalling Regulates Nose Touch in C. elegans

PLoS Genetics | www.plosgenetics.org 4 September 2009 | Volume 5 | Issue 9 | e1000636



Since PLC-b and PLC-c catalyse the production of two second

messengers, IP3 and diacylglycerol (DAG), we wished to

demonstrate that it is via the generation of an IP3 signal that

they function in the nose touch response. To this end, we

investigated whether itr-1(sy290), a gain-of-function allele [38],

could rescue the defects in nose touch response that resulted from

egl-8 or plc-3 RNAi. itr-1(sy290) has a mutation, R582Q, in the IP3

binding site [38], which results in a two-fold increase in IP3

binding affinity [20]. As Figure 4B shows, RNAi of plc-3 and of egl-

8 (in a wild type itr-1 background) is able to reproduce the defect in

nose touch response that was observed for loss-of-function

mutants. However, RNAi of egl-8 and plc-3 on itr-1(sy290) animals

Figure 3. itr-1 functions in the avoidance response to a volatile repellent, benzaldehyde, but not in other ASH-mediated responses.
(A–I) The reversal response of animals (measured in worm lengths; see key, bottom right) exposed to a range of stimuli. (A–F) Reversal responses in
animals expressing itr-1 or lacZ dsRNA (IR, inverted repeat) under the control of the unc-119 promoter and treated with: (A) Buffer alone (30 mM Tris
[pH 7.5], 100 mM NaCl, 10 mM KCl), (B) SDS, (C) copper, (D) glycerol, (E) quinine, and (F) fructose, at the concentrations indicated, using a ‘‘dry drop’’
assay [6]. (G–I) Reversal response to benzaldehyde (undiluted) of (G) animals expressing dsRNA under the control of the unc-119 promoter (IR,
inverted repeat); (H) wild type and itr-1 loss-of-function animals; (I) animals expressing IP3 sponge derivatives under the control of the unc-119
promoter. (J) Response to octanol, measured as the time taken to reverse, following administration of the octanol concentrations indicated, as a
‘‘smell-on-a-stick’’ [29]. Animals in which itr-1 is knocked down in the nervous system, or which carry the itr-1(sa73) mutation are defective in the
response to benzaldehyde [P,0.001, (G)] but not to other repellants (P.0.05). However, the IP3 sponge failed to disrupt the response to
benzaldehyde [P.0.05, (I)]. All P values are from Chi-squared tests.
doi:10.1371/journal.pgen.1000636.g003

IP3 Signalling Regulates Nose Touch in C. elegans
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failed, significantly, to disrupt the nose touch response to such an

extent. Thus, an itr-1 mutation that increases the receptor’s affinity

for IP3 partially rescues the defects in nose touch response that

result from knockdown of either plc-3 or egl-8, suggesting that IP3 is

an important component of the downstream signal from these

PLCs.

We investigated the role of PLCs in the response to

benzaldehyde. As Figure 4C shows, the response to benzaldehyde

remained intact in all of the PLC loss-of-function mutants. As both

egl-8 and plc-3 are implicated in the response to nose touch we also

attempted to test a plc-3,egl-8, double mutant for responses to

benzaldehyde, however the double mutant animals had severe

locomotive defects and we were not able to perform the relevant

assays. Thus it appears that the response to benzaldehyde,

although IP3R-dependent, may be independent of PLC function.

Although we cannot rule out that the action of PLCs is redundant

in this response, this data is compatible with the suggestion that

this response does not depend on IP3 (Figure 3I).

itr-1 functions in ASH
The most likely candidates for the site of action of itr-1 in the

nose touch response are the ASH neurons themselves or the

downstream command neurons. In order to distinguish between

these possibilities (and the alternative, which is that it functions

elsewhere to influence the function of these neurons in some way),

we exploited the availability of neuron-specific promoters. The

promoter of sra-6 directs expression in ASH, and (weakly) in ASI

and PVQ [23], while that of glr-1 directs expression in the

command neurons AVA, AVB, AVD, AVE and PVC and several

others, but not in ASH [35]. We therefore used these promoters to

carry out cell-specific rescue and disruption of itr-1 function. As

Figure 5A shows, when the IP3 super sponge is expressed under

control of the sra-6 promoter, the response to nose touch is

disrupted. In contrast, when it is expressed under control of the glr-

1 promoter the response is unaffected. Likewise, expression of the

control sponge, using either promoter, does not disrupt the

response. Thus, disruption of IP3 signalling in ASH, but not the

command neurons, interferes with the response to nose touch.

Figure 4. PLCb and PLCc function, through the production of
an IP3 signal, in the aversive response to nose touch, but not to
benzaldehyde. (A) Reversal response of PLC deficient animals to nose
touch. All showed a wild type response (.90% reversing .1 worm
length) to anterior body touch (data not shown). (B) Reversal response
of itr-1(sy290) gain-of-function animals to nose touch, following
depletion of plc-3 or egl-8 by RNAi. CAT, E. coli chloramphenicol
acetyltransferase. All showed a wild type response (.90% reversing .1
worm length) to anterior body touch (data not shown). (C) Reversal
response of PLC deficient animals to benzaldehyde. All showed a wild
type response (,5% reversing .1 worm length) to buffer alone (data
not shown). Both plc-3 and egl-8 loss-of-function mutants exhibit
defective responses to nose touch (P,0.001) compared to wt animals.
RNAi of plc-3 or egl-8 similarly disrupted the response (P,0.001)
compared to the CAT(RNAi) control animals. However, RNAi of plc-3 or
egl-8 in an itr-1(sy290) background failed to disrupt the response to
such an extent (plc-3, P,0.001; egl-8, P,0.05, when compared to RNAi
of the same genes in wt animals). All P values are from Chi-squared
tests.
doi:10.1371/journal.pgen.1000636.g004

Figure 5. itr-1 functions in ASH. Reversal response to nose touch. (A)
Animals expressing IP3 sponge derivatives under the control of cell-
specific promoters. CS, control sponge; SS, super sponge. (B) itr-1(sa73)
loss-of-function animals expressing full-length itr-1 cDNA under the
control of cell-specific promoters. pHP2 is the empty destination vector
used in construction of the other plasmids. All showed a wild type
response (.90% reversing .1 worm length) to anterior body touch
(data not shown). When the IP3 sponge is expressed under control of
the sra-6 promoter, nose touch response is disrupted (P.0.001), while
expression under control of the glr-1 promoter has no effect (P.0.05).
Expression of the control sponge using either promoter has no effect
(P.0.05). All P values are from Chi-squared tests.
doi:10.1371/journal.pgen.1000636.g005

IP3 Signalling Regulates Nose Touch in C. elegans
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We also used the opposite approach, expressing itr-1 cDNA

under control of specific promoters and assessing whether this

could rescue the defect in nose touch response that is observed in

JT73 animals, which carry the itr-1(sa73) loss-of-function muta-

tion. As Figure 5B shows, expression of itr-1 under the control of

the sra-6 promoter rescues the defect seen in itr-1(sa73) animals, as

does the expression of itr-1 under control of the pan-neuronal unc-

119 promoter. In contrast, expression of itr-1 using the glr-1

promoter failed to rescue this defect. Thus, the defect in the

reversal response to nose touch observed in itr-1(sa73) animals can

be rescued by expression of itr-1 cDNA in ASH, but not in the

command neurons.

plc-3 and egl-8 function in ASH
Since plc-3 and egl-8 appear to act upstream of itr-1, we

hypothesised that they also effect their role in the nose touch

response in the ASH neurons. To test this, we used sra-6 and glr-1

promoters to rescue plc-3 and egl-8 in a neuron-specific manner in

loss-of-function mutants. As Figure 6A shows, when plc-3 is

expressed under the control of the sra-6 promoter in plc-3(tm1340)

homozygotes, the defect in nose touch response is significantly

rescued, while expression of plc-3 under the control of the glr-1

promoter fails to rescue. Thus, as predicted, the site of plc-3

function in the response to nose touch also appears to be the ASH

neurons.

As Figure 6B shows, when egl-8 is expressed under the control of

the sra-6 promoter in egl-8(n488) animals, the defect in nose touch

response is significantly rescued, while expression of egl-8 under the

control of the glr-1 promoter fails to rescue. Thus the site of egl-8

function in the response to nose touch is also the ASH neurons.

itr-1, egl-8, and plc-3 function in nose touch–induced
Ca2+ transients in ASH

In order to more directly observe how itr-1, egl-8 and plc-3 affect

sensory responses in ASH, we used the genetically encoded Ca2+

sensor, cameleon, to examine in vivo calcium transients evoked by

nose touch in ASH. As previously observed [22,32], mechanical

stimulation of the nose evoked calcium influx in the ASH neurons

of wild-type animals expressing cameleon under control of the sra-

6 promoter (Figure 7). However, nose touch-evoked calcium

transients were significantly disrupted in itr-1 mutant animals,

indicating that the IP3 receptor is required for ASH mechanosen-

sory responses. Likewise, mutants defective in egl-8 or plc-3 showed

significantly reduced calcium transients in ASH in response to

Figure 6. egl-8 and plc-3 function in ASH. Reversal response to
nose touch. (A) plc-3(tm1340) loss-of-function animals expressing plc-3
genomic DNA under the control of cell-specific promoters. (B) egl-
8(n488) loss-of-function animals expressing an egl-8 rescuing ‘‘mini-
gene’’ under the control of cell-specific promoters. All showed a wild
type response (.90% reversing .1 worm length) to anterior body
touch (data not shown). Expression of plc-3 or egl-8 under control of the
sra-6 promoter significantly rescues nose touch response in their
respective mutants (P,0.001), while expression using the glr-1
promoter does not (P.0.05). All P values are from Chi-squared tests.
doi:10.1371/journal.pgen.1000636.g006

Figure 7. itr-1, egl-8, and plc-3 all function in nose touch–
induced Ca2+ transients in ASH. Ratio changes in cameleon-
expressing ASH neurons, following nose touch. (A) Quantification of
responses. Diamonds are individual observations; longer red lines are
mean; error bars are s.e.m. (n = 20). (B) Representative responses, for
wild type animals and the mutants indicated. Black bar indicates
duration of stimulation. The CFP/YFP ratio decreases over the course of
the recordings because YFP photobleaches faster than CFP; noise is
relatively low in some animals, due to higher cameleon expression
levels. Nose touch–evoked Ca2+ transients were significantly disrupted
in itr-1, egl-8, and plc-3 loss-of-function animals (P,0.05, Mann-Whitney
rank sum test).
doi:10.1371/journal.pgen.1000636.g007
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nose touch. Together, these results indicate that the IP3 pathway is

required for nose touch mechanosensation in ASH.

Discussion

We have shown that signalling through IP3Rs is required for

aversive responses to nose touch and benzaldehyde in C. elegans.

The response to nose touch requires itr-1 function and the action

of plc-3 and egl-8 in the polymodal ASH neurons, where they

function in the generation of Ca2+ transients. The ability of the IP3

sponge to disrupt nose touch and the rescue of nose touch defects

in plc-3 and egl-8 RNAi animals by an itr-1 gain-of-function allele,

both support the conclusion that IP3 is the signalling molecule

downstream of PLC and upstream of itr-1 activation. Thus nose

touch requires a canonical IP3 signalling pathway in ASH.

ASH neurons display striking polymodality and clearly

distinguish functionally between different stimuli. For example,

habituation to repeated nose touch has no effect on the response to

octanol or high osmotic strength [39]. Likewise, prolonged

exposure to copper affected behavioural and neural responses to

copper but not to other repellents detected by ASH such as

glycerol [22]. The ability of ASH neurons to discriminate between

different aversive stimuli and undergo stimulus-specific adaptation

indicates that at some level ASH uses different sensory

transduction mechanisms for different modalities. At the molecular

level, genes which are required for subsets of responses have been

identified (see review in [40]). For example, OSM-10 is required to

sense osmolarity but not for other sensory responses [39], while

GPA-3 specifically affects acute responses to quinine [22]. Our

new results identify the IP3 pathway as playing a specific role in the

mechanosensory modality of ASH.

Interestingly, itr-1 also affects a second ASH-dependent

behaviour - avoidance of high concentrations of benzaldehyde.

Thus it would be interesting to determine to what extent these

responses show segregation or interact, for example whether

habituation to nose touch alters responses to benzaldehyde or vice

versa. The molecular overlap between the responses to these two

very different stimuli is intriguing. Although both require itr-1 they

do show some differences. The response to benzaldehyde is not

disrupted by the use of IP3 sponges, and appears not to be

dependant on PLC (although we cannot eliminate the possibility

that egl-8 and plc-3 act redundantly). This would suggest that,

although both responses use the IP3R, the upstream components

may be different. One explanation for these results is that the

benzaldehyde response is mediated by an IP3-independent

mechanism. IP3 independent activation of IP3Rs by proteins

ligands such as CaBP (Ca2+ binding protein), CIB1 (Ca2+ and

integrin binding 1, also known as calmyrin) and G-protein bc
subunits has been shown in other systems [41], Homologues of

CIB1 and Gbc are both present in worms so such mechanisms

could act within ASH. It would be interesting to know whether the

site of itr-1 function in the benzaldehyde response is also ASH.

However, due to technical limitations, we have been unable to test

this. The profound movement defects of egl-30 mutants have also

prevented us from testing whether this response is also Gaq-

independent.

The TRPV channels OSM-9 and OCR-2 are required for all

ASH mediated responses, suggesting that response-specific signal-

ling pathways converge on a common mechanism of activation.

However, how the detection of such a wide range of stimuli is

coupled to gating of these channels is unclear. The identification of

signalling components that are required for detection of single

stimuli, or small subsets, is vital to resolving this issue. OSM-10, for

example, is only required for detection of osmotic stimuli [39].

Similarly we have shown that itr-1 is only required for two

responses, nose touch and benzaldehyde. It remains to be

established how itr-1 mediated signals are coupled to the activation

of OSM-9 and OCR-2. It is probable that signals downstream of

itr-1 are transduced by Ca2+ released from the ER. Many TRP

channels are regulated by calmodulin, a key target of intracellular

Ca2+ release. Calmodulin can act as both a positive and negative

regulator of TRP channels [42]. Interestingly, TRPV4 and 6 are

both positively regulated by CaM. The TRPV4 C-terminal CaM

binding site which is required for positive regulation [43] shows

some conservation with OSM-9 (HAB, unpublished). A range of

other signals are known to be involved in regulating TRP channel

function. For example polyunsaturated fatty acids (PUFAs) are

known to play an important role in regulating the activity of some

TRP channels [44] and it has been suggested that PUFAs play a

key role in regulating OSM-9/OCR-2 function [45]. Thus itr-1

might also regulate OSM-9/OCR-2 indirectly through other

pathways.

Our results place egl-8 (PLC-b) and plc-3 (PLC-c) as being

upstream of itr-1. In each case we observed partial rescue when the

genes were expressed in ASH in loss-of-function backgrounds.

This partial rescue may be due to inadequate expression from the

sra-6 promoter or could reflect a requirement for these genes in

other cells, although we do not observe any rescue on expression in

command neurons. The identification of a role for two PLC

subtypes is at first glance surprising, however there are many

examples of multiple PLC subtypes being utilised in physiological

processes (see for example [17]). In ASH our results suggest that

both act, at least in part, through IP3. The signals upstream of

PLC are unknown. PLC-b is usually regulated by members of the

Gqa subunits of heterotrimeric G-proteins. We were unable to test

the role of EGL-30 (Gqa) in this process as egl-30 mutants have

widespread defects in locomotion. In addition, ASH expresses at

least 9 G-alpha subunits. Some of these have identified and specific

functions whilst some are more general; e.g. odr-3 appears to be

required for all known ASH-mediated responses, while gpa-3 is

only required for the response to water soluble repellents [11,46].

Whether any of the other Ga subunits are specifically required in

nose touch remains unclear. We tested the effect of mutations in

the Ga subunits expressed in ASH, however, we found that most

impaired nose touch, to varying degrees (DSW and HAB,

unpublished data). It seems likely that their role is complex,

involving multiple cells types and perhaps redundancy between

subunit types.

How does PLC and IP3 signalling facilitate the response to nose

touch? The mechanism by which ASH neurons detect nose touch

is unclear. Kindt et al. [32] have shown that the response of two

other neurons QLQ and Il1 to nose touch involves the

mechanosensitive TRPA channel TRPA-1. However TRPA1

does not appear to be required in ASH [32]. Thus mechan-

osensation in ASH may use a different mechanism. One possibility

is that IP3 signalling in ASH lies downstream of ligand

independent activation of GPCRs. Analysis of the ‘‘Bayliss

Response’’ in which small resistance arterial blood vessels constrict

in response to rises in blood pressure has identified a pathway

which is initiated by the activation of GPCRs by membrane

stretch [47]. In these vascular smooth muscle cells ligand

independent activation of the Angiotensisn II AT1 receptor by

membrane stretch regulates a TRP channel, TRPC6, through a

mechanism that requires both Gaq and PLC. Other Gaq linked

GPCRs also demonstrate mechanosensitive properties [47]. The

signal between PLC and TRPC6 has not been identified. As

discussed above we have shown that in ASH, nose touch is

mediated by PLC-b (egl-8) which is normally downstream of Gaq
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coupled GPCRs so our data are compatible with such a

mechanism operating in these cells. Alternatively, IP3 signalling

might not be directly activated by nose touch. Many mechano-

sensory processes involve ion channels that are directly activated

by force; thus, IP3 signalling might regulate the activity of a

mechanosensitive channel responsible for sensing nose touch in

ASH. In this model, IP3 signalling does not mediate sensory

transduction per se, but rather acts downstream of G-protein-

mediated neuromodulatory pathways to modify touch sensitivity.

Pathways of this sort would be critical for modality-specific

adaptation in a polymodal neuron such as ASH.

In summary, we have shown that the IP3 signalling cassette is

part of the specific signalling machinery for nose touch in ASH

neurons. This adds to our molecular understanding of the

molecular mechanisms that enable the segregation of signals in

these polymodal sensory neurons and contributes to our

understanding of how polymodal neurons, such as human

nociceptors, function in general.

Supporting Information
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