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ABSTRACT. The infection status of 15 viruses in 120 pigs aged about 6 months was investigated based on tonsil specimens collected from a 
slaughterhouse. Only 5 species of porcine parvoviruses and porcine circovirus type 2 (PCV2) were detected at high frequencies; 67% for 
porcine parvovirus (PPV) (PPV-Kr or -NADL2 as the new abbreviation), 58% for PPV2 (CnP-PARV4), 39% for PPV3 (P-PARV4), 33% for 
PPV4 (PPV4), 55% for PBo-likeV (PBoV7) and 80% for PCV2. A phylogenetic analysis of PPV3 suggested that Japanese PPV3s showed 
a slight variation, and possibly, there were farms harboring homogeneous or heterogeneous PPV3s. Statistical analyses indicated that the 
detection of PCV2 was significantly coincidental with each detection of PPV, PPV2 and PPV3, and PPV and PPV4 were also coincidentally 
detected. The concurrent infection with PCV2 and porcine parvoviruses in the subclinically infected pigs may resemble the infection status 
of pigs with the clinical manifestations of porcine circovirus associated disease which occurs in 3–5 months old pigs and is thought to be 
primarily caused by the PCV2 infection.
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A number of new parvoviruses have been identified dur-
ing the past 15 years and given various names, and thereby, 
the updated taxonomy of the family Parvoviridae was pro-
posed in 2014 [6]. The classical porcine parvovirus (PPV), 
which was first identified in the 1960s [4] and now present 
worldwide, causes embryonic death, stillbirths and mum-
mification when embryos or fetuses in seronegative dams 
are infected. The newly identified porcine parvoviruses have 
been detected in various areas of the world, but its relation-
ship with any diseases remains unclear. PPV is thought to be 
one of the cofactors for porcine circovirus associated disease 
(PCVAD) whose main etiologic agent is porcine circovirus 
type 2 (PCV2) [1, 10, 13]. The PCV2 infection alone does 
not cause a clinical disease, but concurrent viral or bacterial 
infections may augment the severity of PCVAD possibly 
through stimulating the PCV2 replication or suppressing the 
PCV2 clearance by altered cytokine regulation [8, 9, 18].

During our screening for known viral genomes and 
newly identified porcine parvovirus genomes in specimens 
of apparently healthy pigs, we found and now report that 

the genomes of PCV2 and the classical and new porcine 
parvoviruses were coincidentally detected. The 5 porcine 
parvoviruses we studied include PPV [4], PPV2 [11], PPV3 
[14], PPV4 [5] and porcine bocavirus-like virus (PBo-likeV) 
[2]. According to the proposed taxonomy of the family Par-
voviridae [6], most of the virus names have been changed as 
indicated in Table 1. However, we use the previous abbrevia-
tions in this paper to avoid confusion.

MATERIALS AND METHODS

Sample collection and viral nucleic acid purification: 
Tonsil specimens from 120 pigs were collected from a 
slaughterhouse in 2010 when most of the pigs were probably 
not injected with the inactivated PCV2 vaccine in Japan. The 
pigs were about 6 months old and obtained from 22 farms 
with 1–10 samples per farm.

The procedures for the viral DNA and RNA isolation were 
previously described [23]. Briefly, the tonsil homogenates 
were prepared using a Micro Smash machine (Tomy Seiko, 
Tokyo, Japan), and after centrifugation at 15,000 g for 15 
min, aliquots of the supernatant were stored at −80°C. The 
viral DNA and RNA were isolated by a DNA/RNA purifica-
tion machine, Magtration System 6GC (Precision System 
Science, Chiba, Japan) and a solution kit, GC series Magtra-
tion-MagaZorb RNA Common Kit (Precision System Sci-
ence). The isolated nucleic acids were reverse-transcribed by 
Superscript II reverse transcriptase and primers of random 
hexamers according to the manufacturer’s instructions (In-

*CorrespondenCe to: Ikeda, H., Laboratory of Veterinary Hy-
giene, Graduate School of Veterinary Medicine and Life Science, 
Nippon Veterinary and Life Science University, 1–7–1 Kyonan-cho, 
Musashino, Tokyo 180–8602, Japan. e-mail: hikeda@nvlu.ac.jp

©2015 The Japanese Society of Veterinary Science
This is an open-access article distributed under the terms of the Creative 
Commons Attribution Non-Commercial No Derivatives (by-nc-nd) 
License <http://creativecommons.org/licenses/by-nc-nd/3.0/>.

http://creativecommons.org/licenses/by-nc-nd/3.0/


P. SAEKHOW ET AL.1582

vitrogen, Carlsbad, CA, U.S.A.) and used as templates for 
the various PCRs detecting the genomes of both the DNA 
and RNA viruses. For the validation of reverse transcription-
PCR assay, control RNA and PCR primers of the kit were 
used in each experiment.

Detection of viral genome by PCR: Two multiplex PCRs 
for 3 DNA viruses (porcine circovirus type 2 (PCV2), suid 
herpesvirus 1 and porcine parvovirus (PPV)) and 6 RNA 
viruses (porcine reproductive and respiratory syndrome 
virus (PRRSV), Japanese encephalitis virus, porcine rotavi-
rus A (PoRV-A), porcine epidemic diarrhea virus (PEDV), 
transmissible gastroenteritis virus (TGEV) and Getah virus) 
were performed in separate tubes according to the published 
method [17]. Other PCR primer pairs included; NP1200 and 
NP1529 for swine influenza virus [15], HE5-1 and HE5-4m 
for hepatitis E virus [26], Q1 F and Q2 R for porcine parvo-
virus 2 [11], PPV3 F and PPV3 R for porcine parvovirus 3 
[25], PPV4 F and PPV4 R for porcine parvovirus 4 [25], and 
SbocaF and SbocaR for PBo-likeV [32].

Viral genomes were amplified by PCR using Quick Taq 
HS DyeMix (Toyobo, Osaka, Japan) including Taq poly-
merase. The PCR consisted of an initial enzyme activation 
step at 94°C for 5 min, followed by 35 cycles of denaturation 
at 94°C for 30 sec, annealing at 55°C for 30 sec, extension 
at 72°C for 30 sec and a final extension at 72°C for 7 min.

Phylogenetic analysis: For the phylogenetic analysis of 
PPV3, the 622 bp of the VP gene were examined after ampli-
fying the 713 bp fragment of the VP region (nucleotide posi-
tions from 3,359 to 4,072 of the stain AB916464) with the PCR 
primers PPV3 P7F (3′-GGGGCACTCATTTCTCTGAT-5′) 
and PPV3 P7R (3′-CTGGCCTTTTCCACTTAGGA-5′) [25] 
and sequencing with both primers and the two internal prim-
ers PPV3 7F2 (3′- GGAGAATAATGTTCTTCCTC-5′) and 
PPV3 7R2 (3′-TCGTACTCATCAAGCAGCTG-5′).

The sequence data and phylogenetic tree were compiled 
and analyzed using MEGA 5.1 [27] and Genetyx (Genetyx 
Co., Tokyo, Japan). The phylogenetic trees were generated 

by the maximum likelihood method.
The partial sequences of the PCR products of PPV3 have 

been deposited in DDBJ under accession numbers from 
LC011459 to LC011478.

Statistical analysis: Chi-square tests were used to evalu-
ate the statistical significance of co-isolation of two viral 
genomes among PPV, PPV2, PPV3, PPV4, PBo-likeV and 
PCV2 by dividing two categories, PCR-positive and PCR-
negative individuals for each virus. P values of <0.05 were 
considered statistically significant.

RESULTS

Prevalence of porcine parvoviruses and porcine circo-
virus 2 in 120 Japanese pigs: We previously analyzed the 
prevalence of the PPV2 genomes in the tonsil specimens 
from 120 pigs [23]. With the same specimens, we extended 
such a screening for 14 other viral genomes as listed in Table 
1. Five of the 14 viral genomes were detected; four were 
members of the family Parvoviridae and another one was 
PCV2. The prevalences were 67% for PPV, 39% for PPV3, 
33% for PPV4, 55% for PBo-likeV and 80% for PCV2 (Table 
1), in addition to 58% for PPV2 [23]. Multiple viral genomes 
were detected from the individual pigs, and thereby, as for 
the 5 examined porcine parvoviruses, 3%, 23%, 53%, 78% 
and 93% of the pigs were positive for more than 5, 4, 3, 2 and 
1 virus (es), respectively. Only 9 pigs of various farms were 
negative for the 5 parvovirus DNAs, and 4 of the 9 pigs were 
negative for PCV2 DNA. Among the 8 farms with larger 
sample numbers (8 to 10 samples per farm), 7 farms were 
positive for all 5 parvoviruses, and one farm was negative 
(0/10) for only one (PPV4) of the 5 parvoviruses. The results 
suggested that a high proportion of the pigs in most farms 
were co-infected with the five parvoviruses and PCV2.

We tested the possibility that the detections of these high-
ly prevalent viruses were random or coincidental. The chi 
square analyses indicated that PCV2 was coincidentally de-

Table 1. Prevalence of 15 virus genomes in 120 pigs

Virus Abbreviation Prevalence (%, n=120)
porcine parvovirus (porcine parvovirus)a) PPV 67
porcine parvovirus 2 (porcine Cn virus)a) PPV2 (CnP-PARV4)a) 58
porcine parvovirus 3 (porcine hokovirus)a) PPV3 (P-PARV4)a) 39
porcine parvovirus 4 (porcine parvovirus 4)a) PPV4 (PPV4)a) 33
porcine boca-like virus (porcine bocavirus 7)a) PBo-likeV (PBoV7)a) 55
porcine circovirus 2 PCV2 80
suid herpesvirus 1 SuHV1 0
hepatitis E virus HEV 0
swine influenza virus SIV 0
porcine reproductive and respiratory syndrome virus PRRSV 0
Japanese encephalitis virus JEV 0
porcine epidemic diarrhea virus PEDV 0
porcine rotavirus A PoRV-A 0
transmissible gastroenteritis virus TGEV 0
Getah virus GETV 0

a) New names recently proposed for the family Parvoviridae [6]. The prevalence of PPV2 was previously described 
[23], but for convenience, the data were included in this table.
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tected with PPV (χ2=5.86, P<0.02), PPV2 (χ2=4.91, P<0.03) 
or PPV3 (χ2=4.23, P<0.04) and that PPV and PPV4 were 
also coincidentally detected (χ2=6.15, P<0.02) (Table 2).

Nucleotide sequence diversity of PPV3: In order to know 
the genetic diversity of the Japanese PPV3s, a phylogenetic 
analysis based on the 622 bases of the VP gene was performed 
using 20 Japanese samples, 5 samples each from 4 farms and 
87 reference sequences from around the world. The Japanese 
PPV3s were slightly diverged in the phylogenetic tree with 
1.6% (10/622 bases) of the maximum nucleotide difference 
and closely related to the other PPV3s detected in Europe, 
North America, South America and Hong Kong (Fig. 1).

To characterize the variation in the nucleotide sequence 
among the farms or within a farm, the 20 Japanese PPV3 
sequences were tentatively separated into 6 sequence groups 
based on thier phylogenetic branch and % nucleotide differ-
ence (Figs. 1, 2 and Table 3). The sequence group 1 was a 
major one to which 10 of the 20 sequences belonged. Farms 
C and D appeared homogeneous, having 4 and 5 sequences 
of the sequence group 1, respectively, while farms A and B 
had relatively heterogeneous PPV3 sequences. Farm A had 
the sequence groups 2 and 6 with a 1.3% nucleotide differ-
ence (8/622 bases), and farm B had the sequence groups 1, 3 
and 4 with 0.6–1.4% nucleotide differences (4–9/622 bases) 
(Table 3).

DISCUSSION

The present study, together with our previous study [23], 
examined the tonsil specimens of 120 apparently healthy 
pigs for the screening of 15 viruses which can infect pigs. 
Only the five porcine parvoviruses, i.e., PPV, PPV2, PPV3, 
PPV4 and PBo-likeV, and PCV2 were detected, and their 
prevalences were quite high, ranging from 33% to 80% 
(Table 1) [23]. The high prevalences of the classical PPV 
and PCV2 at the age of about 6 months are common in most 

pig-producing countries, whereas the prevalences of PPV3, 
PPV4 and PBo-likeV are the first observations in Japanese 
pigs.

The PPV3 DNA was detected in 39% of the 120 Japanese 
pigs (Table 1). Since the first identification of PPV3 [14], 
the prevalence has been reported in several countries and 
appears to widely vary from lower frequencies (6–20%) in 
Hungary [7], China [21], the U.S.A. [29] and Germany [25] 
to higher frequencies (44–73%) in Hong Kong [14], China 
[16] and Thailand [22].

The prevalence of the PPV4 genome was 33% in this study 
which is comparable to the prevalence (44%) in Thailand 
[22], but higher than those of several other countries, that is, 
1% in China [12], 6% in Hungary [7], 7% in Germany [25] 
and 4% in the U.S.A. [30].

PBo-likeV [2], which was also called PBoV (PBoV-SX) 
[31] or PBoV1 [24, 33], is one of several porcine bocaviruses 
which have recently been discovered [28]. The PBo-likeV 
infection was initially supposed to be associated with respi-
ratory tract diseases in pigs due to the remarkable difference 
in the prevalences between sick (39% (74/191)) and healthy 
(7% (3/41)) pigs [32]. The prevalence of PBo-likeV was 
55% in our study (Table 1), in contrast to 18% in Thailand 
[22], 7% in China [32], 63% in different areas of China [24], 
2% in Romania [7] and 13% in the wild boars of Romania 
[3].

Although the prevalences of PPV3, PPV4 and PBo-likeV 
show some variation among countries, the available data 
suggest that these newly identified parvoviruses have al-
ready spread worldwide.

The phylogenetic analysis of PPV3 suggested that, com-
pared to the variation of 87 sequences deposited from around 
the world, the 20 Japanese sequences were less variable and 
belonged to limited branches (Fig. 1). In the 4 farms we ana-
lyzed, 2 farms appeared to have heterogeneous PPV3s (Table 
3 and Fig. 2). Although the variations within the farms were 

Table 2. Chi square analysis for coincidental detection among genomes of 4 parvoviruses and PCV2

Relationship between two 
viruses

Number of pigs
χ2 value P value Significance

+/+ −/+ +/− −/−
PPV / PPV2 47 22 33 18 0.153 0.695

PPV3 33 14 47 26 0.437 0.508
PPV4 32 7 48 33 6.154 0.013 * a

PBo-likeV 46 20 34 20 0.606 0.436
PCV2 69 27 11 13 5.859 0.015 *

PPV2 / PPV3 28 19 41 32 0.136 0.712
PPV4 25 14 44 37 1.031 0.310
PBo-likeV 39 27 30 24 0.152 0.697
PCV2 60 36 9 15 4.910 0.027 *

PPV3 / PPV4 15 24 32 49 0.012 0.913
PBo-likeV 28 38 19 35 0.653 0.419
PCV2 42 54 5 19 4.232 0.040 *

PPV4 / PBo-likeV 26 40 13 41 3.177 0.075
PCV2 32 64 7 17 0.152 0.697

PBo-likeV/ PCV2 53 43 13 11 0.008 0.927

a, *: significant (0.01<P<0.05). Others without asterisk mean not significant (P>0.05).
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not high, this raises the possibility that the observed variation 
within a farm resulted from multiple invasions of different 
strains rather than natural mutations within a farm after the 
invasion of one strain. The coexistence of different strains 
in a farm and coinfection of a pig with different strains must 
be risk factors for vaccine strategies and generation of a new 
recombinant virus strain.

The PCV2 genome was detected at a high frequency 
(80%) (Table 1) which is common worldwide. Interestingly, 
PCV2 was coincidentally detected along with PPV, PPV2 or 
PPV3, and PPV and PPV4 were also coincidentally detected 
(Table 2). These associations were weak, but statistically 
significant (0.01<P<0.05). Recently, similar associations 
were observed in pigs with PCVAD; the prevalences of 
the PPV and PPV2 DNAs were significantly higher in the 

Fig. 1. The phylogenetic tree was constructed, based on the 622 
bases of the PPV3 VP gene, with the 20 Japanese PPV3s and 
87 PPV3s currently deposited in the data bank. For the Japanese 
sequences, the 6 tentative sequence groups (Sequence groups 1–6) 
were defined by phylogenetic branch and % nucleotide difference, 
i.e.,<0.3% (2/622) within each sequence group. The relationship 
between the farm and the sequence group of the detected PPV3 
sequences is indicated in Table 3.

Fig. 2. The phylogenetic tree was constructed with the 20 Japanese 
PPV3s detected from the 4 farms based on the 622 bases of the PPV3 
VP gene. The 6 sequence groups were tentatively defined by the phy-
logenetic branch and % nucleotide difference, i.e., <0.5% (3/622) 
within each sequence group. The 6 sequence groups detected from 
the 4 pig farms are indicated. The relationship among the sequence 
data, the sequence group and the farm is indicated in Table 3.

Fig. 1.
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PCVAD cases containing high amounts of PCV2 DNA than 
in the non-PCVAD cases, while, in contrast to our data, 
PPV3, PPV4 and PPV5 were not correlated with the amount 
of PCV2 [20]. The major difference between the two studies 
is that they analyzed the lungs of pigs with PCVAD probably 
aged 3–5 months while we used the tonsils of subclinical 
pigs aged about 6 months.

PCV2 is recognized as a causative agent of PCVAD. The 
clinical features of PCVAD or formerly called postweaning 
multisystemic wasting syndrome (PMWS) caused by PCV2 
are systemic including enlargement of the lymph nodes, 
progressive loss of body weight or wasting combined with 
difficulty in breathing, diarrhea, pale skin and jaundice [9, 
19]. The histopathologic changes in the affected lymphoid 
tissues are a severe lymphoid depletion, a diffuse infiltration 
of histiocytic cells and various inflammatory lesions. The 
pathogenesis of PCVAD or PCV2-induced diseases is com-
plex, probably involving PCV2 infection and cofactors, such 
as other infections and altered cytokine or immune responses 
[8]. Particularly, the concurrent infection of PCV2-infected 
pigs by viruses (PPV, PRRSV, etc.), bacteria (Mycoplasma 
hyopneumoniae) or parasites may not be only a secondary 
infection after PCV2-induced depletion of lymphocytes, but 
could be important for the disease manifestation [18]. The 
experimental inoculation with PCV2 and PPV, but not PCV2 
alone, could reproduce lesions similar to those of the field 
cases of PMWS [1, 10, 13]. The mechanism for the syn-
ergetic effect of coinfection was proposed that coinfection 
may promote the PCV2 infection by stimulating immune 

cells and providing target cells for the PCV2 replication or 
suppressing the PCV2 clearance by alteration of the cytokine 
production and profiles [1, 18].

The coincidental detections of PCV2 and PPVs in various 
combinations have been observed in both pigs with PCVAD 
at 3–5 months old and healthy pigs at about 6 months old. 
Therefore, the two stages may share a common mechanism 
for the proliferation of these viruses regardless of the pres-
ence or absence of PCVAD. Since circovirus and parvovirus 
are both DNA viruses, which require actively proliferating 
cells for efficient viral replication, lymphoproliferation or 
immunosuppression induced by infection with a virus could 
support the growth of other viruses.
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