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Abstract

Introduction: Non-pathological, age-related cognitive decline varies markedly between individuals andplaces
significant financial and emotional strain on people, their families and society as a whole.Understanding the differential
age-related decline in brain function is critical not only for the development oftherapeutics to prolong cognitive health
into old age, but also to gain insight into pathological ageing suchas Alzheimer’s disease. The Lothian Birth Cohort of
1936 (LBC1936) comprises a rare group of people forwhom there are childhood cognitive test scores and longitudinal
cognitive data during older age, detailedstructural brain MRI, genome-wide genotyping, and a multitude of other
biological, psycho-social, andepidemiological data. Synaptic integrity is a strong indicator of cognitive health in the
human brain;however, until recently, it was prohibitively difficult to perform detailed analyses of synaptic and
axonalstructure in human tissue sections. We have adapted a novel method of tissue preparation at autopsy toallow
the study of human synapses from the LBC1936 cohort in unprecedented morphological andmolecular detail, using
the high-resolution imaging techniques of array tomography and electronmicroscopy. This allows us to analyze the
brain at sub-micron resolution to assess density, proteincomposition and health of synapses. Here we present data
from the first donated LBC1936 brain andcompare our findings to Alzheimer’s diseased tissue to highlight the
differences between healthy andpathological brain ageing.

Results: Our data indicates that compared to an Alzheimer’s disease patient, the cognitively normalLBC1936
participant had a remarkable degree of preservation of synaptic structures. However,morphological and molecular
markers of degeneration in areas of the brain associated with cognition(prefrontal cortex, anterior cingulate cortex, and
superior temporal gyrus) were observed.

Conclusions: Our novel post-mortem protocol facilitates high-resolution neuropathological analysis of the well-
characterized LBC1936 cohort, extending phenotyping beyond cognition and in vivo imaging to nowinclude
neuropathological changes, at the level of single synapses. This approach offers an unprecedentedopportunity to study
synaptic and axonal integrity during ageing and how it contributes to differences in agerelatedcognitive change.

* Correspondence: I.Deary@ed.ac.uk; Tara.spires-jones@ed.ac.uk
†Equal contributors
3Centre for Cognitive Ageing and Cognitive Epidemiology, University of
Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
1Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George
Square, Edinburgh EH8 9JZ, UK
Full list of author information is available at the end of the article

© 2015 Henstridge et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Henstridge et al. Acta Neuropathologica Communications  (2015) 3:53 
DOI 10.1186/s40478-015-0232-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-015-0232-0&domain=pdf
mailto:I.Deary@ed.ac.uk
mailto:Tara.spires-jones@ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Introduction
The global number of older, dependent people is projected
to reach 277 million by 2050 [1]. According to government
figures, more than one-in-four UK inhabitants will be
aged 65 or over by the same year [2]. Cognitive decline is a
feature of ageing, yet its severity varies dramatically
between individuals and a deeper understanding of the
underlying factors influencing brain ageing, may render
this process open to modification. An important question
to address is whether the brain changes observed in
healthy older individuals are distinct from changes ob-
served in neuropathologies such as Alzheimer’s disease
(AD). For example, synapse loss, amyloid plaques and
neurofibrillary tangles are the hallmarks of AD, yet these
features can also be observed in the brains of cognitively-
healthy older people [3]. However, before we can assess the
influence of pathways or proteins in pathological cognitive
decline we need a greater understanding of the normal
ageing process [4].
Normal cognitive ageing refers to age-related cognitive

change with an absence of disease and is thought to be
due to a number of underlying factors [4]. As people
age, most tissues and bodily functions begin to decline
and neurological function is not exempt from this effect.
In fact, some age-dependent gene expression changes
are evolutionary conserved throughout the animal king-
dom from humans to nematode worms, including genes
involved in the stress response, mitochondrial function
and the immune response [3]. In the brain, changes in
neuron number and neurite complexity occur, glial cells
become more active, neurotransmitter levels are altered,
pigments and proteins begin to accumulate in cells and
neurovascular changes become increasingly prevalent
[5]. With the introduction of functional MR imaging, a
systems view of neuronal activity could be observed for
the first time, during the course of brain ageing. This re-
vealed a loss of regional co-ordination in aged brains dur-
ing higher order cognitive tasks [6]. These effects may be
due in part, to altered axonal and/or myelin physiology, as
increased incidence of white matter hyperintensities ap-
pear to correlate with more severe cognitive decline [7].
However, synapses are now increasingly thought to be es-
sential in the state of cognitive ageing [8]. During normal
ageing the brain transcriptome alters and many age-
related changes occur in genes involved in synaptic func-
tion [9, 10]. Indeed, data from ageing cohorts have re-
vealed that higher levels of presynaptic markers correlate
with better cognitive function [11]. Furthermore, a recent
UK-based cohort study revealed that genetic variability
within synaptic genes, contributes to the variability in gen-
eral intelligence [12]. These findings add to a growing
body of literature suggesting synapses are not only critical
for healthy cognitive-ageing, but represent the first neur-
onal feature to be affected in AD [13, 14].

Large cohort studies that trace cognition through to
brain changes at death are a powerful tool for determining
the neurobiological contributors to cognitive ageing. Several
such studies including the Religious Orders Study and the
Rush Memory and Ageing Project have assessed cognitive
change in old age and characterized neural tissue post-
mortem, providing a wealth of information on potential
factors and correlates that may influence elderly cognitive
change [15]. However, most ageing studies lack the longitu-
dinal data on individual participant’s cognitive performance
from childhood to adulthood which is important for distin-
guishing which changes correlate with cognitive variation
in age are truly age-related as opposed to being effects of
other factors such as genetics [16].
The Lothian Birth Cohort of 1936 (LBC1936) is a sample

of 1091 people for whom we have childhood cognitive test
scores, longitudinal cognitive data during ageing, detailed
structural MRI, genome-wide genotyping, and a multitude
of other biological and epidemiological data [17]. Further-
more, 173 participants of the cohort have agreed to donate
their brains to the study for detailed post-mortem analysis.
The cohort’s data have been used to examine determi-
nants of cognitive change between childhood and age
70, and within older age. The LBC1936 research team
refers to the age 11 to age 70 cognitive ageing as ‘lifetime
cognitive ageing’, and their candidate determinants include
genetic, lifestyle, psychosocial and biomedical (including
brain imaging factors). The following factors make small
contributions to cognitive efficiency in older age after
adjusting for childhood cognitive function (which ef-
fectively means they contribute positively to lifetime
cognitive ageing): being bilingual [18], attaining higher
education, [19], having had a more complex occupation
[20], having more social support and being less lonely
[21], being physically more active [22], having a lower
genetic risk of schizophrenia [23] and lacking the e4
allele of the gene for APOE [24]. The LBC1936 study
has found several instances in which cross-sectional
associations between putative determinants of cognitive
ageing and cognitive test scores at age 70 are almost wholly
confounded by childhood intelligence test scores. Thus,
engaging more in socio-intellectual activities [22], drinking
more red wine at moderate levels [25], having a lower body
mass index [26], eating a Mediterranean diet [27], having
lower blood levels of C-reactive protein [28] and not being
infected by the cytomegalovirus [29] are all associated with
better cognitive functions at age 70, but these effects are
almost nullified after adjusting for intelligence test scores
at age 11. With regard to structural brain variables, less
relative decline in cognitive function between age 11 and
the 70s is associated with better white matter structure
[30], having fewer white matter hyperintensities [7], having
less brain atrophy [31] and having fewer iron deposits [32].
Even with brain imaging-cognition associations there
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is some confounding; for example, the cross-sectional
association between cognitive function in older age and
brain cortical thickness was almost wholly accounted for by
cognitive ability test scores at age 11 years [33].
Given the wealth of data available in the LBC1936

study, our aim is to extend post-mortem characterization of
each donated brain to the level of the synapse, to document
synaptic alterations as a potential substrate for the neuro-
pathological underpinnings of cognitive change during
ageing. Until recently it was not possible to accurately
quantify synaptic and axonal structure and protein compos-
ition in human post-mortem brain sections. However, here
we describe a modified tissue processing procedure at
autopsy, which allows the preservation of human brain
ultrastructure for super-resolution electron microscopy and
array tomography. We have pioneered the use of this tech-
nique for human tissue and published a detailed protocol
to allow others to utilize this approach [34], however until
now this technique has never been used to study non-
pathological cognitive ageing. This approach will allow
detailed analysis of human brain at the level of individual
synapses and assessment of numerous proteins (patho-
logical or physiological) at these synapses. Ultimately, this
will allow us for the first time to characterize, within an
individual, youth intelligence to older age-related cognitive
change and the underlying macroscopic and microscopic
alterations within the cells and synapses of the brain at
post-mortem.
In summary, here we present methods and pilot data

from the first donated LBC1936 brain tissue and describe
in detail the multi-disciplinary post-mortem approach to be
used for the remaining cohort, which we expect will ultim-
ately generate a wealth of information on brain health and
underlying pathology.

Materials and methods
Cognitive testing
When recruited into the study at age 70 years, all LBC1936
participants underwent a range of cognitive tests covering

reasoning, memory, executive function and speed of infor-
mation processing, as described previously [35]. Included in
the range of tests, was the same Moray House Test No.12
they took at the age of 11. This is a well-validated test of
general intelligence.

MRI acquisition and processing
All MRI data were acquired using a GE Signa Horizon
HDxt 1.5 T clinical scanner (General Electric, Milwaukee,
WI) equipped with a self-shielding gradient set (33 mT/m
maximum gradient strength) and manufacturer supplied
eight-channel phased-array head coil. As described in de-
tail in [36] the examination comprised the following whole-
brain structural sequences acquired with contiguous slice
locations: T2- (T2W), T2*- (T2*W) and FLAIR-weighted
axial scans (80, 80 and 40 slices respectively) and a high-
resolution T1-weighted (T1W) volume sequence acquired
in the coronal plane (160 slices). The field-of-view was
256 × 256 mm in all cases, with voxel dimensions of 1 ×
1 × 2 mm for T2W and T2*W, 1 × 1 × 4 mm for FLAIR,
and 1 × 1 × 1.3 mm for T1W. These data were then con-
verted from DICOM (http://dicom.nema.org) to NIfTI-1
(http://nifti.nimh.nih.gov/nifti-1) format and registered to-
gether using FSL tools (http://www.fmrib.ox.ac.uk/fsl) to
allow visualization.

Post-mortem analysis
Use of human tissue for post-mortem studies has been
reviewed and approved by the Edinburgh Brain Bank
ethics committee and the ACCORD medical research
ethics committee, AMREC (ACCORD is the Academic
and Clinical Central Office for Research and Develop-
ment, a joint office of the University of Edinburgh and
NHS Lothian). The Edinburgh Brain Bank is a Medical
Research Council funded facility with research ethics
committee (REC) approval (11/ES/0022). Tissue from
three donors was used for this study and their details
are found in Table 1.

Table 1 Post-mortem details of the tissue donors in this study

LBC AD MND

Sex Female Male Male

Age 77 57 50

PM Delay 75 h 58 h 89 h

Brain Weight (g) 1320 1200 1350

Brain pH 6.5 5.9 6.5

Clinical Notes Small Vessel Disease Alzheimer’s Disease Motor Neuron Disease

Braak I Braak VI

Old Microinfarcts

Cerebral Amyloid Angiopathy (CAA)
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At post-mortem the brain was removed as detailed pre-
viously [37] and cut into coronal slices while still unfixed.
Regions of interest were then dissected from each coronal
slice. As can be seen in Fig. 1, 31 regions are marked
for dissection however some of these are subdivided
into other regions of interest within that block. The
hippocampus is divided into Entorhinal Cortex, CA1
and Dentate Gyrus, the Basal Ganglia is separated into
the Substantia Nigra, Putamen and Internal Capsule
and BA6/8, BA23 and BA39 also contain underlying
subcortical white matter blocks. This adds another 7
regions, bringing the total to 38. Each region of interest
from one hemisphere is then processed for paraffin embed-
ding or frozen for biochemistry. Samples from the other
hemisphere are placed in small bijous containing 0.1 M
Phosphate Buffer (PB) and dissected into smaller segments.
These samples are processed for array tomography [34] or
electron microscopy and the remaining tissue is snap fro-
zen on dry ice for biochemistry.

Biochemistry
Chemicals were obtained from Sigma-Aldrich UK un-
less otherwise noted. Synaptoneurosomes and crude ho-
mogenates were prepared according to [38]. Briefly, 200 mg

of fresh-frozen human brain tissue was homogenized
in a glass dounce homogenizer with 1 mL ice-cold buf-
fer A (25 mmol/L HEPES pH 7.5, 120 mmol/L NaCl,
5 mmol/L KCl, 1 mmol/L MgCl2, and 2 mmol/L
CaCl2), supplemented with 2 mmol/L dithiothreitol
(DTT), protease inhibitors (Roche complete mini), and
phosphatase inhibitors (Calbiochem #524629). The
homogenate was passed through 2 layers of 80-μm
nylon filters (Millipore, Watford, UK), and a 200-μL
aliquot of the filtered homogenate was saved. The
saved aliquot was mixed with 200 μL water and 60 μL
10 % SDS, to prepare the crude homogenate.
To prepare synaptoneurosomes, the remainder of the

homogenate was passed through a 5-μm Durapor mem-
brane filter (Millipore) to remove large organelles and
nuclei and centrifuged at 1000 g for 5 mins. The non-
synaptic supernatant containing cytoplasmic proteins
was removed, and the pellet was washed once with buf-
fer A and centrifuged again, yielding the synaptoneuro-
some pellet. This was suspended in 400 μL of Buffer B
(50 mmol/L Tris [pH 7.5], 1.5 % SDS, and 2 mmol/L
DTT) and boiled for 5 mins. 10 % SDS was added to
the supernatant fraction to bring the concentration to
1.5 % SDS and this was boiled for 5 min.

Fig. 1 MRI showing the location of brain regions sampled for post-mortem analysis. FLAIR-weighted, coronal MR images from anterior to posterior
(a-g) of the LBC1936 participant’s brain. Post-mortem, regions were collected for analysis as highlighted by the numbered boxes. h Numbered boxes
correspond to the brain regions labelled in the table, with corresponding Brodmann Area for each cortical region provided
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Protein levels were analyzed in each sample using a BCA
protein assay (Thermo Fisher Scientific, Loughborough,
UK). 5 μg of protein was loaded into precast NuPAGE 4–
12 % Bis-Tris polyacrylamide 15 well gels (Invitrogen,
Paisley, UK) alongside a molecular weight marker (Li-Cor,
Cambridge, UK). Electrophoresis was performed at 100 V
for 2 h. Proteins were electro-transferred to nitrocellulose
membrane (Bio-Rad, Hemel Hempstead, UK) at 30 V for
1.5 h using the XCell II™ Blot Module system (Invitrogen,
Paisley, UK) in tris-glycine transfer buffer. Membranes
were incubated in 10 ml Odyssey blocking buffer (Li-Cor,
Cambridge, UK) diluted 1:1 with Phosphate Buffered Saline
(PBS) for 1 h and then incubated with primary antibodies
overnight. Primary antibodies used for western blots are
shown in Table 2. After washing six times for 5 min in
PBS/0.1 % Tween-20 solution, the membranes were
incubated for 1 h with the appropriate 680 and 800 IR dye
secondary antibodies (1:50000, LI-COR Biosciences). The
membranes were washed again in PBS/0.1 % Tween-20

solution. The membranes were imaged using an Odyssey
infrared imaging system, corrected for background, and
analyzed using Odyssey software (LI-COR Biosciences). For
figure preparation the imaged blots were cut to only show
the bands that were used for the densitometry analysis.
Molecular weights are provided in the figure legends.

Neuropathology
Fresh post-mortem tissue blocks (approximately 1 cm3)
from our regions of interest were fixed in 10 % formalin for
a minimum of 24 h. Tissue was then dehydrated in an
ascending series of alcohol (70–100 %), followed by three
xylene washes, all for 4 h each. Next, three paraffin waxing
stages (5 h each) were performed to ensure full penetration
of the embedding wax and finally these blocks were allowed
to cool. Tissue sections were cut on a Leica microtome at
13 μm and collected on glass slides. All sections were dried
at 40 °C for at least 24 h before staining.

Table 2 Primary antibody information

Western blots

Antibody Company Code Dilution

PHF1 Peter Davies 1:500

Tau13 Covance MMS-520R-500 1:2000

GAPDH Abcam, Ab8245 1:2000

Beta-actin Abcam Ab8226 1:2000

Synaptophysin Abcam Ab8049 1:5000

Beta-III-tubulin Abcam Ab18207 1:1000

MBP AbD Serotec MCA409s 1:500

Histone Abcam Ab1791 1:1000

VDAC1/Porin Abcam Ab34726 1:500

GluN2B BD Biosciences 610416 1:500

Synapsin Millipore AB1543P 1:20000

Neuropathology

Antibody Company Code Dilution Pre-treatment

Beta Amyloid (BA4) Dako M087201-2 1:100 98 % formic acid 5 min

Alpha Synuclein Life Technologies 32-8100 1:200 Pressure cooker/formic acid

TDP-43 2B Scientific CAC-TIP-PTD-MO1 1:4000 Pressure cooker/citric acid

pTau (AT8) Thermo MN1020 1:2500 None

Ubiquitin Dako Z0458 1:500 Pressure cooker/citric acid

GFAP Dako Z0334 1:800 None

CD68 Dako M0876 1:100 Pressure cooker/citric acid

Array tomography

Antibody Company Code Dilution Secondary antibody

AW7 Dominic Walsh 1:1000 Donkey α Rabbit – AF488

Synaptophysin Abcam Ab8049 1:50 Donkey α Mouse – AF594

ApoE Abcam Ab7620 1:50 Donkey α Goat – AF647

PSD95 Abcam Ac12093 1:50 Donkey α Goat – AF488
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Immunohistochemistry was performed using standard
protocols, enhanced using the Novolink Polymer detection
system and visualized using 3,3′-Diaminobenzidine (DAB)
as chromogen. See Table 2 for antibody information. Slides
were finally counterstained with hematoxylin for 30 s to
stain cell nuclei. Images were scored semi-quantitatively
according to the estimated level of pathology. Additional
file 1: Figure S1 contains example images for each stain and
pathology score.

Burden quantification
All sections stained for β-amyloid and GFAP were assessed
for plaque and astrocytic burden respectively using Stereo
Investigator. Cortical grey matter was outlined in each
section and immune-positive objects identified using
an automated colour-based thresholding algorithm.
The area of immuno-positive cortex was expressed as
a percentage of total cortex in each brain region.

Cortical thickness
Hematoxylin and eosin stained cortical sections were used
to measure cortical thickness. This stain provides a clear
demarcation between grey and white matter. Grey matter
thickness was calculated at eight randomly selected points
throughout each section. Thickness was measured from the
pial surface to the border of grey/white matter, below cor-
tical layer 6. All eight measurements were averaged to give
a cortical thickness for each brain region.

Neuron and microglia density
Neuron and microglia densities were generated within the
grey matter of each cortical section, stained with CD68.
Using a stereological optical dissector approach (described
in [39], approximately 250 fields of view were randomly
scattered across the cortical grey matter. Within each field
of view a dissector grid of 200 μm × 200 μm was applied
and all CD68-positive cells within the grid and touching
the acceptable boundaries were counted. Neurons were
identified based on the presence of large oblong nuclei and
were counted within each dissector grid. Total cell counts
within all grids were divided by total imaged volume to
generate densities of cells per mm3. Finally, CD68-positive
cell soma cross-sectional area was measured to ensure
changes in cell size were not influencing our total counts.
We discovered no change in CD68-positive cell size be-
tween cases when more than 300 cells per case from two
cortical regions were analysed (data not shown).

Electron microscopy
Brain samples were prepared for electron microscopy
as previously outlined in detail [34]. Briefly, fresh post-
mortem samples, stored in 0.1 M PB were trimmed into
small cortical blocks and fixed in 4 % paraformaldehyde
and 2.5 % glutaraldehyde in 0.1 M PB for 48 h. Blocks were

washed twice in 0.1 M PB, then cut at 70 μm with a vibra-
tome. Sections were treated with osmium tetroxide
(1 % in 0.1 M PB) for 30mins (protected from light)
and dehydrated in an ascending series of ethanol and
propylene oxide, before embedding in Durcupan resin.
During dehydration the sections were treated with uranyl
acetate (1 % in 70 % ethanol) for 40mins in the dark.
Durcupan resin was polymerized for 48 h at 56 °C. Small
regions of interest were cut from the Durcupan-embedded
sections and glued onto Durcupan blocks, before cutting
70 nm ribbons with an ultracut microtome (Leica) using a
Jumbo Histo Diamond Knife (Diatome, Hatfield, PA).
Ribbons were collected on grids and stained with lead
citrate before imaging on a JEOL JEM-1011 transmis-
sion electron microscope (TEM) with Hamamatsu
ORCA digital camera. For synapse analysis, an average of
16 images per region (range 10–28) were taken at 20,000×
magnification in a systematic, random fashion from blocks
from BA17, BA24, BA41/42, BA44/45, BA46, BA6/8, BA9,
entorhinal cortex, and CA1 stratum radiatum from the
LBC1936 and AD cases.
For white matter analysis, an average of 5 images at

8,000× magnification were taken in a systematic random
fashion from 4 white matter regions of the LBC1936 case
(BA39 subcortical white matter, BA6/8 subcortical white
matter, genu of the corpus callosum, and periventricular
white matter). G-ratios were measured as described previ-
ously [40]. TEM images were coded for blind analysis.
In grey matter images, synapses were defined by the
presence of at least 3 synaptic vesicles in the presynap-
tic terminal and a clear postsynaptic density. For each
synapse, the following measurements were made: appos-
ition length, number of presynaptic vesicles, pre and post-
synaptic terminal cross-sectional areas. Each synapse was
also classified as excitatory or inhibitory (based on intensity
of PSD, synaptic vesicle morphology, and cleft width) and
the presence of multivesicular bodies (MVB), mitochondria,
spine apparatus (in the postsynapse), perforated post-
synaptic density (PSD), and dark degenerating terminals
was noted. In white matter images, diameters of axons
and axon + myelin sheaths were measured and the pres-
ence of mitochondria was noted. A total of 1600 axons
were measured.

Array tomography
Brain samples were prepared for array tomography as pre-
viously outlined in detail [34]. A summary flowchart of the
steps involved is provided in Additional file 2: Figure S2.
Briefly, fresh post-mortem samples were trimmed into
small cortical blocks and fixed in 4 % paraformaldehyde for
3 h. Samples were dehydrated through ascending ethanol
washes and embedded in LR White resin. Tissue blocks
were cut into ribbons of 70 nm sections and collected
on coverslips. Ribbons were immunostained on “day1”
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with antibodies against Synaptophysin, AW7 and ApoE
overnight (see Table 2 for antibody details). Sections
were then developed with fluorescently-labelled secondary
antibodies and images obtained along the ribbon using a
Zeiss axio Imager Z2 epifluorescent microscope equipped
with a CoolSnap digital camera and AxioImager software
with array tomography macros (Carl Zeiss, Ltd, Cambridge
UK). High-resolution images were obtained with a 63 × 1.4
NA Plan Apochromat objective. Coverslips were washed
twice in TBS and stripped of all antibodies with a 10 min
wash in stripping buffer (0.2 M NaOH and 0.02 % SDS in
TBS). The staining protocol was then repeated (“day2”)
with antibodies against PSD-95 (see Table 2 for antibody
details). Negative controls lacking primary antibody were
run alongside to ensure the specificity of the protocol.
These were always blank (data not shown). Images from
“day1” and “day2” were combined, aligned, and regions of
interest (crops) chosen in the neuropil. These crops were
coded for blind analysis and thresholded with automated al-
gorithms in ImageJ. Synaptic puncta counts and volumes
were generated using our own MATLAB scripts and ana-
lysis of co-localization with pathological proteins expressed
as a percentage of total synapses. All ImageJ macros and
MATLAB scripts will be made available upon request.

Statistics
GraphPad Prism was used to test array tomography
data for normality (Kolmogorov-Smirnov test), following
which parametric (t-test or ANOVA) or non-parametric
(Kruskal-Wallis or Mann–Whitney) tests were performed
as required. SPSS was used to compute statistics for elec-
tron microscopy data. Normality of data was tested with a
Shapiro-Wilkes test. Normally distributed data were ana-
lyzed with parametric statistics and non-normal data with
non-parametric tests as required. Significance was reported
when P < 0.05.

Results
Cognitive summary of the first LBC1936 brain donor
The LBC1936 participant scored either 28 or 29 out of 30
on the Mini-Mental State Examination on three occasions
of testing at about 70, 73, and 76 years, indicative of no
substantial cognitive decline. The participant’s scores on
the Moray House Test (verbal reasoning; age 11, 70 and
76), Wechsler Logical Memory (verbal declarative memory;
age 70, 73, and 76), and Wechsler Digit Symbol (process-
ing speed; age 70, 73 and 76) were between 0.5 and 1.0
standard deviations (SD) higher than their LBC1936 con-
temporaries at age 11 or 70, but only between 0 and 0.5
SD higher at age 76. On Wechsler Matrix Reasoning
(non-verbal reasoning; ages 70, 73, and 76) the partici-
pant’s score was consistently about 0.25 SD below the
LBC1936 cohort mean. In summary, the participant ex-
hibited no cognitive decline and generally scored above the

average LBC1936 score in most tests, with some decline in
that advantage at the last round of tests. At the third test,
the participant mentioned suffering a small stroke since the
second wave (aged 73) and that following the stroke she
had noticed minor memory problems. The participant died
8 months after the final cognitive test.

Structural MRI
To illustrate how the degree of cortical thinning and
ventricular enlargement present in our subject com-
pared with that seen across the entire LBC1936, Fig. 2a
shows representative coronal images from twelve par-
ticipants, arranged by degree of cortical thinning and
ventricular enlargement from top left to bottom right.
Cortical thinning is a common feature of brain ageing
[41] and in Fig. 2c it can be seen that the LBC1936 case
here also exhibits some localized cortical thinning,
highlighted by red arrows. The level of cortical thinning
was described as being within normal limits for age, by
the study’s radiologist. White matter hyperintensities are
a common feature of brain ageing and are more common
in patients with cardiovascular problems and neurodegen-
erative diseases such as Alzheimer’s [42]. They tend to be
found in the deep white matter tracts of the brain [42]
and as can be seen in Fig. 2b, their presence varies strik-
ingly between the age-matched, non-demented LBC1936
cohort participants. The LBC1936 participant in this study
exhibited a number of mild periventricular and subcortical
white matter hyperintensities as highlighted by the blue
arrows in Fig. 2d. No microhaemorrhage or mineralization
was noted in the T2-weighted (Fig. 2e) or GRE-weighted
scans (Fig. 2f). In fact, the only other feature of note from
the imaging studies was the remains of small old infarcts
in the left frontal and lateral occipital lobes.

Outline of post-mortem studies
Post-mortem analysis can be performed on up to 38 freshly
dissected brain regions (Fig. 3). Once removed, these fresh
tissue blocks will be processed in numerous ways to allow
comprehensive characterization, from gross biochemistry
to super-resolution electron microscopy.

Neuropathology
The neuropathological correlates of cognitive decline in
healthy ageing (if any) are not well understood. All brain
regions were immuno-stained with antibodies against pro-
teins known to be involved in neurodegenerative diseases
associated with cognitive decline. Semi-quantitative scoring
of the immunostaining revealed a very low level of path-
ology in the non-demented LBC1936 brain compared to
the AD case (Table 3). Braak scoring revealed the LBC1936
had mild early stage tau pathology (Braak stage I), whereas
the AD case had much more severe pathology (Braak stage
VI). To allow more meaningful association between
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cognitive status and the extent of pathology in the brain of
our LBC1936 subjects, we used stereological approaches
to quantify some of the pathological stains. The two major
pathological hallmarks of AD are extracellular β-amyloid
plaques and intracellular tau-positive neurofibrillary tan-
gles. However it is known that these can also appear in
cognitively normal aged brains [43, 44]. The LBC1936
brain contained a very small number of amyloid plaques,
mostly restricted to the entorhinal cortex (Fig. 4a, e).
Figure 4a shows the premotor cortex (BA6/8) devoid of
cortical amyloid plaques, yet quite distinct amyloid stain-
ing of some blood vessels within and on the surface of the
cortex (Fig. 4a insert), revealing that the participant suf-
fered from cerebral amyloid angiopathy (CAA). This
vascular amyloid deposit is found in approximately 50 % of
people over the age of 70 years and is not dependent on
more global Alzheimer’s-like deposition throughout the
grey matter [45]. This was in striking contrast to the AD

brain, which contained a high plaque burden throughout
the premotor cortex (Fig. 4c) and more globally throughout
the brain (Fig. 4e). Interestingly, despite this massive amyl-
oid burden, the blood vessels appeared mostly free of CAA
(Fig. 4c insert).
The other pathological hallmark of Alzheimer’s disease

is tau pathology and in the hippocampal CA1 region from
the LBC1936 brain, only a few rare tau-positive neurites
(Fig. 5c) were found. As expected, the AD hippocampus
was full of tau-positive tangles within neuronal somata
and dystrophic neurites (Fig. 5d).
Glia are integral for normal brain function and are found

throughout the brain under normal conditions. However,
gliosis is a common feature of many neuropathologies [46]
and as shown in Fig. 4b, d, f the astrocytic burden in the
AD brain was higher than the LBC1936 brain in all regions
analyzed. Interestingly, microglial densities were much
more variable between cases with higher densities found in

Fig. 2 In vivo MRI of the LBC1936 cohort reveals a broad spectrum of pathology. a FLAIR-weighted, coronal MR images from 12 individual LBC1936
participants, highlighting the range of gross brain pathology observed, such as ventricular enlargement and cortical atrophy. Pathology worsens from
the top left to bottom right. b T2-weighted, horizontal MR images depicting the range of white matter hyperintensities observed in the LBC1936. Most
are periventricular, but some appear to be subcortical. Again, pathology worsens from the top left to bottom right. c Coronal T1-weighted image from the
LBC1936 participant who donated their brain for post-mortem study, revealing some cortical atrophy (red arrows). d Horizontal axial FLAIR-weighted MR
image, revealing white matter hyperintensities (blue arrows). e Horizontal T2-weighted and GRE-weighted (f) MR images reveal generally good
brain structure

Henstridge et al. Acta Neuropathologica Communications  (2015) 3:53 Page 8 of 22



some cortical regions of the LBC1936 brain (Fig. 5a, b, k).
Transactive response DNA binding protein 43 kDa
(TDP-43) is a transcriptional repressor protein linked
to fronto-temporal dementia (FTD) and Amyotrophic
Lateral Sclerosis (ALS) [47]. TDP-43 is normally found
in the neuronal nucleus but in patients with FTD it spreads
into the cytoplasm in a phosphorylated and ubiquitinated
form [47]. The staining of TDP-43 in the LBC1936 hippo-
campus appeared to be mostly nuclear (Fig. 5e), and this
pattern was similar in all other regions (Table 3), however
in some cortical regions, translocation of TDP-43 was
apparent in a small population of neurons as the strong
nuclear labeling was replaced with diffuse somatic labeling.
The AD brain exhibited dense cytoplasmic staining and
a complete clearing of nuclear staining in a large subset
of neurons in many cortical regions (Table 3) and the
hippocampal CA1 region (Fig. 5f). Ubiquitin is a small
regulatory protein that plays an important role in the
post-translational modification of numerous proteins, the
addition of which often leads to protein aggregation or
degradation [48]. There was a striking difference in the
level and pattern of ubiquitin staining between both cases
with mostly glial staining in the LBC1936 hippocampus
(Fig. 5g) and very strong somatic labelling of many neu-
rons in the AD hippocampus (Fig. 5h). This pattern
was found throughout the brain regions analysed
(Table 3). Alpha-synuclein is highly expressed in the
brain and is an integral protein of the presynaptic ter-
minal. Insoluble fibrils are often found in neuronal
somata in diseases such as multiple-system atrophy,
Parkinson’s disease, Alzheimer’s disease and dementia
with Lewy bodies [49]. However, no distinct alpha-
synuclein aggregates were found in either the LBC1936
(Fig. 5i) or the AD hippocampus (Fig. 5j). This pattern
was similar throughout the brain of each case
(Table 3). Semi-quantitative scoring of all stains in all
regions analyzed is summarized in Table 3.

As Alzheimer’s disease progresses, neurons die and
brain atrophy occurs. This is highlighted in our neuron
density counts, revealing a generally higher neuronal
density in most regions of the LBC1936 brain (Fig. 5l).
Neuron density values can be influenced by cortical thick-
ness, as the packing of cells can increase in smaller vol-
umes. In most regions, the cortical thickness was similar
between cases, however in EC and BA46 the AD cortex
appears thicker, but thinner than the LBC1936 cortex in
BA41/42 (Fig. 5m).
In summary, the neuropathological assessment of

the LBC1936 brain suggests good structural integrity
although the brain does show a mild neuropathological
burden, which maybe suggestive of early neurodegenerative
processes.

Biochemistry
To assess the levels of synaptic proteins, blots of crude
homogenate were stained for the pre-synaptic marker
synaptophysin. Synaptophysin staining revealed a decrease
in synapses in most regions of the AD brain compared to
the LBC1936 (Fig. 6a), except the EC and hippocampus
(Fig. 6a). GFAP staining revealed a group of bands due to
the expression of multiple GFAP isoforms in human brain
[50]. In many cortical regions the AD samples expressed
higher levels of GFAP than the LBC1936 case (Fig. 6b) as
expected from our stereological burden counts (Fig. 4),
however in BA46 and the hippocampus the levels were
higher in the LBC1936 sample. Tau blots revealed a higher
level of this neuronal protein in all regions of the LBC1936
brain compared to AD (Fig. 6c), possibly due to neuronal
loss observed in advanced AD [51]. Strikingly, the phos-
phorylated form of tau was present in all regions of the AD
brain, but virtually absent in the LBC1936 samples (Fig. 6d).
Collectively, these blots highlight low levels of AD-like
pathology in the non-demented LBC1936 brain, however
whole cell homogenates can only provide an estimate of

Fig. 3 Summary of post-mortem tissue processing. Flowchart showing the numerous processing techniques employed, allowing us to gain cellular and
subcellular information on brain integrity
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synaptic proteins. Many non-synaptic proteins and synaptic
proteins that have not yet trafficked to the synapse are
present in whole cell homogenates, providing an inaccurate
measure of localized synaptic proteins. To provide more
accurate synaptic measurements, synaptoneurosome prepa-
rations were generated to isolate the synaptic components
from the whole homogenate (Fig. 7a). To assess the quality
of our preparations we used a recently established method
for analysing synaptic protein integrity in brain homoge-
nates [52]. This revealed all our samples except the
LBC1936 EC contained good protein integrity (Fig. 7b).
These new preparations reveal a more subtle change (if
any) in synaptophysin levels in the remaining synapses

between the LBC1936 and AD samples (Fig. 7c). Total tau
blots revealed the presence of this protein at synapses and
showed that again in most regions, similar levels were ob-
served in the LBC1936 samples compared to AD synapto-
neurosomes (Fig. 7d). Toxic forms of tau are thought to
accumulate in axon terminals in AD [38, 53] and our blots
reveal significant accumulation of phosphorylated tau in
the AD synaptoneurosomes and none in the LBC1936
samples (Fig. 7e). Synapses are metabolically demanding
structures, requiring mitochondria in close proximity to
maintain physiological function. Staining our synapto-
neurosomes for the mitochondrial marker VDAC1 revealed
the presence of synaptic mitochondria in all samples, with
similar levels in most samples (Fig. 7f). However, strikingly
higher levels were found in LBC1936 BA41/42 and AD EC
compared to their matching sample (Fig. 7f).
The in vivo MRI scans from the LBC1936 participant re-

vealed potential underlying white matter pathology (Fig. 2).
Crude homogenates of white matter regions from the
LBC1936 and a motor neuron disease (MND) brain were
tested for axonal tract integrity by staining for structural
proteins. Axonal tubulin and tau levels were similar
between cases (Fig. 8a, b), however in a number of regions
myelin basic protein (MBP) levels were markedly variable
(Fig. 8c). Mitochondrial levels varied dramatically between
white matter regions, with most expressing low levels of
VDAC1 (Fig. 8d), however in the BA39 and BA23 sub-
cortical white matter samples the LBC1936 expressed
markedly higher levels than the MND samples (Fig. 8d).
In summary, the western blots reveal generally good syn-

aptic and axonal integrity with low levels of Alzheimer’s
pathology in the LBC1936 brain homogenates, in line with
our observations from the immunohistochemical staining.

Array tomography
Synapses from our regions of interest were labelled pre-
and postsynaptically with synaptophysin and PSD95
(Fig. 9a, b) and the presence of two further proteins of
interest (β-amyloid and ApoE) assessed. In total, 1500 im-
ages were analyzed, amounting to almost 162, 000 synap-
ses. Synapses were typically observed as “snowmen” with
PSD95 and synaptophysin puncta found directly opposed
(see white circles in Fig. 9a, b). PSD95 densities were quite
similar in most of the regions analyzed between cases,
however densities in BA24 and BA41/42 appear higher in
the LBC1936 case compared to the AD brain (Fig. 9c).
The volume of PSD-positive compartments varied slightly
between regions yet globally appeared larger in the
LBC1936 brain (Fig. 9d). The variability in synaptophysin
density between regions and cases, largely matched the
PSD95 values, with higher densities found in BA24, BA41/
42 and BA46 in the LBC1936 brain (Fig. 9e). Synaptophy-
sin puncta volumes were larger in the LBC1936 BA24,
BA46 and EC regions, but of similar size in BA17 and

Table 3 Semi-quantitative scoring of neuropathological markers

LBC AD LBC AD

Region Stain Score Region Stain Score

BA9 TDP43 - ++ BA41/42 TDP43 - ++

pTAU - +++ pTAU - +++

BA4 + +++ BA4 + +++

a-Syn - - a-Syn - -

GFAP + +++ GFAP ++ +++

CD68 + +++ CD68 + +

UBIQ + +++ UBIQ + +++

BA44/45 TDP43 + + EC TDP43 + ++

pTAU - +++ pTAU + +++

BA4 - +++ BA4 ++ +++

a-Syn - - a-Syn - -

GFAP + ++ GFAP + +++

CD68 ++ ++ CD68 + ++

UBIQ + +++ UBIQ ++ +++

BA46 TDP43 + ++ BA17 TDP43 + ++

pTAU - +++ pTAU - +++

BA4 - +++ BA4 + +++

a-Syn - - a-Syn - -

GFAP + ++ GFAP + +++

CD68 + ++ CD68 + +

UBIQ + +++ UBIQ + +++

BA6/8 TDP43 + ++ BA24 TDP43 + ++

pTAU - +++ pTAU - +++

BA4 + +++ BA4 - +++

a-Syn - - a-Syn - -

GFAP + +++ GFAP + ++

CD68 + +++ CD68 + ++

UBIQ + +++ UBIQ + +++

BA9 = Prefrontal cortex, BA44/45 = Broca’s area, BA46 = Dorsolateral
Prefrontal cortex, BA6/8 = Premotor cortex, BA41/42 = Superior Temporal
cortex, EC = Entorhinal cortex, BA17 = Primary Visual cortex, BA24 = Anterior
Cingulate cortex. “-” = no pathology, “+” = mild pathology, “++” = moderate
pathology, “+++” = strong pathology. Example images for each score are
found in Additional file 1: Figure S2
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BA41/42 (Fig. 9f). To assess whether the synaptotoxic pro-
teins β-amyloid and ApoE are found in synapses of the cog-
nitively normal LBC1936 case, 3D co-localization analysis
was performed (Figs. 10 and 11). A very rare population of
synapses in the LBC1936 brain (<3 %) contained β-amyloid
either pre- or post-synaptically (Figs. 10a and 11a,d), with a
higher percentage of AD synapses (0.6 % in BA24 to 5.1 %
in BA17) positive for β-amyloid (Figs. 10b and 11a, d).
ApoE has been described in human synapses previously by
our group [54] and that finding is confirmed here. In the
LBC1936 case, the percentage of ApoE-positive synapses
ranged from approximately 3 % in BA24, to 40 % in BA41/
42 (Figs. 10c and 11b,e). Overall, the percentages of ApoE-
positive synapses were higher and much less variable in the
AD brain, ranging from approximately 33 to 50 % (Figs. 10d
and 11b, e). Interestingly, there was a very rare population
of synapses that contained both of these synaptotoxic

proteins. Levels were very low in the LBC1936 brain ran-
ging from almost 0 % in BA24, to ≈ 2 % in BA17 (Fig. 11c,
f). Higher levels were observed in the AD brain, ranging
from 0.5 % in BA24 to 4.8 % in BA17 (Fig. 11c,f). Our
array tomography approach can also be used to calcu-
late synaptic volumes, which can be used to assess
changes in the pre- and post-synapse with and without
pathological burden (Fig. 11g, h).
Array tomography can also be used to build a 3D image

of larger structures, such as axons. Therefore we also pre-
pared periventricular white matter tissue (pvwm) for arrays
and stained them with antibodies against axonal filaments
(SMI-312R) and myelin basic protein (MBP). As can be
seen in Fig. 12a and b, large caliber axonal fibers are evident
in the LBC1936 and AD tissue and these are tightly
wrapped in high density myelin. However, in the MND
sample (Fig. 12c) the axonal fibers appear dysmorphic and

Fig. 4 Stereological assessments of amyloid plaque burden and gliosis. a Premotor cortex (BA6/8) from the LBC1936 brain contains no amyloid
plaques within the cortical tissue. However, some blood vessels within the cortex (insert, black arrow) and around the pial surface (insert, red
arrows) exhibit strong amyloid labelling. b LBC1936 BA6/8 region exhibits a dense network of GFAP staining in layer 1 of the cortex, with small
patches of GFAP-positive cells scattered through the other cortical layers. c BA6/8 from the AD case contains a very high amyloid burden throughout the
cortex. Despite the presence of cortical plaques (insert, red arrowheads) the pial vessels were largely devoid of labelling (insert, black arrowheads). d
GFAP-positive cells were found throughout the AD BA6/8 cortical region and often found around plaque-like structures. Large scale bars = 1 mm, insert
scale bars = 0.2 mm. e Histogram showing amyloid burden in eight cortical regions and the hippocampus in the LBC1936 case (black bars) and the AD
case (grey bars). f Histogram showing GFAP burdens in eight cortical regions and the hippocampus from the LBC1936 and AD cases
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loosely wrapped in low levels of myelin, when compared to
the LBC1936 tissue (Fig. 12a).
In summary, our array tomography analysis provides

an unprecedented wealth of detailed information on the
underlying density and protein constitution of synapses
in the post-mortem brain.

Electron microscopy
Images were captured from select regions in both the
LBC1936 and AD brain and numerous synaptic mor-
phological parameters were analyzed. In total, more
than 350 synapses were identified as having a clear postsyn-
aptic density and at least 3 pre-synaptic vesicles. Within
individual brain regions, no differences were observed in
any parameter due to the low numbers involved, however
when all synapses were combined within each case,

differences emerged. The LBC1936 synapses contained
more presynaptic mitochondria (LBC1936 = 39.7 %, AD =
34.2 %; Chi2 test p = 0.009) and most of those present ap-
peared of normal morphology, whereas the mitochondria
found in the AD synapses were more frequently dys-
morphic (LBC1936 = 8.3 %, AD= 22.7 %; Chi2 test p =
0.031; Fig. 13a). Normal mitochondria generally had a
clearly defined oval shape, with distinct and intact internal
cristae. Dysmorphic mitochondria had fragmented internal
cristae, were often electron dense and exhibited a tor-
turous morphology. However, other pre-synaptic param-
eters such as vesicle number, presence of multi-vesicular
bodies and electron-dense degenerating profiles, although
rarely observed, were similar between both cases (Fig. 13a,
b). Furthermore, no differences were observed in any of the
parameters analyzed in the post-synapse (Fig. 13a).

Fig. 5 Stereological assessments of brain pathology and integrity. Representative images of microglial (CD68; a + b), phosphorylated-tau (c + d),
TDP-43 (e + f), ubiquitin (g + h) and α-synuclein (i + j) staining in the hippocampus (CA1) from LBC1936 (a, c, e ,g, i) and AD (b, d, f, h, j) brains.
Large scale bar = 50 μm, insert scale bars = 10 μm. k Histogram showing neuronal densities in eight cortical regions from the LBC1936 (black bars)
and AD (grey bars) brains. l Histogram showing microglial densities (CD68-positive cells) in eight cortical regions from the LBC1936 and AD brains.
m Histogram of cortical thickness measurements from eight cortical regions in the LBC1936 and AD brains
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Intriguingly, the apposition length (the length of the pre-
and post-synaptic membrane directly opposing each other)
was slightly longer in the AD brain (LBC1936 = 360 ±
144.5, AD = 402.4 ± 149.6; Mann–Whitney U test p =
0.006; Fig. 13a), despite smaller volumes of pre and post
synapses detected by array tomography. This increase in
apposition length could be a mechanism to try and com-
pensate for shrinking synaptic volume. Electron micros-
copy can also be used to analyze white matter integrity
(Fig. 13c) by measuring axon diameter, myelin thickness
and the ratio of both known as the “G-ratio” (Fig. 13d).
Measuring the G-ratio from four distinct white matter
tracts of the LBC1936 brain revealed good axonal and
myelin integrity, with G-ratio values falling remarkably
close to the theoretically optimal value of 0.6 [55].
In summary, our electron microscopy approach reveals

remarkable synaptic preservation, allowing us to investigate
ultrastructural changes in human synapses, post-mortem.

We detected changes in pre-synaptic mitochondria and ap-
position length in our AD brain and also the presence of
degenerating profiles in the LBC1936 brain.

Discussion
This study has, for the first time, described an experi-
ment spanning almost 70 years, detailing an individual’s
childhood and ageing cognitive performance and cor-
relating this with in vivo imaging and post-mortem ana-
lysis to the level of individual axons and synapses. This
proof-of-principle study reinforces the impact of the well-
characterized LBC1936 cohort and showcases the depth of
anatomical data we can gather post-mortem, to feed into
this ever-expanding project, aiming to unravel the physio-
logical processes involved in brain ageing. A significant
strength of our protocol is the ability to sample and
analyze many distinct cortical, subcortical and white
matter regions of the brain, in relative speed, with our

Fig. 6 High-throughput assessments of brain integrity and pathology using crude homogenate western blotting. a Representative synaptophysin
(40 kDa) western blot of seven LBC1936 homogenates (black bars) and seven AD samples (grey bars). b GFAP (35-50 kDa) western blot of LBC1936 and
AD samples. c Representative total tau (Tau13; 45–60 kDa) blot, with LBC1936 and AD samples. d Phosphorylated-tau (PHF1; 50–65 kDa)
western blot of LBC1936 and AD samples. GAPDH (36 kDa) was run as a loading control for all experiments. Histogram represents the mean
of three experimental repeats and the bars represent the quantification of the bands directly above
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biochemical and array tomography approaches. For
example, the Religious Orders Study and the Rush Memory
and Ageing Project, generally analyze post-mortem path-
ology in a small number of brain regions (midfrontal gyrus,
the superior temporal gyrus, the inferior parietal gyrus, and
the entorhinal cortex) and extrapolate global burdens from
their average [15, 56], thus missing detailed regional vari-
ation in brain change. Given the heterogeneous clinical
representation of normal and pathological ageing [57, 58],
it’s critical to assess the underlying brain structure from as
wide an array of regions as possible to be able to fully
understand the presenting phenotype.
Post-mortem pathological assessment is the only defini-

tive way to confirm a premorbid diagnosis of Alzheimer’s

disease, however this approach has proved ineffective for
categorizing patients with no or mild premorbid cognitive
impairment, as pathological burden varies dramatically
within these cohorts [59]. This has led to a cognitive
reserve theory, in which some people retain impressive
cognitive function into old age, despite a heavy patho-
logical load. The hypothesis states that people with
high cognitive function throughout life (high IQ, high
level of education, extensive literacy and complex social
groups) can flexibly and efficiently draw processing power
from other brain regions and thus retain general cognitive
ability, despite underlying pathology [60]. Some of these
traits have been shown to positively influence cognitive
ageing in our Lothian Birth Cohort 1936 [17]. One

Fig. 7 Using synaptoneurosomes to enrich and analyze synaptic proteins by western blotting. a Representative enrichment blot showing the
exclusion of nuclear histone (17 kDa) from the synaptoneurosome preparation and retention of synapsin (40-80 kDa). b GluN2B western blot
from the LBC1936 (black bars) and AD (grey bars) preparations. To assess protein integrity and control for post-mortem degradation [52], band2 (black
arrow; 150 kDa) was divided by band1 (grey arrow; 170 kDa) to generate a ratio, and a value ≥1 (red dashed line) is achieved by all samples except the
LBC1936 EC (asterix). c Representative synaptophysin (40 kDa) blot of LBC1936 synaptoneurosomes and AD samples. d Representative total tau (Tau13;
45–60 kDa) blot of LBC1936 samples and AD samples. e Phosphorylated-tau (PHF1; 50–65 kDa) blot shows almost exclusive expression in the AD
samples compared to the LBC1936 synapses. f Representative VDAC (29–32 kDa) blot of LBC1936 and AD synaptoneurosomes. GAPDH (36 kDa)
or β-actin (42 kDa) was run as a loading control. Histogram represents the mean of three experimental repeats and the bars represent the
quantification of the bands directly above
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potential strategy to help those people with pathology
and cognitive decline is to remove the pathological bur-
den allowing the brain to function more efficiently.
This has been the primary goal for Alzheimer’s
pharmacotherapy for many years, but unfortunately
has proved spectacularly unsuccessful with a 99.6 %
failure rate [61]. Therefore, new therapeutic strategies
are needed and synapses or synaptic function may rep-
resent a novel approach as synapse loss is the stron-
gest correlate with cognitive decline [62].
This enforces the importance of studying synapse

density, volume and pathology in ageing cohorts such
as the LBC1936, as it will undoubtedly provide valu-
able insight into the processes involved in synapse loss
and it’s effect on brain structure and function. Our
array tomography approach can reliably detect synap-
tic density differences between our non-demented

LBC1936 brain and the AD brain (Fig. 9) and will be
an important addition to the LBC1936 study as more
tissue becomes available. The addition of more cases
will allow us to test the correlation between cognitive
performance and synaptic density in the brain regions
thought to be important for specific cognitive tasks.
Furthermore, synaptic density measurements can be com-
pared with intrinsic pathology load to assess whether an
inverse correlation exists or whether synapse loss is inde-
pendent of detectible pathology. Without having robust
data from young brains, we cannot predict how well syn-
aptic density is preserved in the non-demented, aged
LBC1936 brain, but we can conclude that compared to a
pathologically aged Alzheimer’s brain there appears to be
synaptic preservation.
Given the range of visible pathologies in the MRI scans

from the LBC1936 cohort (Fig. 2), it will be interesting to

Fig. 8 Assessment of axonal integrity and pathology using crude homogenate western blotting. a Representative β-III-tubulin (55 kDa) blot of five
LBC1936 (black bars) and five MND (grey bars) white matter crude homogenates. b Total tau (Tau13; 45–60 kDa) blot of LBC1936 and MND white
matter homogenates. c Representative MBP (23 kDa) blot of LBC1936 and MND homogenates. d VDAC (29–32 kDa) blot of LBC1936 and MND white
matter samples. GAPDH (36 kDa) or β-actin (42 kDa) was run as a loading control. Histogram represents the mean of three experimental repeats and the
bars represent the quantification of the bands directly above
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see if these affect neuronal connectivity. Does dramatic
cortical thinning mean dramatic synapse loss, or does the
brain compensate by increasing connections between
cells? In a seminal paper on the subject [63] DeKosky and
Scheff describe cortical thinning and significant synapse
loss in autopsied AD brains, suggesting that these brains

don’t compensate by increasing synapse number, but inter-
estingly the authors reported an increase in synaptic appos-
ition length. This was also observed in our EM analysis
(Fig. 13) but was not replicated in the array experiments
revealing a smaller synaptic volume in the AD samples
(Fig. 9). Array tomography cannot resolve ultrastructural

Fig. 9 Assessing synaptic densities using the high-resolution array tomography approach. a Representative 3D reconstruction of thirty 70 nm
sections from the LBC1936 BA41/42 cortical tissue, stained for synaptophysin, PSD95, AW7 and DAPI. Note the lack of AW7 staining, but strong
synaptic labeling. Panels at the bottom show the individual synaptic channels from one of the analysed crops from BA41/42. The white circle
highlights a synaptic “snowman”. b Representative 3D reconstruction of twenty-six 70 nm sections from the LBC1936 BA41/42 cortical tissue, stained
for synaptophysin, PSD95, AW7 and DAPI. Note the weak synaptic labeling and large AW7-positive amyloid plaque. Large scale bar = 25 μm, small scale
bar = 1 μm. c Histogram summarizing the PSD density values from 5 cortical regions from the LBC1936 brain (black bars) and an AD brain (grey bars).
d Histogram summarizing synaptophysin densities from the LBC1936 brain and an AD brain. e Histogram summarizing the PSD volume data from 5
cortical regions from the LBC1936 brain and an AD brain. f Histogram summarizing the synaptophysin volume data from the LBC1936 cortex and an
AD cortex. Histograms represent the median of all values generated from all individual crops within that region
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detail, such as apposition length, but does allow high-
throughput analysis of thousands of synapses and yields
information about the protein composition of synapses.
The presence of toxic amyloid species in synapses results
in shrinkage and synaptic breakdown [64] and given the
heavy amyloid burden in the AD brain (Fig. 4) it’s likely
that some synaptic damage is present, which may explain
our array tomography results. Indeed, we find a higher
burden of synaptic amyloid in all AD samples compared
to the LBC1936 brain (Fig. 11).
We have previously shown that possessing an e4 allele of

the apolipoprotein E (APOE) gene correlates with increased
cognitive decline in older age [24] and it confers a higher
risk of developing Alzheimer’s disease [65]. APOE genotyp-
ing revealed the LBC1936 participant was APOE e3/e3 and
the AD case was APOE e3/e4. We have previously shown
that the ApoE protein is found in synapses in human brain
[54]. Here, we found the LBC1936 cortex contained
approximately 25 % of ApoE-positive synapses, compared
to approximately 40 % in the AD brain (Fig. 11), strikingly
similar to the 35 % of ApoE-positive synapses reported pre-
viously [54]. Finally, greater ApoE staining in the AD case

associated with more amyloid at the synapse (Fig. 11).
Amyloid was found at a subset of synapses in both cases,
however the exact form of amyloid (monomer, polymer or
fibril etc.) was not identified. The antibody we used in this
study (AW7) labels all forms of amyloid. The most synap-
totoxic form has yet to be conclusively revealed, although
we have data suggesting multiple oligomeric forms of
amyloid are present at synapses (data not shown). All of
these findings match our previous results in human brain
and demonstrate that our array tomography approach has
the ability to reveal synaptic density and protein constitu-
tion of human synapses.
Our results show that the cognitively-healthy LBC1936

brain has more synapses than the AD brain and a lower
pathological load; however some synapses in the LBC1936
brain contained amyloid, which might predispose them to
degeneration. As synapses degenerate the spatial control of
proteins is lost and the synapse fills with excess protein and
debris, which renders the terminal electron dense under an
electron microscope. We discovered a higher incidence of
electron dense synapses in the AD brain than the LBC1936
samples, however some degenerating synapses were found

Fig. 10 Using array tomography to assess the presence of synaptotoxic proteins. Representative images from a single region of interest (crop) captured
within the LBC1936 EC (a+ c) or the AD EC (b+ d). Each image is a single plane from a 3D stack, which has been thresholded/binarised and single-slice
objects removed to eliminate background. Sections were stained for synaptophysin, PSD95, and AW7 (a+b) or ApoE (c+ d). Synaptically located staining
is highlighted with white circles. c Scale bar = 2 μm
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in the cognitively-healthy LBC1936 brain. This could
represent the small percentage of synapses that contain
amyloid from our array tomography studies, which have
reached the point of degeneration. However, without a
young brain as a control it is difficult to confirm this.
The LBC1936 study has revealed that white matter in-

tegrity correlates with cognitive performance [66, 67],
therefore detailed analysis of white matter at post-mortem
will aid in the identification of visible abnormalities and
hyperintensities observed during in vivo imaging (Fig. 2),

which are currently unexplained [68, 69]. Our biochemis-
try approach allows a quick evaluation of gross protein
changes in white matter tracts, which can then be resolved
to sub-micron resolution using array tomography, in the
hope to correlate in vivo observations with single cell alter-
ations in protein composition. As shown in Fig. 8, MBP
levels were quite variable between regions and cases.
This could represent interesting differences in clinical
and sub-clinical alterations in myelin physiology, or
could be explained by post-mortem degradation of

Fig. 11 Analysing the synaptic localization of β-amyloid and ApoE. a Histogram showing the percentage of synapses that exhibits co-localization between
PSD95 and AW7 in the LBC1936 (black bars) and AD (grey bars) samples. The percentage of co-localization between PSD95 and ApoE in the LBC1936 and
AD samples is shown in (b) c The percentage of co-localization between PSD95, ApoE and AW7 in the LBC1936 and AD samples. d Histogram showing
the percentage of synapses that exhibits co-localization between synaptophysin and AW7 in the LBC1936 and AD samples. The percentage of
co-localization between synaptophysin and ApoE in the LBC1936 and AD samples is shown in (e). f The percentage of co-localization between
synaptophysin, ApoE and AW7 in the LBC1936 and AD samples. g Histogram representing the median post-synapse (PSD) volume of all synapses from
all cortical regions, positive for PSD alone, or combinations of PSD ± pathology as noted on x-axis. h Histogram representing the median pre-synapse
(synaptophysin) volume of all synapses from all cortical regions, positive for synaptophysin alone, or combinations of synaptophysin ± pathology as
noted on x-axis
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Fig. 13 Assessment of synaptic and axonal ultrastructure using transmission electron microscopy. a. Table summarizing the pre- and post-synaptic
parameters measured in the LBC1936 and AD brains at the EM level. Significant differences are highlighted in red. b. Representative electron
micrographs from BA46 and EC from the LBC1936 and AD brains. Arrows point to the synapse from the pre-synapse. White arrow highlights
an electron dense degenerating synapse. Mito = mitochondria, MVB = multi-vesicular body. c. Representative electron micrograph from the
LBC1936 genu of the corpus callosum sample, showing axons cut in cross-section. d. Higher magnification of the boxed section in (c), showing how
g-ratio is determined in each sample. The perimeter is draw around the internal axon cross-section (solid line) and divided by the perimeter of the
axon +myelin cross-section (dashed line). G-ratio values from four white matter regions are found in the adjoining table

Fig. 12 Assessing white matter integrity with the super-resolution array tomography approach. Representative 3D reconstructions of twenty-five
70 nm sections from the LBC1936 pvwm tissue (a), twenty-nine 70 nm sections from the AD pvwm tissue (b) and fourteen 70 nm sections from
the MND pvwm tissue (c), all stained for SMI-312R, MBP and DAPI. Scale bars = 15 μm
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MBP [70]. Further work is required to more accurately
interpret these findings and ensure we use the correct
measures of axonal integrity in future studies. Array
tomography can build a useful 3D representation of axons
and surrounding myelin to assess the spatial distribution of
key proteins in axonal integrity. For example, in future
studies we can accurately measure numerous paranodal
proteins found in the critical region adjacent to the Nodes
of Ranvier, containing clustered ion channels and adhesion
proteins, which is a vulnerable region following axonal
injury or stress [71]. Electron microscopy reveals the struc-
ture of membranes in exquisite detail and can be used to
calculate axonal myelin coverage. It has been predicted that
the ideal G-ratio should be 0.6 [55] and we found in our
LBC1936 samples that G-ratios from distinct white matter
regions were remarkably close to this figure. This suggests
our LBC1936 has good myelin integrity and seems to asso-
ciate well with their strong cognitive performance. Greater
understanding of white matter integrity in ageing brains
will significantly enhance our understanding of age-related
brain dysfunction and may lead to alternative therapeutics
for prolonging cognition into older age.
The Edinburgh Brain Bank is currently in the process of

generating a grading system for characterizing the extent of
small vessel disease and different types of infarcts (micro-
infarcts, large vessel infarcts and lacunar infarcts). Cognitive
decline correlates strongly with the presence of underlying
cerebrovascular disease [72, 73] and given the history of
stroke in our LBC1936 patient in their later years and the
presence of small old infarcts in the MR images, future
characterization of all cases will involve assessment of the
vasculature integrity and presence of localized infarcts. This
will provide valuable information on the role of the cerebral
vasculature on brain function and significantly strengthen
the academic potential of the LBC1936 study.

Conclusion
Ultimately, this study showcases the remarkable wealth
of information we can generate post-mortem fromthe
LBC1936 donors. As more tissue becomes available we
will be able to draw unique correlationsbetween under-
lying pathology to the level of individual synapses with
premorbid longitudinal cognitiveperformance. Along
with the extensive biochemical, histopathological and
imaging data here, geneticfactors, biomarkers and
psycho-social factors can all be obtained from individ-
uals to drive real progress inour understanding of the
factors involved in normal cognitive ageing.

Additional files

Additional file 1: Figure S1. Summary of the array tomography
protocol. Numbered step-by-step flowchart summarizing the steps involved
in performing array tomography. Loosely separated into three sections; tissue

preparation (blue), imaging (green) and image analysis (orange). A full, detailed
protocol can be found in [34]. All ImageJ and MATLAB scripts are avail-
able on request. (PPTX 19 kb)

Additional file 2: Figure S2. Reference key for the semi-quantitative
neuropathology scoring. Representative images showing the range of
staining observed in the brains of our two cases. H + E stain is shown to
highlight the clear border between the grey and white matter (white
arrows), which was used to calculate cortical thickness. BA4 “score -”
represents no staining. Sections were given a “score +” if any plaques were
found. Scores “++” and “+++” represent clear increases in amyloid burden.
AT8 “score -” represents no staining. Sections were given a “score +”
if AT8-positive neurites were found, but no somatic tangles. Score “+
+” represents strong neuritic staining and a small number of somatic
tangles. Score “+++” represents strong diffuse neuritic labeling and
frequent somatic tangles. TDP-43 “score -” is given if the vast majority of
cells express TDP-43 only in the nucleus. Score “+” is given if the majority of
cells express TDP-43 in the nucleus, but also diffuse cytoplasmic labeling. Score
“++” means the nucleus is mostly clear of TDP-43 staining and strong, diffuse
cytoplasmic staining is evident. Score “+++” is given if the nucleus is
completely clear and the cytoplasm contains strongly labeled aggregates.
CD68 is not scored as “-” because microglia are always present. Score “+”
represents numerous CD68+ cells scattered through the section. Score “++”
is given if larger, complex cells with very dark staining are found. Score “++
+” is given if the section contains a majority of large, complex and heavily
stained cells. GFAP is not scored as “-” because astrocytes are always present.
Score “+” represents diffuse but weak staining of astrocytic processes and
cell soma. Score “++” is given if a few strongly labeled cell soma are evident,
along with heavily labeled processes. Score “+++” is given when a larger
number of strongly labeled cells are present. Ubiquitin is not scored as “-”
because ubiquitin is always present. Score “+” represents the appearance of
small cellular inclusions. Score “++” is given if ubiquitin-positive tangles are
found in some cell soma and neurites. Score “+++” is given if strongly
labeled cellular aggregates are present. Large scale bars = 150 μm
and inset bars = 30 μm. (PPTX 16598 kb)
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