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Abstract 

Background:  Over the last decade, reports about dengue cases have increase worldwide, which is particularly 
worrisome in South America due to the historic record of dengue outbreaks from the seventeenth century until the 
first half of the twentieth century. Dengue is a viral disease that involves insect vectors, namely Aedes aegypti and Ae. 
albopictus, which implies that, to prevent and combat outbreaks, it is necessary to understand the set of ecological 
and biogeographical factors affecting both the vector species and the virus.

Methods:  We contribute with a methodology based on fuzzy logic that is helpful to disentangle the main factors 
that determine favorable environmental conditions for vectors and diseases. Using favorability functions as fuzzy logic 
modelling technique and the fuzzy intersection, union and inclusion as fuzzy operators, we were able to specify the 
territories at biogeographical risk of dengue outbreaks in South America.

Results:  Our results indicate that the distribution of Ae. aegypti mostly encompasses the biogeographical framework 
of dengue in South America, which suggests that this species is the principal vector responsible for the geographical 
extent of dengue cases in the continent. Nevertheless, the intersection between the favorability for dengue cases and 
the union of the favorability for any of the vector species provided a comprehensive map of the biogeographical risk 
for dengue.

Conclusions:  Fuzzy logic is an appropriate conceptual and operational tool to tackle the nuances of the vector-ill-
ness biogeographical interaction. The application of fuzzy logic may be useful in decision-making by the public health 
authorities to prevent, control and mitigate vector-borne diseases.
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Background
Dengue is one of the diseases with most epidemiological 
global relevance in the last decades [1–9]. Over this cen-
tury, dengue has become a growing public health prob-
lem and about half of the world’s population is currently 
at risk of dengue infection [7, 8, 10–12]. This is especially 

a concern in South America, where historical records of 
dengue epidemic outbreaks report upsurges every three 
or five years from the seventeenth century until the first 
half of the twentieth century [13, 14].

Aedes mosquitoes, namely the yellow fever mosquito 
(Aedes aegypti) and the Asian tiger mosquito (Ae. albop-
ictus), are the most important dengue vectors in the 
world [15–17]. The number of studies about the mosqui-
toes of the genus Aedes as transmission vectors of human 
infectious diseases has recently increased remarkably 
[7, 10, 18–21]. Different authors have studied relevant 
aspects of mosquito-dengue relationships from phyloge-
netic [22], ecological [17–19], physicochemical [20, 23], 
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genetic [21] and biogeographical perspectives [7, 10, 24, 
25].

A biogeographical approach to the study of zoonotic 
diseases, known as pathogeography, has contributed with 
relevant advances in the knowledge of infectious dis-
ease macroecology and distribution [26–29]. It has also 
provided a proper analytical framework for the study 
of vector-illness interaction useful for management or 
surveillance. Species distribution models (hereinafter 
SDM) have been particularly used to investigate the envi-
ronmental drivers for the distribution of Aedes species 
[25], to map the global distribution of the Aedes species 
according to the effect of temperature [10, 25], precipita-
tion, and some land cover variables [7, 10], or to forecast 
the possible effects of climate change scenarios for Aedes 
species distributions [10]. Other studies also took into 
account economic information [4], or focused on pre-
dicting and determining the global burden of dengue [4, 
24]. However, the biogeographical framework of vector-
illness interaction that could reveal the large-scale risk of 
dengue occurrence remains poorly understood.

The current range occupied by Aedes mosquitoes (Ae. 
aegypti and Ae. albopictus) in South America is wider 
than the known dengue cases. For some reason not yet 
fully elucidated, there are territories occupied by Aedes 
vectors with and without dengue cases. This suggests 
that the relationship between the occurrence of Aedes 
mosquito populations and cases of dengue is not clear-
cut, and that a fuzzy-logic approach is worth consider-
ing. In contrast to crisp logic, Zadeh [30] proposed the 
fuzzy set theory, which avoids the use of discrete true-or-
false syllogisms, thus conferring a conceptual malleability 
suitable for real-life situations. Salski and Kandzia [31] 
emphasized the continuous character of nature, which 
implies that living beings are distributed in time and 
space essentially in a gradual and fuzzy manner. A fuzzy 
logic approach is consequently useful for processing and 
modelling environmental data [32]. Thus, the application 
of fuzzy logic could be helpful to recognize the biogeo-
graphical vector-illness interaction and the dynamism in 
the risk of dengue occurrence, and to establish the bio-
geographical framework in which the disease occurs.

Fuzzy logic led to the notion of environmental favora-
bility, a concept related to, but different from, probability 
of occurrence [33]. Favorability functions can be used in 
SDM, and are particularly helpful when models of several 
species are involved in the study, as they allow the com-
parison between models for species or cases differing in 
prevalence, using fuzzy logic tools [28, 34–38].

In this study, our aims were to establish the biogeo-
graphical context in which dengue cases occur in South 
America and to map the areas favourable for new cases 
to occur. We assessed vector-illness biogeographical 

relationship using fuzzy logic to determine the different 
environmental drivers that favor the occurrence of both 
Aedes vectors and of dengue cases. We aimed to identify 
the territories more at biogeographical risk of dengue 
outbreaks, which may be helpful in order to apply meas-
ures for the management and control of this recurrent 
disease.

Methods
Study area and species range
We analyzed Ae. aegypti, Ae. albopictus and dengue virus 
occurrences on a 0.5° × 0.5° grid (6430 cells of approxi-
mately 50  km × 50  km at the equator) to identify the 
biogeographical relationship between Aedes vectors and 
dengue cases. We used grids instead of geographical 
locations, thus solving a large part of the spatial autocor-
relation problems derived from sampling bias or obser-
vation spatial clustering. Dengue virus occurrences were 
obtained from global occurrence records published from 
1960 to 2012 in Messina et al. [5], with 731 grid cells with 
confirmed cases, which cover 11.37% of South America 
(Fig.  1). Aedes aegypti and Ae. albopictus occurrences 
were obtained from the global compendium of Aedes 
aegypti and Ae. albopictus occurrence [8] and from the 
Faculty of Science of the Republic University of Uruguay 
(inbuy​.fcien​.edu.uy, accessed in May 2017), with data 
spanning from 1960 to 2013, and from 1986 to 2014, 
respectively. Aedes aegypti was confirmed to occur in 
1688 cells whereas Ae. albopictus presence was con-
firmed in 957 cells, covering 26.25 and 14.88% of South 
America, respectively (Fig. 1).

Environment predictors and distribution modelling
We modelled the distribution of the two vector spe-
cies and of dengue virus occurrence (the target vari-
ables) on the basis of a set of explanatory variables that 
could potentially affect them at the spatial resolution 
here applied [39, 40] (Table 1). The explanatory variables 
were related to different environmental factors that could 
determine the area occupied by both Aedes species and 
the extent of dengue virus occurrence in South Amer-
ica: spatial configuration, topography, climate (rainfall 
and temperature), hydrology, land use and other human 
activities (Table 1).

To define the spatial structure of each distribution, we 
considered a polynomial trend-surface analysis [41] that 
included a quadratic and cube effect of latitude and lon-
gitude and interactions between them. Spatial structure is 
known to be functional in biogeography, as purely spatial 
trends derive from biological processes such as history, 
spatial ecology and population dynamics [42]. Spatial 
structure is known to be functional in biogeography, as 
purely spatial trends derive from biological processes 

http://inbuy.fcien.edu.uy
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such as history, spatial ecology and population dynam-
ics [42]. To define the spatial structure of each distribu-
tion, we considered a polynomial trend surface analysis 
[41] that included a quadratic and cube effect of latitude 
and longitude and interactions between them. For this, 
we performed a logistic regression of Ae. aegypti, Ae. 
albopictus and dengue virus distribution data on latitude 
(Lat), longitude (Lon), Lat2, Lon2, Lat3, Lon3, Lat × Lon, 
Lat2 × Lon and Lat × Lon2. Specifically, we performed 
a backward stepwise logistic regression with each event 
(both Aedes vectors and dengue cases) and those nine 
spatial terms as predictor variables in order to remove 

the non-significant spatial terms from models [41]. In 
this way, in the modelling procedure we included the 
resulting lineal combinations (ysp) as the spatial variable 
without non-significant spatial terms.

We used this spatial lineal combination (ysp) and the 
rest of variables listed in Table  1 (environmental fac-
tors) to produce distribution models according to all the 
explanatory factors together. To do this, we first analysed 
the effect of each explanatory variable on each target var-
iable on a bivariate basis, by performing a logistic regres-
sion of each target variable on each explanatory variable 
separately. So, as Miller et  al. [43] indicated, including 

Fig. 1  Study area and distribution data: a the grid of 0.5° latitude × 0.5° longitude squares in which the study area was divided to represent the 
occurrence data; b occurrence data of vectors and dengue infection cases. The grid layer was created with the tool “Create grid” of the software 
QGIS (www.qgis.org). The country layer was obtained from https​://www.natur​alear​thdat​a.com and licensed CC BY. The maps were developed using 
QGIS in the composer tool. The final composition was created using CorelDRAW X8

http://www.qgis.org
https://www.naturalearthdata.com
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the variation of the response variables separated into 
environmental and spatial components (represented by 
a trend surface of geographical coordinates) is a way to 
quantify the spatial dependence in distribution models 
([44, 45], among others). We controlled the false discov-
ery rate (FDR) with the aim of avoiding the increase in 
type I errors arising from the number of variables used 
in the analyses [46]. An explanatory variable was selected 
only when it was significantly related to the target vari-
able (P < 0.05) under a FDR of q < 0.05, with q being the 

false discovery rate. Then, we calculated Spearman cor-
relation coefficients to control multicollinearity between 
the selected explanatory variables. Out of any group of 
explanatory variables whose pairwise correlation value 
was higher than 0.80, we retained the variable most sig-
nificantly related with the distribution of the target vari-
able. In this way we obtained a filtered set of potentially 
explanatory variables for each target variable.

Finally, we performed a forward-backward step-
wise logistic regression of the target variable on the 

Table 1  Explanatory variables used in Ae. aegypti, Ae. albopictus and dengue virus models in South America. Climate variables which 
do not have a pairwise correlation value above 0.80 according to Spearmanʼs test are shown in bolditalic

a  Spatial variables, latitude and longitude, were generated using QGIS (www.qgis.org) according to the vector geometry tools: (i) with “centroids of polygons” the 
centroid of each grid was calculated, and (ii) with “Export/Add columns of geometry” values of length and latitude expressed in the 1984 World Geodetic System were 
assigned to each centroid (WGS84). The spatial variable used in the multivariate modelling procedure is the linear polynomial combination (ysp) resulting from a 
spatial logistic regression
b  United States Geological Survey. GTOPO30. Land Processes Distributed Active Archive Center. EROS Data Center, https​://www.usgs.gov/cente​rs/eros/scien​ce/usgs-
eros-archi​ve-digit​al-eleva​tion-globa​l-30-arc-secon​d-eleva​tion-gtopo​30?qt-scien​ce_cente​r_objec​ts=0#qt-scien​ce_cente​r_objec​ts. 1996 (Accessed April 2016)
c  WorldClim—Global Climate Data available. Described in: Fick, S. E. and R. J. Hijmans. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. 
International Journal of Climatology. 2017. In: http://www.world​clim.org/ (Accessed May 2016)
d  United States Geological Survey. HydroShed. Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales. Available in: http://hydro​sheds​
.cr.usgs.gov/index​.php/ (Accessed May 2016)
e  GlobCover 2009. Global land cover map. 2006. Avalaible at: http://due.esrin​.esa.int/page_globc​over.php (Accessed April 2016)
f  Gridded Population of the World (GPW), v4. Socioeconomic Data and Applications Center (SEDAC). A Data Center in NASA’s Earth Observing System Data and 
Information System (EOSDIS). Hosted by CIESIN at the Columbia University. 2010. (Accessed June 2016)
g  Natural Earth Data. North American Cartographic Information Society (NACIS). Available at: http://www.natur​alear​thdat​a.com/ (Accessed April 2016)
h  Diva-Gis 1.4, Plant Genetic Resources Newsletter. Available in: http://www.diva-gis.org/ (Accesed April 2016)

Abbreviation Variable Abbreviation Variable

SP Spatial lineal combination (ysp)a

Topography

 A Mean altitude (m)b S Slope (◦) (calculated from altitude)

 DA Difference altitude (m) (calculated from altitude) ON/S Orientation N/S (calculated from slope)

Climatic variables

 BIO1 Mean annual temperature (°C)c BIO11 Mean annual temperatures of the coldest quarter (°C)c

 BIO2 Mean diurnal range temperatures (°C)c BIO12 Annual precipitation (mm)c

 BIO3 Isotermality (BIO2/BIO17)(*100) (°C)c BIO13 Precipitation of the wettest month (mm)c

 BIO4 Seasonal temperatures (°C)c BIO14 Precipitation of the driest month (mm)c

 BIO5 Maximum temperatures of the warmest month (°C)c BIO15 Seasonal precipitation (coeficiente de variación) 
(mm)c

 BIO6 Minimum temperatures of the coldest month (°C)c BIO16 Precipitation of wettest quarter (mm)c

 BIO7 Annual temperatures range (BIO5–BIO6)c BIO17 Precipitation of dry quarterc

 BIO8 Mean annual temperatures of the wetter quarterc BIO18 Precipitation of warmest quarterc

 BIO9 Mean annual temperatures of the dry quarterc BIO19 Precipitation of coldest quarterc

 BIO10 Mean annual temperatures of the warmest quarterc

Hydrology

 DistRiver Minimum distance to rivers (km)d SumRiver Sum of km of rivers per grid (km)d

Land use

 Forests Forests (%)e Crops Crops (%)e

 NatField Natural field (%)e BareSoil Bare soil (%)e

 FlooVeg Flooding vegetation (%)e

Human activities

 PopDen Population densityf DistRoad Minimum distance to paved roads (km)h

 DistUrban Minimum distance to urban centers (km)g

http://www.qgis.org
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30%3fqt-science_center_objects%3d0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30%3fqt-science_center_objects%3d0#qt-science_center_objects
http://www.worldclim.org/
http://hydrosheds.cr.usgs.gov/index.php/
http://hydrosheds.cr.usgs.gov/index.php/
http://due.esrin.esa.int/page_globcover.php
http://www.naturalearthdata.com/
http://www.diva-gis.org/
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polynomial combination of the spatial structure (ysp) 
and the filtered set of environmental variables, which 
produced increasingly more complex multivariate mod-
els while avoiding the inclusion of redundant variables. 
We used Akaike’s information criterion (AIC) to select 
the multivariate model that best-balanced information 
and parsimony (AIC; [47]). All analyses mentioned so far 
were performed with the fuzzySim R package [38]. Then, 
we evaluated the relative weight of each variable included 
in the models through the Wald parameter [48] using the 
survey package [49, 50]. Variables with non-significant 
coefficients left in the model (Chi-square test, P < 0.05) 
were eliminated until we obtained a model with all the 
coefficients significantly different from zero according to 
Crawley’s [51] procedure.

Then we used the Favorability Function according to 
Real et al. [33] and Acevedo and Real [52].

where F is the environmental favorability (ranging 
between 0 and 1), P is the probability of occurrence 
obtained from the multivariate logistic regression per-
formed for each target variable, n1 is the number of pres-
ences and n0 in the number of absences, in each case. 
This analysis was carried out with the fuzzySim R pack-
age [38].

Favorability values factor out the weight of the initial 
species presence/absences ratio, inherent to any prob-
ability function [33, 52] and, thus, depend exclusively on 
the effect of the environmental conditions of the terri-
tory on the distribution under analysis. In addition, local 
favorability reflects the degree of membership of the 
locality in the fuzzy set of areas favorable for the occur-
rence of the event, so allowing the comparison between 
models through fuzzy logic tools [36, 52].

In this way, we obtained favorability models for the 
occurrence of the two Aedes vectors (Ae. aegypti and 
Ae. albopictus) and of dengue in South America, F-Ae. 
aegypti, F-Ae. albopictus and F-dengue, respectively. We 
evaluated the discrimination and classification capacity 
of the models with the modEva R package [53]. The dis-
crimination ability of the models was evaluated using the 
area under the curve (AUC) [54], and the classification 
capacity was estimated through the model sensitivity, 
specificity, kappa and correct classification rate (CCR), 
using the value of F = 0.5 as classification threshold. We 
checked the autocorrelation spatial using the Moran’s I 
spatial autocorrelation statistic from the residuals of the 
models [55].

According to the thresholds proposed by Muñoz and 
Real [56], we calculated the number of grid cells in each 
South American country classified as highly favorable 
(F ≥ 0.8), for which the favorability odds are more than 

F = [P/(1− P)]
/[

(n1/n0)+
(

P
/

[1− P]
)]

4:1 in favor, hereinafter at high risk, and of intermedi-
ate favorability (0.2 < F < 0.8), which odds are under 4:1 
and above 1:4 in favor, hereinafter vulnerable, for Aedes 
vectors, for dengue cases, and for vector-dengue cases 
simultaneously (see below).

Biogeographical vector‑dengue relationships and dengue 
risk maps
We used the fuzzy modelling approach to assess the vec-
tor-dengue biogeographical interaction in South Amer-
ica. The logic underlying fuzzy sets was applied to the 
favorability function to indicate to what degree each grid 
cell belongs to the set of favorable areas for the presence 
of each species [52]. Then we used fuzzy logic tools to 
analyze the fuzzy vector-dengue biogeographical interac-
tions and to detect the territories at high risk or vulner-
able to new dengue cases.

Based on the values of F-Ae. aegypti, F-Ae. albopictus 
and F-dengue models, we calculated the fuzzy intersec-
tion (minimum favorability value for two events at a given 
location) [30] to identify the fuzzy set of areas simulta-
neously favorable for dengue outbreaks and for any of 
the two species separately (i.e. F-Ae. aegypti ∩ F-dengue 
and F-Ae. albopictus ∩ F-dengue). Then, we analyzed 
how the favorability for each vector presence and for the 
occurrence of dengue cases changed along the gradi-
ent of favorability intersection (i.e. of shared favorability 
for both vector and disease). To this aim, we established 
10  bins of equal-range F-Ae. aegypti ∩ F-dengue values 
and F-Ae. albopictus ∩ F-dengue values and calculated 
in each bin the average favorability values for the corre-
sponding vector species and for dengue virus. If the vec-
tor species is a limiting factor in the distribution of the 
disease, then the favorability for dengue should be equal 
to or lower than that for the mosquito along the shared 
favorability range.

We also calculated to what extent the favorable areas 
for dengue (F-dengue) are contained in those for F-Ae. 
aegypti and for F-Ae. albopictus models, by applying the 
fuzzy inclusion equation [57]:

which indicates how much the set A is included in the set 
B. In this way, we calculated the inclusion of one into the 
other for the models F-Ae. aegypti, F-Ae. albopictus and 
F-dengue, and also for vector-dengue intersections (i.e. 
F-Ae. aegypti ∩ F-dengue and F-Ae. albopictus ∩ F-den-
gue). Those fuzzy inclusion operations are defined in 
terms of the cardinal of each fuzzy set (i.e. the sum of the 
favorabilities values of all the grids). Thus, for example, 
the cardinal of F-Ae. aegypti ∩ F-dengue divided by the 

I(A,B) =
|A ∩ B|

|A|
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cardinal of F-dengue indicates the degree of inclusion of 
the distribution of dengue into that of Aedes aegypti.

To obtain the comprehensive biogeographical risk map 
for dengue in South America in the current context of 
vector-dengue biogeographical relationship, we identified 
the fuzzy set of areas simultaneously favorable for den-
gue outbreaks and for any of the two vector species. To 
do this we first calculated the fuzzy union of the favora-
bility for any vector species, F-Ae. aegypti ∪ F-Ae. albop-
ictus (or maximum favorability value for any of them), 
which can identify the fuzzy set of areas favorable to 
either vector species [30]. Then, we calculated the fuzzy 
intersection between F-Ae. aegypti ∪ F-Ae. albopictus and 
F-dengue [(F-Ae. aegypti ∪ F-Ae. albopictus) ∩ F-dengue].

Results
Favorable conditions for vectors and dengue cases
The variables that were significantly associated with the 
occurrence of each vector species and with dengue cases 
are shown in Table 2 (Additional file 1: Table S1). All the 
factors explained to some extent the occurrence of both 
vectors and dengue, with the exception of the hydrology 
for Ae. albopictus and hydrology and land use for dengue.

The distribution of dengue was favored in territories 
of a certain elevation (435.06 m.a.s.l. on average), of pre-
dominant orientation towards the south, of high mean 
annual temperatures (23.13 °C on average), with low pre-
cipitation in the colder months (185.86 mm on average), 
few differences between maximum and minimum precip-
itations, high population density (221 inhabitants/km2 on 

average) and moderate distance to urban centers (7750 m 
on average).

The distribution of both Aedes vectors was favored by 
similar variables with similar effect (positive or negative), 
except for the land use factor. A high proportion of crops 
was favorable for Ae. aegypti while it was unfavorable for 
Ae. albopictus. According to the Wald test, in both Ae. 
aegypti and dengue models, the three most explanatory 
variables were the spatial structure, closeness to urban 
centers and mean annual temperature (Table 2). The spa-
tial structure, North-South orientation and proximity to 
urban centers were the three most explanatory variables 
for Ae. albopictus.

In Fig.  2 we show the cartographic favorability mod-
els for the vector species and for dengue (F-Ae. aegypti, 
F-Ae. albopictus and F-dengue) separately, with values 
grouped in three favorability classes: F values lower than 
0.2 indicate low favorability, values between 0.2 and 0.8 
indicate vulnerable areas, and values higher than 0.8 
indicate areas at high risk [58]. The F-Ae. aegypti model 
depicted a large principal nucleus of high risk in Brazil, 
and some dispersed high-risk cells in Venezuela, Colom-
bia, Peru, Paraguay, Argentina and Uruguay. The F-Ae. 
albopictus map revealed a main high-risk nucleus in Bra-
zil, and some dispersed high-risk cells in Colombia and 
Peru. The F-dengue model detected two main nuclei of 
high risk for the occurrence of dengue cases, one in Bra-
zil and another, more dispersed, in Venezuela, Colom-
bia and Ecuador. Some dispersed high-risk cells are also 
found in Peru, Guyana, Surinam, Paraguay and Uruguay. 
The F-dengue model detected at least one vulnerable 

Table 2  Predictor variables included in Ae. aegypti, Ae. albopictus and dengue cases favorability models. Signs in brackets show the 
positive or negative relationship between favorability and the variables in the models. The Wald parameter indicates the relative 
weight of every variable in each model. Variable abbreviations are given in Table 1

Environmental factor Ae. aegypti Wald Ae. albopictus Wald Dengue cases Wald

Spatial situation Sp 1221.597 Sp 770.6308 Sp 252.8375

Topography A (−) 15.03676 A (+) 30.7381

O N/S (+) 21.09944 ON/S (+) 65.61643 ON/S (+) 13.52308

S (+) 11.75523 S (+) 8.108446

Climatic BIO1 (+) 73.15295 BIO1 (+) 24.7797 BIO1 (+) 83.51969

BIO7 (+) 7.520641 BIO7 (+) 18.91607

BIO12 (+) 8.464809 BIO12 (+) 32.34416

BIO15 (−) 11.84533

BIO19 (−) 17.86841 BIO19 (−) 25.6279

Hydrology SumRiver (−) 10.33488

Land use Crops (+) 19.87312 Crops (−) 6.809295

NatFields (−) 6.809295

Human activities PopDen (+) 21.1916 PopDen (+) 7.74626 PopDen (+) 33.15417

DistUrban (−) 148.1178 DistUrban (−) 43.05502 DistUrban (−) 173.8293

DistRoad (−) 7.287445
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grid cell (0.2 < F < 0.8) in every South American country. 
Although only 11.37% (731 squares) of the total analyzed 
squares (n = 6430) have recorded dengue cases, 60.14% 
(3867) of the squares showed at least vulnerable condi-
tions (F > 0.2) according the F-dengue model, while 8.94% 
of the cells (575) were at high risk (F ≥ 0.8).

Both Aedes and dengue favorability models attained 
general acceptable scores according to the parameters 

considered to assess discrimination and classification 
capacities (Table  3). Discrimination (AUC) was always 
higher than 0.86, which is “excellent” according to Hos-
mer and Lemeshow [59]. Sensitivity values were always 
higher than 0.79, specificity was always higher than 0.74 
and CCR was higher than 0.75. Kappa was higher than 
0.6 for both Aedes vectors, which is “substantial” accord-
ing to Landis and Kock [60]; it was 0.31, which is “fair”, 

Fig. 2  Favorability models of: a Aedes aegypti, b Ae. albopictus and c dengue cases. Favorable areas are shown in black (favorability values or 
F ≥ 0.8), grey (0.2 < F < 0.8) and white (F ≤ 0.2). The arrows show inclusion values between the different models, one into the other. The maps were 
developed using QGIS (www.qgis.org) in the composer tool. The final composition was created using CorelDRAW X8

http://www.qgis.org
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for dengue cases. On the other hand, according to the 
analysis of residuals, we detected a minor autocorrelation 
(Moran’s I < 0.019), or approximately zero, below 1600 
km and only in the Ae. albopictus model. These results 
indicate that there is no relevant spatial autocorrela-
tion resulting from sampling bias with the grid system 
employed [55]. None of the Moran’s I-values were signifi-
cant in the Ae. aegypti or the dengue models. The residu-
als did not show problems of spatial autocorrelation in 
our models and therefore we did not find relevant effects 
of spatial autocorrelation that invalidate our results.

Vector‑dengue biogeographical interactions
Compared to the F-dengue model, both vector-disease 
intersections improved classification capacity according 
to kappa, CCR and specificity, whereas sensitivity and 
discrimination capacity decreased (Table 3).

In Fig.  3 we show the fuzzy intersection between the 
favorability for dengue and vector species for both Ae. 
aegypti and Ae. albopictus in South America. Aedes 
aegypti and dengue favorability values increased together 
until a fuzzy intersection of 0.5 was reached; then, both 
continued to increase with higher favorability values 
for the mosquito (Fig. 3a). The intersection between Ae. 
albopictus and dengue favorability values indicated that 
dengue cases had higher favorability values than the mos-
quito up to fuzzy intersection = 0.3; after that point, the 
vector showed higher favorability values than the disease.

According to the intersection between F-Ae. aegypti 
and F-dengue (Table 4), nine of the 14 South American 
countries have more than 50% of the country surface 
area at least vulnerable (F > 0.2) to dengue-cases occur-
rence transmitted by Ae. aegypti. In contrast, only Bra-
zil has more than 50% of the country at least vulnerable 
(F > 0.2) to dengue-cases occurrence transmitted by Ae. 
albopictus. Seven South American countries have some 
locations at high risk (F ≥ 0.8) based on the intersection 
between F-Ae. aegypti and F-dengue. Two countries, 

Brazil and Peru, have locations at high risk of dengue 
occurrence due to Ae. albopictus, based on the intersec-
tion between the F-Ae. albopictus and F-dengue models 
(Table 4).

Fuzzy‑inclusion relationships between models
In Fig.  2 we show the values for F-Ae. aegypti, F-Ae. 
albopictus and F-dengue inclusion into one another and 
in Fig.  3 the values of the inclusion of the two vector-
dengue intersections one into the other. The main results 
were that F-dengue was included in a higher proportion 
into F-Ae. aegypti (0.75) than into F-Ae. albopictus (0.55), 
and that the intersection F-Ae. albopictus ∩ F-dengue was 
more included into the F-Ae. aegypti ∩ F-dengue (0.99) 
model than vice versa (0.69).

Dengue risk map in the current biogeographical context 
of vector‑dengue interaction
In Fig. 4, we show the comprehensive map of areas at high 
risk and vulnerable to dengue cases due to the two vec-
tor species combined, resulting from F-dengue ∩ (F-Ae. 
aegypti ∪ F-Ae. albopictus).

Discussion
Environmental drivers of Aedes vectors and dengue cases 
in South America
Many studies have explained the occurrence of both 
Aedes species in South America in terms of only climate 
[10, 25], climate and some land cover variables [7], or 
climate and economic information [4]. In general, they 
detected that temperature was the main factor limiting 
the distribution of the two Aedes species. In contrast, our 
favorability models detected a more complex pattern of 
drivers for the presence of these vectors (Table  2). Spa-
tial structure and closeness to urban centers were among 
the most relevant variables for both Aedes species, while 
mean  annual temperature was more  important for 

Table 3  Comparative assessment of models for Aedes aegypti, Ae. albopictus and dengue cases, as well as the fuzzy intersection 
between the vector species and dengue cases, according to their discrimination and classification capacity

Abbreviations: AUC, area under the ROC (receiving operating characteristic) curve; CCR, correct classification rate

Evaluation indices Favorability models Vector-dengue favorability intersection

Ae. aegypti Ae. albopictus Dengue cases Ae. aegypti ∩ dengue Ae. albopictus ∩ dengue

Discrimination

 AUC​ 0.914 0.966 0.862 0.844 0.794

Classification

 Sensitivity 0.791 0.918 0.819 0.640 0.511

 Specificity 0.871 0.901 0.742 0.848 0.881

 CCR​ 0.850 0.903 0.751 0.824 0.839

 Kappa 0.630 0.682 0.312 0.358 0.329
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Ae. aegypti and topography was more relevant for Ae. 
albopictus.

The most important drivers of dengue cases, according 
to our model, are the same as those favoring Ae. aegypti, 
including temperature (Table  2), which coincides with 
the conclusion of Capinha et al. [61]. As Campbell et al. 
[10] suspected, requirements for the presence of Ae. 
aegypti in South of America better reflect the risky envi-
ronmental conditions for dengue occurrence than those 
for Ae. albopictus. Our results also concur with what 
Messina et  al. [62] and Brady et  al. [25] suggested, that 
the distribution of dengue occurrences is better modelled 

by incorporating drivers of different nature, such as cli-
mate, topography and human activities.

Distribution of favourable areas
Although our explanatory models were more complex 
than those previously described, we detected favorable 
regions for both Aedes species coarsely similar to those 
described by other authors [7, 10, 25]. Areas highly 
favorable for Ae. albopictus were mostly located in 
Brazil and Paraguay (Fig.  2). High-favorability territo-
ries for Ae. aegypti were more concentrated in eastern 
South America, in Brazil, and some high-favorability 

Fig. 3  Plots and maps show the fuzzy intersection (simultaneous favorability) between the favorability for: a Ae. aegypti and dengue infection cases; 
and b favorability for Ae. albopictus and dengue infection cases. Fuzzy intersection values are shown on the horizontal axes (ranging from 0.1 to 
1), grouped in 10 bins of values of equal favorability range. The average favorability values for both mosquito vectors in each bin are represented 
by solid lines and filled squares, and for dengue infection cases by dashed lines and blank circles, (on the left vertical axes ranging from 0 to 1). 
Columns represent the percentage of grid cells at each fuzzy intersection bin (on the right vertical axes). On maps, the arrows show inclusion values 
between both fuzzy intersection models (ranging from 0 to 1). The graphics were made using LibreOffice (https​://es.libre​offic​e.org). The maps were 
developed using QGIS (www.qgis.org) in the composer tool. The final composition was created using CorelDRAW X8

https://es.libreoffice.org
http://www.qgis.org
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territories reached further south than those indicated 
by Kraemer et al. [7], particularly in Uruguay (Fig. 2).

The dengue favorability model got lower discrimina-
tion and classification scores than the vector models 
(Table  3). This may result from the fact that, as other 
authors have pointed out [63, 64], accuracy of distri-
bution models gets worse when a distribution is more 
poorly known. The published distribution data of this 
disease shows a scattered pattern that point to some 
possible bias in the quality of dengue-virus infection 
reports, despite the effort of Messina et al. [14]. Never-
theless, Bhatt et al. [24], by using descriptors based on 
climate, vegetation and human variables, described a 
pattern of dengue risk in South America similar to our 
F-dengue model (Fig. 2). However, they did not define 
risk areas in southern countries such as Chile and Uru-
guay, while we obtained areas vulnerable or at high risk 
in these countries. These areas represent a risk for den-
gue that was hidden up to now (Fig. 2). In the case of 
Chile, the vulnerable zones are restricted to a few low-
altitude grids that were also favorable for Ae. aegypti. 
It should be noted that we found areas at high risk and 
vulnerable in many squares neighboring those with 
reported cases. This suggests that, although these areas 
are apparently dengue-free, they are in fact at high risk, 
and extreme precautions and management, control and 
prevention plans should be applied there.

The greatest risk for the disease in South America 
may be considered to occur in areas favourable to den-
gue (F-dengue) with reported presence of vectors Aedes 
aegypti and/or Ae. albopictus (Figs.  2, 4): much of Bra-
zil and scattered regions of Venezuela, Colombia, Peru 
and Paraguay for Ae. aegypti; and much of Brazil for Ae. 
albopictus. The case of Uruguay is particularly interest-
ing. In this country, the F-dengue model detected vulner-
able locations in areas where no dengue cases had been 
reported for a century [11]. Uruguay was classified by 
Brady et al. [65] as with complete or good evidence con-
sensus on dengue absence. However, in the summer of 
2016, about 20 cases of indigenous dengue occurred in 
Montevideo city [11], specifically where our F-dengue 
model indicated a high risk of dengue occurrence (Fig. 4). 
Taking into account that these cases have not been con-
sidered as presences for model training in this work, this 
supports the predictive capacity of our model. According 
to Real et al. [66], the favorability function may be con-
sidered to be, for the distribution of species, analogous to 
what the wave function is for the distribution of quantum 
particles, a mathematical conceptualization of the forces 
that are behind the distribution of the species. This being 
the case, favorability values could be a better representa-
tion of the distribution of a species than the dataset of 
specific observations, which are always incomplete and 
contingent on the observation effort.

Table 4  Percentages of the country surface with intermediate and high risk (F > 0.2, and F ≥ 0.8, respectively) of both vectors (Aedes 
aegypti and Ae. albopictus), of dengue cases, and of vector-dengue favorability intersection (with respect to the total number of grid 
cells per country in the leftmost column). Countries were ordered from highest to lowest percentage of the country surface of dengue 
cases detected in Messina et al. [5]

Country Cells by country % of risk for Ae. 
aegypti

% of risk for Ae. 
albopictus

% of risk for 
dengue cases

% of risk 
intersection 
F-Ae. aegypti-F-
dengue

% of risk 
intersection 
F-Ae. albopictus-
F-dengue

% of the country 
with dengue 
cases

F > 0.2 F ≥ 0.8 F > 0.2 F ≥ 0.8 F > 0.2 F ≥ 0.8 F > 0.2 F ≥ 0.8 F > 0.2 F ≥ 0.8

Brazil 2860 84.056 42.343 58.776 33.741 69.720 16.049 67.552 15.839 53.497 14.196 16.958

Colombia 349 48.424 1.146 19.198 1.146 70.201 11.461 57.593 1.146 21.490 0.000 13.181

Venezuela 365 60.274 0.274 4.932 0.000 64.932 11.781 47.397 0.274 2.740 0.000 11.507

Peru 509 29.666 0.393 4.322 0.196 79.371 0.786 25.344 0.393 4.322 0.196 8.251

Bolivia 325 60.000 0.000 5.538 0.000 91.385 0.000 76.615 0.000 8.000 0.000 11.692

Paraguay 182 89.560 4.396 40.659 2.747 97.253 3.846 87.363 1.099 40.659 0.000 19.780

Argentina 1062 13.653 0.094 0.659 0.094 19.115 0.188 10.829 0.094 0.659 0.000 1.507

Ecuador 82 46.341 0.000 12.195 0.000 96.341 15.854 46.341 0.000 12.195 0.000 18.293

French Guyana 32 78.125 0.000 15.625 0.000 62.500 0.000 53.125 0.000 9.375 0.000 12.500

Guyana 72 58.333 0.000 4.167 0.000 58.333 1.389 61.111 0.000 5.556 0.000 5.556

Surinam 65 73.846 3.077 7.692 0.000 63.077 1.538 63.077 0.000 7.692 0.000 4.615

Chile 423 1.182 0.000 0.236 0.000 12.530 0.236 1.182 0.000 0.236 0.000 0.000

Uruguay 93 93.548 2.151 1.075 0.000 68.817 2.151 67.742 2.151 0.000 0.000 0.000

Panamá 11 100.000 0.000 27.273 0.000 100.000 18.182 54.545 0.000 9.091 0.000 0.000
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The biogeographical context of dengue risk
In agreement with the proposal of Messina et al. [62], our 
approach of biogeographical modelling and fuzzy logic 
applied to the interaction with Aedes vectors has proved 
to be a useful method for unravelling the biogeographi-
cal context of dengue cases. The maximum simultaneous 
vector-dengue favorability occurs in much of Brazil for 
both species (Fig.  3). Additionally, some scattered areas 
of Colombia, Venezuela, Paraguay, Peru and Uruguay are 
simultaneously favorable for Aedes aegypti and dengue 
occurrence, all of them areas where disease cases have 
been recorded.

The F-dengue model was more included into the F-Ae. 
aegypti model than into F-Ae. albopictus (Fig. 2), which 
indicates that the favorability for Ae. aegypti explained 
to a higher extent than that for Ae. albopictus the den-
gue cases in South America. Coinciding with Campbell 

et  al. [10], these results indicate that the distribution of 
Ae. aegypti mostly encompasses the biogeographical 
framework of dengue in South America, which also sug-
gests that this species is the principal vector responsi-
ble for the dengue cases in the continent. Some authors 
already reported that the increase in the cases of dengue 
in Brazil and Argentina, for example, was directly linked 
to the expansion of Ae. aegypti [67–69]. Brathwaite et al. 
[13] also found a relationship between an increase in dis-
persion of Ae. aegypti between 2001 and 2010 in America 
and a corresponding increase in dengue virus circulation. 
In our analyses, compared to the model built on dengue 
cases alone, the model based on the intersection between 
dengue and Ae. aegypti included 26% more no-case-
record locations within areas of low risk (F ≤ 0.2), i.e. 
had a higher specificity (Table 3). This corroborates that 
incorporating vector information in the biogeographi-
cal analysis of disease drivers provides a more plausible 
explanation about the pattern of cases occurrence [28, 
29], which was previously suggested specifically for den-
gue as well [10, 62].

Although both mosquito species are known to act as 
vectors of dengue, 99% of the F-Ae. albopictus ∩ F-den-
gue model was included in the F-Ae. aegypti ∩ F-dengue 
model (Fig. 3). In addition, while the favorability for Ae. 
aegypti seems to effectively limit that for dengue (Fig. 3a), 
this does not happen with the favorability for Ae. albopic-
tus, particularly when the favorability for the mosquito is 
0.3 or lower (Fig. 3b). Consequently, in South America, in 
order to manage the epidemiological risk of new dengue 
cases, the intersection between Ae. aegypti and dengue 
favorability should be used as a the most parsimonious 
map of dengue risk. Nevertheless, a few territories at risk 
of dengue were attributed exclusively to the F-Ae. albop-
ictus model. Therefore, the most appropriate risk map 
should include the interaction of all vectors and cases of 
dengue, which can be readily obtained using fuzzy logic. 
The fuzzy intersection between the favorability for den-
gue cases and the fuzzy union of the favorability for any 
of the vector species provided a comprehensive map of 
the biogeographical risk for dengue (Fig. 4). This proposal 
of a risk map for dengue in South America is based on 
the geographical-environmental, disease-trait and human 
profiling that constitute the starting point for risk assess-
ments in pathogeography [29].

Conclusions
Our results corroborate that incorporating vector infor-
mation in the biogeographical analysis of disease drivers 
provides a more plausible explanation about the pat-
tern of cases occurrence, and confirm that fuzzy logic is 
an appropriate conceptual and operational tool to deal 
with the nuances of the vector-illness biogeographical 

Fig. 4  Dengue risk map in South America in the current 
biogeographical context of vector-dengue interaction. The map 
shows the intersection favorability values between the union of the 
favorability for the two mosquito species with the favorability for 
dengue (F-Ae. aegypti ∪ F-Ae. albopictus) ∩ F-dengue. The maps were 
developed using QGIS (www.qgis.org) in the composer tool. The final 
composition was created using CorelDRAW X8

http://www.qgis.org
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interactions. Thus, the application of fuzzy logic may help 
health authorities to better prevent, control and mitigate 
vector-borne diseases.
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