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Comparative effect of intraduodenal and intrajejunal glucose
infusion on the gut–incretin axis response in healthy males
T Wu1,2, SS Thazhath1,2, CS Marathe1,2, MJ Bound1,2, KL Jones1,2, M Horowitz1,2 and CK Rayner1,2

The region of enteral nutrient exposure may be an important determinant of postprandial incretin hormone secretion and blood
glucose homoeostasis. We compared responses of plasma glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic
polypeptide (GIP), insulin and glucagon, and blood glucose to a standardised glucose infusion into the proximal jejunum and
duodenum in healthy humans. Ten healthy males were evaluated during a standardised glucose infusion (2 kcal min− 1 over
120min) into the proximal jejunum (50 cm post pylorus) and were compared with another 10 healthy males matched for ethnicity,
age and body mass index who received an identical glucose infusion into the duodenum (12 cm post pylorus). Blood was sampled
frequently for measurements of blood glucose and plasma hormones. Plasma GLP-1, GIP and insulin responses, as well as the
insulin:glucose ratio and the insulinogenic index 1 (IGI1) were greater (Po0.05 for each) after intrajejunal (i.j.) than intraduodenal
glucose infusion, without a significant difference in blood glucose or plasma glucagon. Pooled analyses revealed direct
relationships between IGI1 and the responses of GLP-1 and GIP (r= 0.48 and 0.56, respectively, Po0.05 each), and between
glucagon and GLP-1 (r= 0.70, Po0.001). In conclusion, i.j. glucose elicits greater incretin hormone and insulin secretion than
intraduodenal glucose in healthy humans, suggesting regional specificity of the gut–incretin axis.
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INTRODUCTION
Roux-en-Y gastric bypass leads to remarkable improvements in
glycaemic control in type 2 diabetes, associated with an enhanced
incretin effect (the phenomenon of an amplified insulin response
to enteral vs intravenous (i.v.) glucose, mediated by glucagon-like
peptide-1 (GLP-1) and glucose-dependent insulinotropic polypep-
tide (GIP)).1,2 This may relate to diversion of nutrients more distally
in the small intestine, as similar benefits are observed with the
endoluminal sleeve device.3 We hypothesised that bypassing the
duodenum would elicit a greater response of the gut–incretin axis
to small intestinal glucose infusion, and compared plasma GLP-1,
GIP, insulin and glucagon, and blood glucose responses to
a standardised glucose infusion into the proximal jejunum and
duodenum in healthy humans.

SUBJECTS AND METHODS
Ten healthy males received an intrajejunal (i.j.) glucose infusion;
data regarding blood glucose, and plasma insulin, glucagon and
GLP-1 have been reported previously.4 These, together with
plasma GIP, were compared with 10 healthy males who received
an intraduodenal (i.d.) glucose infusion (Table 1). All subjects
provided written, informed consent. Protocols were approved by
the Royal Adelaide Hospital Human Research Ethics Committee.
On the evening before each study (~1900 hours), each subject

consumed a standardised beef lasagne meal (McCain, Wendouree,
VIC, Australia), and then fasted from solids and refrained from
liquids after 2200 hours. Subjects attended the laboratory at
~ 0800 hours the following day, when a multilumen silicone

catheter (Dentsleeve International, Ontario, Canada) was posi-
tioned transnasally in either the duodenum or proximal jejunum
(infusion port: 12 vs 50 cm beyond the pylorus) by peristalsis, with
monitoring of antral and duodenal transmucosal potential
difference.4 In the i.j. study, a balloon was inflated 30 cm beyond
the pylorus to exclude the duodenum.4 Enteral glucose was then
infused at 2 kcal min− 1 for 120min (t= 0–120min). An i.v. cannula
was inserted into a forearm vein for blood sampling. Blood
samples were collected at frequent intervals into ice-chilled EDTA
tubes and immediately centrifuged at 3200 r.p.m., for 15min at 4 °C.
Plasma was separated and stored at − 70 °C until analysed.
Blood glucose was measured by glucometer (Medisense

Precision QID, Bedford, MA, USA). Plasma total GLP-1 was
measured by radioimmunoassay (GLP1T-36HK; Linco Research,
St Charles, MO, USA) with a sensitivity of 3 pmol l− 1, and intra- and
inter-assay coefficients of variation (CVs) of 6.8% and 8.5%,
respectively. Plasma total GIP was measured by radioimmunoas-
say modified from a previously published method,5 with
a sensitivity of 2 pmol l− 1, and intra- and inter-assay CVs of 5.1%
and 8.8%, respectively. Plasma insulin was measured by enzyme-
linked immunosorbent assay (10-1113; Mercodia, Uppsala,
Sweden) with a sensitivity of 1 mU l− 1 and intra- and inter-assay
CVs of 2.7% and 7.8%, respectively. Plasma glucagon was
measured by radioimmunoassay (GL-32 K; Millipore, Billerica, MA,
USA) with a sensitivity of 20 pgml− 1, and intra- and inter-assay
CVs of 15% and 10.5%, respectively.
Student’s unpaired t-test was used to compare subject

demographics, fasting biochemical measures and insulinogenic
index 1 (IGI1), which was calculated from insulin (I) and glucose (G)
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concentrations, as (I30-I0)/(G30-G0), to evaluate β-cell responsiveness.6

Two-way analysis of variance, with treatment and time as factors,
was used to compare responses between the two studies.
Pearson’s correlation was used to assess relationships between
integrated area under the curve (ΔAUC), calculated using the
trapezoidal rule, for incretin hormones and both IGI1 and ΔAUC
for glucagon. Analyses were performed using Prism 6.0 software
(GraphPad, La Jolla, CA, USA). Data are represented as mean± s.e.;
Po0.05 (two sided) was considered statistically significant.

RESULTS
Demographics and fasting values did not differ between the two
studies (Table 1). During enteral glucose infusion, plasma GLP-1
increased substantially with i.j. administration (time effect:
Po0.001), but minimally with i.d. delivery (time effect:
P= 0.003), and was greater for i.j. than i.d. glucose (treatment
effect: P= 0.037). Plasma GIP increased promptly on both days
(time effect: Po0.001), and concentrations were also greater with
i.j. glucose (treatment effect: P= 0.017). Blood glucose concentra-
tions increased to ~ 8mmol l− 1 on both days, and were
numerically, but not significantly, lower with i.j. glucose. However,
plasma insulin, the insulin:glucose ratio and IGI1 (12.0 ± 1.4 vs
5.6 ± 1.3 mUmmol− 1) were all greater with i.j. glucose (treatment
effect: Po0.05 for all). Plasma glucagon did not change with i.j.
glucose, but fell slightly with i.d. glucose (time effect: Po0.001),
without significant difference between the two (Figure 1).
On pooling data from all 20 subjects, IGI1 was related directly to

ΔAUC for total GLP-1 and GIP (r= 0.48, P= 0.036 and r= 0.56,
P= 0.012, respectively). ΔAUC for glucagon was related directly to
ΔAUC for GLP-1 (r= 0.70, Po0.001), but not GIP.

CONCLUSION
We showed that i.j. glucose elicited greater incretin and insulin
release than i.d. glucose in healthy males, supporting the concept
that directing nutrients more distally in the small intestine could
ameliorate type 2 diabetes. Blood glucose did not differ
significantly, probably because of the modest glycaemic excursion
in these healthy individuals. However, we cannot rule out a type 2
error due to the small size of each group.
Enteral glucose was delivered at 2 kcal min− 1 on both days,

which is within the physiological range of gastric emptying.7 The
infusion site was 38 cm more distal in the i.j. study; given that the
small intestine can absorb glucose at 2 kcal min− 1 per 30 cm in
health,8,9 this would have allowed substantially greater interaction
of glucose with more distal gut regions where GLP-1-releasing
L-cells are more abundant. This is consistent with observations of
enhanced GLP-1 secretion after implantation of a duodenal-jejunal
sleeve.3 Alternatively, exclusion of the duodenum may have a role
in ameliorating diabetes (the ‘foregut hypothesis’).10 The relative

contribution of more distal gut exposure vs duodenal exclusion
should be evaluated in subsequent studies. The greater GIP
response to i.j. glucose may also reflect a higher density of GIP
secreting K-cells in the proximal jejunum than duodenum in
humans, as seen in pigs.11 Moreover, the expression of sodium
glucose co-transporter-1 may be of relevance12—this was
reported to be greater in the jejunum than duodenum in
rodents.13

Plasma glucagon decreased during i.d. glucose infusion, but
remained unchanged during i.j. glucose infusion. This may be
partly accounted for by the interplay between GLP-1 and GIP on
pancreatic α-cells; the glucagonostatic effect of GLP-1 is blunted,14

and the glucagonotropic effect of GIP is potentiated,15 in the
context of relatively low blood glucose concentrations. Surpris-
ingly, a direct relationship between glucagon and GLP-1 was
observed, which might imply a contribution of GLP-2, a hormone
co-secreted with GLP-1 and potent at stimulating glucagon.16

Differences in glucagon between the i.d. and i.j. studies may have
contributed to the lack of difference in blood glucose
concentrations.
We inflated a balloon in the i.j. study to exclude the duodenum;

this per se would be unlikely to enhance incretin secretion.17

Exclusion of bile in the i.j. study would not affect GIP secretion,18

and if anything would favour a reduced GLP-1 response.4 In the
i.d. study, it is possible that some of the infused glucose could
have refluxed into the stomach, but this should have been
minimised by the increased pyloric tone associated with i.d.
glucose infusion.19

Our study has limitations, which should be recognised. First,
our observations were made in a parallel study design, with
a relatively small number of subjects in each group; however, the
subjects were well matched and the differences in plasma incretin
hormones and insulin were consistent between the two studies.
Therefore, increasing the sample size in a crossover study is
unlikely to alter the study conclusions. Furthermore, small
intestinal glucose was delivered into two sites at a single rate. It
would be of interest to employ different rates of glucose infusion
into various sites in order better to characterise the regional
specificity of the gut–incretin axis. Finally, the balance of evidence
seems to suggest alterations in secretion and/or action of incretin
hormones in obesity and type 2 diabetes.20 For example, the
secretion of GLP-1 is reportedly impaired in obesity, while GIP
secretion may be enhanced.20 In the case of type 2 diabetes, the
insulinotropic effect of GIP is largely diminished, although that of
GLP-1 is better preserved. These pathophysiological features
warrant further evaluation of the gut–incretin physiology in the
presence of obesity and/or type 2 diabetes.
In summary, our observations indicate that i.j. glucose elicits

greater incretin hormone and insulin secretion than i.d. glucose in
healthy humans, suggesting regional specificity of the gut–
incretin axis.

Table 1. Demographics and fasting biochemical measures of subjects in the intrajejunal (i.j.) vs intraduodenal (i.d.) studya

i.j. study i.d. study

Subjects 10 healthy males (8 Caucasians and 2 Asians) 10 healthy males (8 Caucasians and 2 Asians)
Age (years) 33.4± 6.0 33.4± 5.3
BMI (kgm− 2) 24.5± 1.1 25.0± 1.0
Fasting glucose (mmol l− 1) 5.0± 0.1 5.4± 0.1
Fasting insulin (mU l− 1) 3.1± 0.4 2.5± 0.5
Fasting insulin:glucose ratio (mUmmol − 1) 0.6± 0.1 0.5± 0.1
Fasting GLP-1 (pmol l− 1) 19.2± 2.0 24.1± 2.4
Fasting GIP (pmol l− 1) 14.0± 1.6 15.3± 2.7
Fasting glucagon (pgml− 1) 54.9± 7.9 52.5± 2.6

Abbreviations: BMI, body mass index; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1. aData are represented as mean± s.e.;
Student's unpaired t-test was used to determine the statistical significance. Po0.05 was considered statistically significant.
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