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Microplastics (MPs), tiny particles broken down from larger pieces of plastics,
have accumulated everywhere on the earth. As an inert carbon stream in aquatic
environment, they have been reported as carriers for heavy metals and exhibit diverse
interactive effects. However, these interactions are still poorly understood, especially
mechanisms driving these interactions and how they pose risks on living organisms.
In this mini review, a bibliometric analysis in this field was conducted and then the
mechanisms driving these interactions were examined, especially emphasizing the
important roles of microorganisms on the interactions. Their combined toxic effects
and the potential hazards to human health were also discussed. Finally, the future
research directions in this field were suggested. This review summarized the recent
research progress in this field and highlighted the essential roles of the microbes on the
interactions between MPs and heavy metals with the hope to promote more studies to
unveil action mechanisms and reduce/eliminate the risks associated with MP presence.
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INTRODUCTION

Microplastics (MPs) have received global attention due to their ubiquitous presence in the
environment and unknown hazards to organisms. Compared with the traditional plastic waste,
the distinct character of MPs is their small size, which is precisely defined as plastic fragments and
particles with a diameter of less than 5 mm (Thompson et al., 2004). There are two types of MPs:
primary and secondary. Primary MPs may be intensively produced for various purposes, such as
microbeads in commercial facial cleansers and resin particles (Bayo et al., 2017; So et al., 2018).
Secondary MPs are decomposed from large pieces of plastic waste during environmental processes
such as aging, weathering, and biodegradation (Gouin et al., 2011).

MPs can be accumulated in the environment due to their inert nature (Wang et al., 2021a).
They have been proven to be widely distributed in our environment. For example, the abundance
of MPs in the sediments of tropical Atlantic Ocean is 684.8 particles/m2, and most of them are
round particles and fragments with different shapes (Benson and Fred-Ahmadu, 2020). MPs have
also been found in the sediments of China’s three largest lakes (Zhang B. et al., 2020). Alarmingly, in
Qinghai-Tibet Plateau, which has low plastic consumption and population density, high abundance
of MPs was detected, which illustrates the wide distribution of MPs. In addition, as an emerging
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complex pollutant, MPs can produce various toxic effects on
organisms. The exposure of aquatic organisms to MPs has
been associated with short- and long-term adverse effects on
organism’s health, including biological feeding, reproduction,
antioxidant defense and innate immunity (Murphy and Quinn,
2018; Wen et al., 2018a; Banaee et al., 2019; Oliviero et al., 2019).

Heavy metals are present in the environment from both
naturally occurring and anthropogenic sources. As a contaminant
that is widespread in the environment, heavy metals can enter
water bodies continuously due to their non-degradable nature
and are recycled and enriched in the aqueous environment. MPs
and heavy metals are not only acting as persistent pollutants, their
combined pollution poses a new threat to the world. Due to the
large surface area, MPs can act like magnets for toxic pollutants
and concentrate them to a very high level. Heavy metals had been
found on the MPs from North Atlantic subtropical gyre (Prunier
et al., 2019), São Paulo State in southeastern Brazil (Vedolin et al.,
2018), beaches in southwest England (Massos and Turner, 2017),
and western Europe (Turner et al., 2019).

Aquatic ecosystems contain a great diversity of
microorganisms, which play critical roles in many
biogeochemical processes. Their existence makes the interaction
between MPs and heavy metals more complicated. Firstly, MPs
can provide emergent ecological niche for microorganisms by
formation of microbial biofilms, named plastisphere (Mincer
et al., 2016; Yang et al., 2020). In the plastisphere, MPs can offer
firm support for microbial colonization and even be served as
carbon sources for microbial growth. Studies have shown that
MP-associated biofilms could affect the physical and chemical
properties of MPs and further affect the adsorption of chemical
pollutants including heavy metals (Tu et al., 2020). Secondly,
exposure to heavy metals can impact biofilm formation and
bring structural changes to the biofilm matrix, which further
impact the adsorption behavior of heavy metals (de Araújo and
de Oliveira, 2020). Although the role played by biofilms has
become a hot spot in the MP studies, their influence on the fate
of MPs and heavy metals is still not well understood.

As a whole, a great deal of work has been done to analyze the
type, size, shape, color, and abundance of MPs in order to explain
the source, sink, and destination of MPs in the environment.
In the meantime, many types of heavy metals have also been
detected on the surface of MPs, which showed that MPs can
be unneglectable carriers of heavy metals. As a crucial biotic
components in aquatic systems, microbes may also play a key role
in modulating the interaction between MPs and heavy metals.
Until now, there is still lack of comprehensive review papers
on the interactions between MPs and heavy metals. This review
aims to fill in this gap and highlight key future research areas in
this field. The microbe’s important roles on the interactions will
also be emphasized. The following aspects will be focused on (1)
conducting a bibliometric analysis in this field to summarize the
recent research progress and trend, (2) examining the interaction
behaviors and underlying mechanisms between MPs and heavy
metals, (3) discussing the combined toxic effects and the potential
hazards to human health, and (4) suggesting the future research
directions in this field. This review will help to deepen the
understanding of the sources, transport routes, and ecological

risks of MPs and heavy metals, and promote the actions to reduce
their possible risks on the ecological system and human health.

BIBLIOMETRIC ANALYSIS

In order to better understand the current state of research in
the field of MPs and heavy metals, a bibliometric analysis was
conducted. The original literature data were collected from the
Web of Science with the search strategy of “microplastic∗ and
(‘heavy metal∗’ or copper or lead or zinc or iron or cobalt or
nickel or manganese or cadmium or mercury),” and a total of
978 papers published between 2006 and 2021 were identified. The
software CiteSpace 5.7.R3 was used to conduct burst keywords
analysis and co-occurrence keyword network analysis, and Gephi
0.9.2 was employed to visualize the keywords network.

Burst keywords can reflect emerging trends and hot spots.
Figure 1 shows the burst keywords detection result between
2006 and 2021. Among all the burst keywords, the keyword
nanoparticle has the strongest burst intensity (7.28), which is
much higher than other keywords, indicating that research
related to MPs is no longer limited to the micron level, but
has a tendency to move to the nanometer level, which is also
confirmed by the keyword nanoplastics becoming an emerging
buzzword in 2019–2021. As one of the most popular heavy
metals related to MP study, copper has the second burst intensity
(5.8). Among all the popular keywords, the keyword film has
the longest duration of hotness, receiving strong attention for 10
consecutive years from 2009 to 2018, which indicates that there
is still a large amount of research focusing on basic research in
the field of MPs. The rise of the keyword cytotoxicity means
that the research on the toxic effects of MPs and heavy metals
at the cellular level is being further developed. Keywords with
frequencies over five times were analyzed by co-occurrence
mapping analysis (Figure 2). MPs, heavy metals, and adsorption
were the top three keywords with the highest frequency and
degree and were closely linked to other nodes. At the same time,
in order to better understand the role of microbes in this field,
keyword co-occurrence mapping analysis on MPs, heavy metals,
and microbes was also conducted (Figure 3). Among the top
keywords, biofilm has a high betweenness centrality and degree,
demonstrating that it plays an important role in the interaction
network between heavy metals and MPs. However, there are
not many literature reports on topic, and only 94 papers were
retrieved, implying that this field still has a great potential for
further development.

INTERACTION CHARACTERISTICS AND
DRIVING MECHANISMS

Influence of Environmental Factors on
Interactions Between MPs and Heavy
Metals
Table 1 lists impacts of different environmental factors on
the interactions between MPs and heavy metals. These factors
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FIGURE 1 | Top 20 keywords with the strongest citation bursts during 2006–2021.

include aging, temperature, pH, contact time, ionic strength, and
particle size. Aging, whether with UV irradiation or with aging
agents such as H2O2 and Fenton, can increase the adsorption
capacity of MPs for heavy metals (Wang et al., 2019a). This
observation was consistent across different studies (Mao et al.,
2020; Lang et al., 2020; Wang Q. et al., 2020). The mechanism
for enhanced adsorption may be due to the increase of specific
surface area and oxygen-containing functional groups after aging.
Compared with the unaged PET, new ketone groups were found
on the surface of the PET aged by UV (Wang Q. et al., 2020).
Photodegradation can also break the bonds on the MP surface
and form new carboxyl groups (Bandow et al., 2017; Liu et al.,
2019). These oxygen-containing groups can increase the polarity
of MPs (Holmes et al., 2012) and make the MP surface more
reactive (Holmes et al., 2014), leading to an increase of the
adsorption capacity for metal ions. In terms of pH, generally only

the case of pH < 7 will be considered because metal ions will
precipitate under alkaline conditions. The pH can significantly
affect the adsorption capacity of MPs to heavy metals. When
pH is less than a certain value, MPs will not interact with heavy
metals (Tang et al., 2020). Generally, increased pH level results in
increased adsorption capacity for heavy metals (Guo et al., 2020);
however, there are also different opinions (Zhang W. et al., 2020).
The different observations may be due to the use of different
heavy metals in these studies. Metal ions in the former case were
usually positively charged, such as Cd2+, while in the latter case,
they were normally negatively charged, such as CrO4

2−. Taking
the latter as an example, when the pH is less than 3, the surface
of the MPs (PE) is positively charged, and the zeta potential and
electrostatic repulsion are low. The negatively charged CrO4

2−

are more likely to be strongly attracted by the positively charged
MPs. However, with the increase of pH, the surface of the MPs
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FIGURE 2 | Co-occurrence analysis of keywords with a word frequency of more than five times. The data come from a literature search with MPs and heavy metals
as the subject terms. Each node is represented as a keyword, edges represent the link between keywords, the color of the node is rendered in degrees, and the
color of the edge is rendered in the weight of the edge.

(PE) becomes negatively charged and the adsorption capacity for
CrO4

2− decreases. As for the temperature, the general opinion is
that high temperature will benefit the adsorption of heavy metals
on MPs (Oz et al., 2019; Wang T. et al., 2020). The possible
explanation for this observation is that the adsorption process is
an endothermic reaction; thus, the spontaneity of the adsorption
process may increase with the increase of temperature.

Adsorption Kinetics and Isotherms of
Heavy Metals on MPs
The kinetic study of the adsorption process can describe the
rate of heavy metal adsorption by MPs, and the fitting of
the kinetic model allows further analysis of the adsorption
mechanism. Commonly used adsorption models include pseudo-
first-order kinetic model, pseudo-second-order kinetic model,

Elovich kinetic model, Boyd model, Weber–Morris Model, and
Bangham channel diffusion model. The adsorption process was
usually fitted with a pseudo first-order kinetic model (Zhang
et al., 2018; Zon et al., 2018); however, some researchers also
reported that the pseudo-second-level kinetic model can yield a
better fit (Nethaji et al., 2013; Taha et al., 2016; Oz et al., 2019;
Guo et al., 2020; Tang et al., 2020). This model assumes that the
adsorption of heavy metals by MPs is mainly controlled by the
chemisorption mechanism, involving the sharing or transfer of
electron pairs, and is not controlled by the material transport step.
The Weber–Morris model was used to describe the multistage
nature of the adsorption process (Nethaji et al., 2013; Taha et al.,
2016; Zon et al., 2018; Oz et al., 2019). In this model, adsorption
may occur in multiple steps. Guo et al. (2015, 2020) divided the
adsorption process into three steps. The first step is the rapid
combination of heavy metal ions with active sites on MP surface,
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FIGURE 3 | Co-occurrence analysis of keywords with a word frequency of more than five times. The data come from a literature search with MPs, heavy metals, and
microbes as the subject terms. Each node is represented as a keyword, edges represent the link between keywords, the color of the node is rendered in degrees,
and the color of the edge is rendered in the weight of the edge.

which is mainly attributed to the covalent and van der Waals
forces. When this binding process reaches a saturation, due to the
increased diffusion resistance, the adsorption enters the second
step, and the heavy metal begins to diffuse slowly into the pores
of the MP particles. In the final step, the adsorption rate decreases
significantly, eventually reaching an equilibrium state between
adsorption and desorption.

The adsorption isotherm can be used to describe the
distribution of pollutants between the solid and liquid phases in
the adsorption equilibrium state, and the most commonly used
models are the Langmuir isotherm model (Langmuir, 1918) and
the Freundlich isotherm model. The Langmuir isotherm model
assumes that there is no interaction force between the adsorbed
molecules and only monolayer adsorption can be formed on the
MP surface, while the Freundlich isotherm model is an empirical
equation with no assumptions. Some researchers reported that
the adsorption process of MPs for heavy metals can be described
by the Langmuir isotherm model (Tang et al., 2020; Wang T.
et al., 2020; Zhang S. et al., 2020), while some others declared
that the Freundlich isotherm model was better (Fang et al., 2019;
Purwiyanto et al., 2020; Shan et al., 2020). In the Freundlich
isotherm model, the adsorption process is a multilayer adsorption
that occurs on a heterogeneous surface, and pollutant molecules

will first occupy high-energy adsorption sites and then diffuse to
low-energy adsorption sites (Abdurahman et al., 2020; Wang T.
et al., 2020). There are also studies showing that both Langmuir
and Freundlich models can successfully describe adsorption
isotherms (Zon et al., 2018; Dong et al., 2020).

In general, the adsorption mechanism between MPs and heavy
metals can be generally described by electrostatic interactions,
van der Waals forces, and π–π interactions (Fu et al., 2020;
Lin et al., 2021; Torres et al., 2021). It was shown that all
MPs have a pH point of zero charge (pHpzc) around 3, which
implies that in the natural aqueous environment, MPs should
carry a negative charge on their surface (Lin et al., 2021). The
electrostatic attraction between these negatively charged MPs and
positively charged metal ions promotes the adsorption behavior.
Compared to electrostatic interactions, van der Waals forces
and π–π interactions play a relatively small role. However,
they can further promote the sorption capacity (Torres et al.,
2021). Their occurrence depends on the polymer type; e.g.,
PE (aliphatic polymer) exhibits van der Waals interactions,
while PS (aromatic polymer) exhibits mainly π–π interactions.
Different polymers have different polarity, crystallinity, and
surface functional groups, resulting in different adsorption
behavior during adsorption (Kim et al., 2017; Chen et al., 2019;
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TABLE 1 | Research on the characteristics of interaction between MPs and heavy metals.

Types of MPs Types of heavy metals Factors Results References

PE PP PS PVC Cd2+ pH The sorption tendency increased as the pH increased,
PVC > PS > PP > PE

Guo et al., 2020

Ionic strength The sorption capacity decreased as the salinity increased,
PVC > PS > PP > PE

Humic acid (HA) The sorption tendency increased as the HA increased,
PVC > PS > PP > PE

PA Pb2+ pH The minimum adsorption efficiency (%) was 3.37% at pH 2.5, the maximum
adsorption efficiency (%) of 91.24% was acquired at pH 6.

Tang et al., 2020

PE Cr3+ pH The adsorption capability was increased when the dosage of PE MPs was
increased

Zhang W. et al., 2020

SDBS The addition of SDBS can improve the adsorption capacity of PE on Cr3+.
The peak of the adsorption capacity was at SDBS concentration between 1
and 1.5 mM

SDBS and pH pH < 6, with the increase of SDBS, the adsorption efficiency increases.
pH > 6, SDBS would compete with CrO4

2+ for occupying the adsorption
sites of PE microplastic.

PET PA EVA Pb2+ pH pH is the most significant factor, the maximum adsorption was acquired at
pH 5.5.

Oz et al., 2019

Temperature Adsorption capacity increases for PET, PA, and EVA with increasing
temperatures but it was not affected much.

PE Cr Concentration of chromium The higher the initial concentration of chromium, the higher the adsorption
capacity

Zon et al., 2018

PET Zn2+ Cu2+ Aging There is a positive correlation between the degree of aging and the
adsorption capacity

Wang Q. et al., 2020

Microplastic dosage The more MP doses, the higher sorption capacity of metal ions was fully
realized

Time The longer the adsorption time, the greater the adsorption capacity.

pH The pH range is 3–7; the higher the pH, the greater the adsorption capacity.

Temperature The temperature range is 288K–318K; the higher the temperature, the
greater the adsorption capacity.

PA, Polyamide; PE, Polyethylene; PET, Polyethylene Terephthalate; PP, Polypropylene; PS, Polystyrene; PVC, Polyvinyl Chloride; EVA, Ethylene Vinyl Acetate Copolymer;
SDBS, Sodium Dodecyl Benzene Sulfonate.

Loncarski et al., 2020). Guo et al. (2020) studied the adsorption
of cadmium ions by four types of MPs (PP, PE, PS, and
PVC) and found that the order of adsorption capacity was
PVC > PS > PP > PE. Llorca et al. (2020) also reported
that PET and PS had higher affinity for pollutants than PE.
As simple non-polar crystalline polymers, PE and PP have no
functional groups and can only adsorb contaminants in a single
layer with van der Waals forces, so the adsorption capacity is
relatively small (Chen et al., 2019). For PS and PET, the polarity
is increased due to the presence of phenyl and ester groups, and
the adsorption capacity can be increased through the interaction
of π–π bonds with pollutants (Llorca et al., 2020; Loncarski
et al., 2020). PVC, because it contains polar atomic chlorine, is
a strong polar polymer, so it has very large adsorption capacity
(Brennecke et al., 2016).

Role of Microbes on the Interactions
Between MPs and Heavy Metals
The aquatic environment is a highly complex ecosystem, and
there are dynamic interactions between biotic and abiotic
components (de Araújo and de Oliveira, 2020). In addition to
physical and chemical environmental factors, biological factors
can affect the adsorption of heavy metals by MPs. The influence

of microbial biofilm is one of the most concerned biological
factors and it plays an important role in determining the MP
surface properties. Tu et al. (2020) found that biofilm formation
reduced the hydrophobicity of the PE MP surface and increased
the abundance of carboxyl and ketone groups on the MP surface,
which then increased the adsorption capacity for metal ions.
Some studies revealed that the growth of biofilms can positively
affect the adsorption of heavy metals and concentration of heavy
metals on MPs will increase as the biofilm matures (Richard
et al., 2019; Qi et al., 2021). It must be noted, however, that
the long-term dynamic change of heavy metal loads on MPs
during the whole biofilm development remains largely unknown.
Sinking of floating MPs caused by biofilm development further
complicates the problem (Rummel et al., 2017). Much more work
need to be done to quantitatively determine the influence of
biofilm on heavy metal adsorption for a better understanding of
their interactions in the aquatic environment. In addition, Jin
et al. (2020) reported how biofilm on MPs affects the uptake
and fate of hydrophobic organic compounds. They found that
the high temperature in the summer was more favorable for the
colonization of highly active bacteria on the MP surface, and
interactions between pollutants and attached microorganisms
in the biofilm essentially depend on pollutant features and
microbial activity.
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In the meantime, environmental factors may indirectly exert
influence on MPs by changing biofilm structures on the MP
surface. Wang L. et al. (2020) found that nutrient salts, total
nitrogen, total phosphorus, and pH have a greater influence on
colony structure, while MP physical and chemical properties
such as particle size and contact angle have less influence. Other
reports (Di Pippo et al., 2020; Feng et al., 2020; Li et al., 2020)
also confirmed that bacterial composition varies significantly
based on marine habitat and exposure time, rather than polymer
type. In the presence of heavy metals, microbial cells in biofilms
can produce more extracellular polymeric substances (EPS) to
protect themselves from the harsh environment (Sheng et al.,
2010). EPS have been confirmed to play a very important role
in biosorption of heavy metals. The biomacromolecules in EPS
contain large amount of ionizable functional groups, such as
hydroxyl, phosphoric, carboxyl, and amine groups, which enable
EPS to absorb heavy metals. Figure 4 shows the proposed
mechanisms of biofilm involved in the interactions between MPs
and heavy metals. EPS can also inhibit diffusion of heavy metals
in the matrix and decreases the concentration of heavy metals to
sublethal concentrations. The survival of exposed microbes thus
develops the ability of tolerance or resistance to heavy metals
(Flemming et al., 2016). How these selection processes influence
the fate of MPs and heavy metals is still unknown, and there is
an urgent need to better understand these interactions (Kirstein
et al., 2016; Rummel et al., 2017).

COMBINED TOXIC EFFECTS AND THE
POTENTIAL HAZARDS TO HUMAN
HEALTH

Contamination of aquatic systems with MPs and heavy metals
is a global environmental problem of public health concern.

Both MPs and heavy metals can accumulate at high level in
the environment and consequently contaminate the food chains
(Figure 5). The pollution of heavy metals to the environment
has long been recognized (Svecevièius et al., 2014), but MPs
were once regarded as relatively inert pollutants (Ashton et al.,
2010). However, many studies have shown that MPs can adsorb
and release heavy metals, and their combined exposure may
pose a potential threat to ecological system and human being
(Akhbarizadeh et al., 2017).

Toxic Effects on Aquatic Organisms
Aquatic organisms can ingest MPs through direct ingestion,
filtering ingestion, and food chain transfer, which can produce
certain toxic effects when they accumulate at high levels in
the body. Murphy and Quinn (2018) reported that MPs can
reduce the feeding rate of freshwater snakes and cause them
to produce non-lethal morphological changes, but they have
no significant effect on their reproduction. Wen et al. (2018b)
found that MPs can reduce the activity of acetylcholinesterase,
thereby affecting neuromuscular and reducing its feeding rate.
The adverse effects were more obvious when aquatic organisms
were exposed to both MPs and heavy metals. Banaee et al.
(2019) reported that when Cd and MPs were applied to carp, the
blood biochemical and immunological indicators of carp changed
significantly. The acetylcholinesterase activity in plasma and the
total protein content were both reduced, and the triglycerides and
cholesterol levels were elevated; thus, the immune system level
was reduced, making it more susceptible to infection and death.
Wen et al. (2018a) also reached the same conclusion. They found
that when Cd and MPs were co-applied to Amazon discus fish,
severe oxidative stress response and innate immune defense were
generated compared to the administration of a single poison.
However, Sun et al. (2019) showed that the combination of MPs
and heavy metals can induce hippocampal oxidative damage and

FIGURE 4 | Mechanisms of biofilm involved in the interactions between MPs and heavy metals. (a) Reaction with extracellular polymeric substance (EPS) in the
matrix; (b) chelation with proteins and peptides; (c) precipitation via chemical or biological agents; (d) enzymatic conversion; (e) volatilization as alkylated metal
compounds.
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FIGURE 5 | Ecological risks of MPs and heavy metals.

increase mortality, but this effect was mainly caused by heavy
metals, not MPs. Yan et al. (2020) also pointed out that the
adverse impacts of MPs and heavy metals on the development of
marine medaka gonads was mainly due to heavy metals. Actually,
those differences are understandable. With the different types
of MPs and heavy metals, as well as test species, toxic effects
are expected to be different. For example, cellophane is easy to
accumulate in the gills, mantle, and muscles of oysters, so it
has a greater impact on food intake and oxygen uptake, while
polyester is more likely to accumulate in the digestive glands and
has a greater impact on the absorption of protein, cholesterol,
and fat (Zhu et al., 2020). As far as heavy metals are concerned,
Pb can affect the nervous system by directly damaging brain
cells, while Cd can selectively deposit in the kidneys and liver
and cause kidney disease (Tchounwou et al., 2012). Heavy metals
in different valence states show different toxicity; for example,
hexavalent chromium is known to be more toxic than trivalent
chromium. Furthermore, larger organisms such as sea turtles and
fish are usually more resistant to MPs than microorganisms and
therefore have a lower lethality rate (van Franeker et al., 2011;
Kleinteich et al., 2018; Duncan et al., 2019; Oliviero et al., 2019;
Wang et al., 2019b).

Potential Hazards to Human Health
Both the World Health Organization [World Health
Organization (Who), 2019] and Science Advice for Policy by
European Academies (Sapea Working Group on Microplastics,
2019) stated that it is currently impossible to fully determine
whether the risk of ingesting MPs exists due to the lack of

human toxicity data on exposure to MPs. However, the inability
to determine whether the risk exists does not mean that the
risk is negligible. Therefore, many researchers have tried to use
different test methods or models to assess the potential human
health risks of MPs.

Food chain threat is the first thing to be considered. Robin
et al. (2020) reported that polyethylene MPs were found in
15 of the 70 commercial fishes collected in Indian waters.
Steer et al. (2017) also found 2.9% of the fry collected in
the English Channel ingested blue fiber-based MPs. Fish were
also reported to accumulate high levels of heavy metals. Tayebi
and Sobhanardakani (2019) found that average levels of Cd
and Pb in imported tilapia were found to be higher than the
World Health Organization (WHO) maximum permissible levels
(MPLs). Milatou et al. (2020) also found that total mercury levels
in Mediterranean Atlantic bluefin tuna exceeded the maximum
levels set by the European Commission. The presence of MPs in
fish is supposed to increase their uptake of heavy metals, which
will inevitably increase the health risk to humans through the
food chain. There are many studies that demonstrated the wide
presence of MPs and/or heavy metals in fish body (Akhbarizadeh
et al., 2018; Milatou et al., 2020; Ta and Babel, 2020; Zitouni
et al., 2020; Abidli et al., 2021; Covernton et al., 2021; Jonathan
et al., 2021; Martinez-Tavera et al., 2021; Sarkar et al., 2021).
For example, Akhbarizadeh et al. (2018) investigated MPs and
metals’ concentration in muscles of both benthic and pelagic
fish species from northeast of Persian Gulf and assess the risk
of their consumption; Sarkar et al. (2021) detected MPs (PET
and PE) and high levels of heavy metals (AS, Cd, Cr, Cu, Ni,
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Pb, and Zn) in both pond water and fish meat. Beside fish,
MPs in other animals were also found carrying toxic metals,
and positive relationships between MP ingestion and toxic metal
concentration were reported (English et al., 2015; Akhbarizadeh
et al., 2018). However, the reason for MP increase in heavy metals
in animals is still not clear. It is reasonable to doubt the vector
roles that MPs play compared to natural particles because of
their relatively low abundance. In natural aquatic environments,
there are many natural particulate matter that can bind heavy
metals to varying degrees, including sands, clay, metal oxides and
hydroxides, humus, microbes, and other small-size substances. If
surface adsorption is the main sorption mechanism, the influence
of other natural media should be similar or equal to that of
MPs, unless heavy metal levels are higher in most plastics or
animals have a preference for ingesting MPs. More investigation
are needed to fully understand the mechanism of heavy metal
accumulation by MPs, and how MPs compete natural particulate
matter as heavy metal vectors.

A recent study found that MPs can be detected in human
excreta, which confirms that MPs can indeed enter the human
body through various pathways (Schwabl et al., 2019). As
an effective carrier of heavy metals, MPs can form complex
contaminants with heavy metals, which may affect the immune
system and induce various diseases when they enter the body.
The effects of heavy metals on human health have been widely
reported (Zahra, 2017; Fu and Xi, 2019). For example, Hg
can cause chronic neurotoxicity in humans; Pb invasion can
damage the nervous system and digestive system, making people
appear anemic, with low immunity, abdominal pain, and other
symptoms; Cr is easy to enter human cells, causing DNA damage,
and is carcinogenic and may induce genetic mutations. To more
directly assess the risk to human health from the combined
contamination of heavy metals and MPs, Godoy et al. (2020)
used a dynamic gastrointestinal simulation device to study the
bioaccessibility of Cr and Pb in MPs in the human body and
found that the release rate and content of these two heavy metals
were different. Cr was mainly released in the stomach, while
Pb was released more in the duodenum. Liao and Yang (2020)
conducted in vitro experiments on the whole digestive system
for Cr-containing MPs and found that Cr is mainly released
into the body during gastric digestion, and Cr has a higher
bioavailability in degradable MPs [such as polylactic acid (PLA)]
compared to non-degradable MPs (PE, PP, PVC, and PS). As an
emerging persistent pollutant, MPs can be harmful to animals
and human beings. The common response to MP exposure
includes oxidative stress, inflammation, metabolism disruption,
cytotoxicity, and translocation to other tissues (Rahman et al.,
2021; Wang et al., 2021b). Due to the persistent nature of
MPs, the living organisms might also get long-term exposure
to ingested MPs, which can lead to chronic responses, such as
necrosis, compromised immune function, and reproductive and
developmental damage (Smith et al., 2018; Yin et al., 2021). The
effects of chronic exposure to MPs appear to be very variable,
depending on the exposure level and individual susceptibility.
Furthermore, the MPs in real life are a cocktail of different MPs,
non-polymers, additives, heavy metals, and pathogenic microbes.
Its combined exposure is tremendously different from those of

individual components, which further complicate the problem
(Hirt and Body-Malapel, 2020; Rahman et al., 2021). Obviously,
the risk assessment of MPs and heavy metals on human health is
complex, and it is still impossible to state with certainty the extent
to which the combined pollution of MPs and heavy metals is
harmful to human health. Regional differences, pollution status,
physiological characteristics of organisms, and dietary habits can
affect the risk assessment results, so it is important to fully
consider regional characteristics and applicability of the results
when conducting risk assessment, which may facilitate scientific
regulation. Although the risk is not clear, it is believed that
the combined exposure of MPs and heavy metals can increase
the adverse effects and bring unpredictable harm to biosphere.
Researchers are recommended to address the knowledge gaps in
understanding the toxicity of combined cumulative exposure of
MPs and heavy metals and develop standardized methods for
evaluating their potential risks.

Role of Microorganisms on the Toxic
Effects of MPs and Heavy Metals
MPs provide habitat for microbial communities and to
some extent alter their lifestyle, metabolic pathways, and
biogeochemical activities (Bryant et al., 2016). It has been shown
that biofilms associated with MPs have the ability to alter
nitrogen and phosphorus cycling processes in aquatic systems,
and this effect is thought to be achieved through increased
denitrification capacity and microbe-mediated phosphorus (P)
conversion (Chen et al., 2020). Xue et al. (2020) also reported
the impact of bacterial communities in plastisphere on the
biogeochemical cycle, and they found that the microbes related
to nitrification, denitrification, and sulfur cycles on plastic
fragments have higher levels than the surrounding water. It
implied that nitrogen- and sulfur-related metabolism was more
vigorous in the biofilm. In addition, microorganisms can use MPs
or their degradation intermediates as carbon sources (Rogers
et al., 2020). Intermediate degradation products of MPs from
abiotic processes, such as dissolved organic carbon (DOC) as
well as methane and other hydrocarbon gasses, can also be used
as potential electron donors for microbes, thus affecting the
carbon cycle in aquatic systems. MPs can also play a role in
the transport of trace metals. Guan et al. (2020) reported that
the development of biofilms enhanced the role of MPs in the
transport and fate of trace metals [Ni(II), Cu(II), Zn(II), and
Cd(II)] in the aqueous environment. They found that biofilms
altered the kinetics of trace metal adsorption on MPs, mainly as a
result of the complexation of functional groups on the surfaces of
both MPs and biofilms.

Pathogenic bacteria can travel the waters on MPs. Feng
et al. (2020) found that MP surfaces are enriched with Vibrio,
Erythrobacteriaceae, and Xanthobacteriaceae, which can cause
coral bleaching and tissue damage. Sun et al. (2020) also reported
that the potentially pathogenic Vibrio on MP surfaces can
increase the ecological risk of MPs to the marine aquaculture
industry. Many studies have found that the bacterial communities
that accumulated on the surface of MPs were more correlated
with human disease than in the water column (Wang J. et al.,
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2020; Xue et al., 2020). Laverty et al. (2020) isolated three
human pathogens from MPs, including Vibrio cholerae, Vibrio
parahaemolyticus, and Vibrio traumatica, which may pose a risk
to aquatic ecosystems and human health. Presence of heavy
metals in waters may exacerbate the risk of microbes to human
health, as a study has found that heavy metals (Cu2+ and Zn2+)
significantly increased the horizontal transfer of plasmids in
pathogenic bacteria, which may lead to the prevalence of drug-
resistant pathogenic bacteria in the water environment (Wang
et al., 2021c).

Some microorganisms can become resistant to antibiotics
when they are under stress. Heavy metals have been shown to
increase antibiotic resistance through co-selection (Stepanauskas
et al., 2006; Bednorz et al., 2013; Medardus et al., 2014). Zn,
Cd, and Hg have been found to be associated with methicillin
resistance on Staphylococcus aureus chromosomes (Ito et al.,
2001; Cavaco et al., 2010). Heavy metals can persist in the
natural environment for long periods of time; therefore, their
contribution to the maintenance and spread of antibiotic
resistance factors may be more than we expected (Baker-Austin
et al., 2006; Ji et al., 2012). MPs, which act as effective carriers of
both heavy metals and biofilms, thus pose a new health threat on
a global scale (Imran et al., 2019).

Furthermore, microorganisms can alter the bioavailability of
heavy metals by converting heavy metals into insoluble or less
bioavailable valence states through redox reactions. Bacteria such
as Pseudomonas, Bacillus, Enterobacter, and Agrobacterium have
been shown to have high Cr (VI) reduction ability (Ohtake
et al., 1987). Cr (VI) reduction can be divided into enzymatic
and non-enzymatic reductions. The non-enzymatic reduction is
mediated by reducing substances such as glutathione and vitamin
C, whereas the enzymatic reductions are mainly catalyzed by
chromate reductases, all of which are capable of reducing highly
toxic Cr (VI) to Cr (III) that does not readily enter the cell.
All reported chromate reductases (e.g., ChrR, YieF, NemA, and
LpDH) use flavin as a cofactor and NAD(P)H as an electron
donor, and the electron transfer mechanisms are different (Thatoi
et al., 2014; Xia et al., 2021). Soluble reductase (SR) and
membrane-bound reductase (MR) can also be used as Cr (VI)
reductases, and the electron donors utilized are mainly NADH or
endogenous electron reserves. From this point of view, since MPs
can act as carriers of both heavy metals and microorganisms, the
biofilms formed on their surfaces seem to alter the bioavailability
of heavy metals more efficiently, thus exerting an unneglectable
impact on the toxic effect of heavy metals.

CONCLUSION AND OUTLOOK

Evidence has shown the ubiquitous presence of MPs and
heavy metals in the water environment. This paper give
a perspective review on the interactions between MPs and
heavy metals. The result of bibliometric analysis showed that
contamination, mechanism, sediment, MPs, and pollution are
the burst keywords for the latest 3 years, indicating that
MP pollution is receiving widespread attention. Keyword co-
occurrence mapping analysis indicated that biofilm has a high
betweenness centrality. The environmental factors, including

microbes, exert important influence on the interactions between
MPs and heavy metals, and the combined toxic effects and the
potential hazards to human health merit further concern. Our
result demonstrated that microorganisms play an important role
in the interaction network between heavy metals and MPs in
the water environment; however, their combined effects on the
aquatic ecosystem and human health are largely unknown.

Although a tremendous amount of work has been conducted
in this field, substantial data gaps exist. To fill these knowledge
gaps, the following issues deserve further attention:

(1) The adsorption capacity of heavy metals by MPs
under multiple environmental factors is needed to
evaluate the influence of environmental factors on the
interactions, especially the influence of biofilm. Many of
the experimental data were obtained under controlled
laboratory conditions, while the adsorption of heavy
metals by MPs in the natural environment is complex.

(2) The ecological and toxic effects of MPs at environmentally
realistic concentrations are needed. The toxicity tests
generally use new and pristine MPs with defined size
and expose the organisms to high MP concentrations.
Furthermore, MPs can be degraded by the biotic/abiotic
factors; however, the concentration and toxicity of these
smaller MPs (nanoscale and even smaller) are largely
unknown, which makes risk assessment difficult.

(3) Although there are many studies on MPs and heavy metals,
there is still a lack of detailed explanation on the role of
microbes on their interactions. There is an urgent need
for the comprehensive methods for the rapid and accurate
sampling, characterization, analysis, and evaluation of the
composite pollutants and their combined risks.

(4) There are still no water quality criteria for MP-related
pollutants for the control of MP emissions, protection
of human health, and ecosystem safety. Therefore, the
cooperative efforts of scientists, policy makers, government
officials, general public, and the international communities
are urgently needed in the future.
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