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We report a novel high-throughput method to empirically quantify individual-specific regulatory element activity at the

population scale. The approach combines targeted DNA capture with a high-throughput reporter gene expression assay.

As demonstration, we measured the activity of more than 100 putative regulatory elements from 95 individuals in a single

experiment. In agreement with previous reports, we found that most genetic variants have weak effects on distal regulatory

element activity. Because haplotypes are typically maintained within but not between assayed regulatory elements, the ap-

proach can be used to identify causal regulatory haplotypes that likely contribute to human phenotypes. Finally, we dem-

onstrate the utility of the method to functionally fine map causal regulatory variants in regions of high linkage

disequilibrium identified by expression quantitative trait loci (eQTL) analyses.

[Supplemental material is available for this article.]

There are now several examples of noncoding genetic variants that
alter the activity of regulatory elements and contribute substan-
tially to complex traits and human diseases (Olansky et al. 1992;
Nicolae et al. 2010; Maurano et al. 2012; Corradin et al. 2014;
Stadhouders et al. 2014; Guo et al. 2015). Such examples are likely
representative of a larger trend that genetic variations in regulatory
elements are a major contributor to complex phenotypes and dis-
ease (Maurano et al. 2012; Gusev et al. 2014). Genetic effects on
gene regulation are pervasive, as demonstrated by association stud-
ies revealing expression quantitative trait loci (eQTL) for the ma-
jority of human genes (Cantor et al. 2010; Stranger and Raj
2013; Battle et al. 2014). Recent studies have further demonstrated
that genetic variants associated with DNase I hypersensitivity, a
strong predictor of the presence of a regulatory element, explain
a substantial proportion of eQTLs (Degner et al. 2012), and indi-
viduals who are heterozygous in those elements likely have herita-
ble allele-specific open chromatin and transcription factor binding
(Birney et al. 2010; McDaniell et al. 2010; Reddy et al. 2012).
Although there is now much evidence supporting the contribu-
tions of regulatory variation to human phenotypes, systematically
identifying the specific variants and regulatory elements that con-
tribute to phenotype remains a major challenge.

One of the major reasons that challenge remains is that pat-
terns of recombination across the genome limit the resolution of
genetic association studies and prevent the identification of specif-
ic causal variants. That limitation motivates the development of
complementary empirical approaches to assay the consequences
of noncoding genetic variation on regulatory element activity
(Feng et al. 2013; Fogarty et al. 2014; Stadhouders et al. 2014;
Guo et al. 2015). In a reporter gene expression assay, for example,
a gene regulatory element is cloned into a plasmid, where the ele-
ment can control the expression of a fluorescent or chemilumines-
cent protein. The plasmid is then transfected or infected into cells,
and the activity of the regulatory element is estimated by measur-
ing the expression of the reporter gene. Several examples havenow
shown that reporter assays are a valuable tool to compare the func-
tion of genetically different versions of the same regulatory ele-
ment and to identify noncoding variants that explain genetic
associations with gene expression and phenotypes (Fogarty et al.
2014; Guo et al. 2015). Recent advances have dramatically in-
creased the throughput of reporter assays by embeddingmolecular
barcodes within the reporter gene that can later be observed with
DNA sequencing (Patwardhan et al. 2009; Kwasnieski et al. 2012;
Melnikov et al. 2012;White et al. 2013), and the regulatory activity
of more than one million unique DNA fragments can now be

8These authors contributed equally to this work.
Corresponding author: tim.reddy@duke.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.190090.115.

© 2015 Vockley et al. This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publication
date (see http://genome.cshlp.org/site/misc/terms.xhtml). After sixmonths, it is
available under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described athttp://creativecommons.org/licenses/by-nc/4.0/.

Method

1206 Genome Research 25:1206–1214 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/15; www.genome.org
www.genome.org

mailto:tim.reddy@duke.edu
mailto:tim.reddy@duke.edu
mailto:tim.reddy@duke.edu
http://www.genome.org/cgi/doi/10.1101/gr.190090.115
http://www.genome.org/cgi/doi/10.1101/gr.190090.115
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


assayed in a single experiment using such massively parallel re-
porter assays (Arnold et al. 2013).

Here, we have developed a novel high-throughput approach
to efficiently measure the activity of regulatory elements captured
from the genomes of a human study population. Previous ap-
proaches to identify genetic effects on regulatory element activity
have used DNA synthesis and random mutagenesis to generate
mutations in select regulatory elements (Patwardhan et al.
2009; Melnikov et al. 2012; White et al. 2013). By instead assaying
putative regulatory elements captured from donor genomes, the
strategy presented here allows for high-throughput empiricalmea-
surement of the effects of regulatory variants specific to a study
population. Moreover, because haplotypes are maintained within
each regulatory element, empirical measurement of the combined
effects of all common, rare, and personal variants within a regula-
tory element are possible. The result is individual-specificmeasure-
ments of regulatory element activity across the study population.
Because candidate regulatory elements are assayed independently
of one another, the approach is an effective strategy to identify
causal mutations within large regions of statistical association be-
tween genotype and phenotype. Together, these results demon-
strate that population-scale functional reporter assays are a
valuable strategy for identifying specific causal genetic variants
and haplotypes within genomic loci previously associated with
phenotype.

Results

Population-scale reporter assay approach

Wedesigned an empirical strategy tomeasure the activity of specif-
ic candidate regulatory elements across a population of individuals
(Fig. 1A). The strategy is based on the STARR-seq assay (Arnold
et al. 2013). Briefly, in STARR-seq, candidate regulatory elements
are cloned into the 3′ untranslated region (UTR) of a reporter
gene. The resulting plasmid pool is then transfected into host cells,
where the cloned elements can regulate expression of the reporter
gene in which they are embedded. High-throughput sequencing
of the 3′ UTR of the expressed reporter gene mRNA can then be
used to estimate the regulatory activity of each element.

To leverage the STARR-seq approach tomeasure the activity of
candidate regulatory elements across a population of individuals,
we first generate a targeted sequencing library of regulatory ele-
ments from donor genomes using multiplex PCR. In a subsequent
PCR reaction, we thenmodify the resulting fragment libraries such
that the sequence of the terminal 15 bp at each end of each frag-
ment matches the ends of the cloning site in the STARR-seq back-
bone. We then clone the capture regulatory elements into the
STARR-seq backbone using a homology-based cloning strategy
and expand the resulting input library in Escherichia coli. To assay
the activity of each captured fragment, we transfect the input li-
brary into a human liver carcinoma cell line, HepG2, and use
250-bp paired-end sequencing to observe the abundance of each
allele of each element in the input pool of transfected DNA and
in the expressed reporter genemRNA.Using an allele-specific anal-
ysis strategy, we then estimate the effect of each allele on regulato-
ry element activity.

Targeted sequencing of candidate regulatory elements

from a GWAS population

As demonstration of the aforementioned approach, we focused
on candidate regulatory elements from a 250-kb region on

Chromosome 3 (3q25) that we previously found to be associated
with measures of adiposity at birth (Urbanek et al. 2013). We se-
lected the regions to assay based on evidence from the ENCODE
Project Consortium (2012) that suggests potential regulatory activ-
ity. Specifically,we aggregated open chromatin data from40differ-
ent cell types relevant to metabolism, which yielded an initial set
of 128 open chromatin sites. We further prioritized those sites by
selecting DNase I hypersensitive sites (DHSs) that were present in
at least two or more cell lines, resulting in a total 104 DHSs (Fig.
1B; Supplemental Data 1).We designed 174 PCR amplicons to am-
plify from the 104 candidate regulatory elements (Supplemental
Data 2). The amplicons had an average length of 409 bp. We
then used multiplex PCR to amplify those elements from 95 indi-
viduals at the extremes of adiposity in the genetic association co-
hort (Urbanek et al. 2013).

To quantify the genetic variation in the captured elements,
we sequenced the regions using paired-end 250-bp sequencing.
That read length was sufficient to observe the entire sequence of
each amplicon. Sequencing was completed to a median depth of
1500× (Supplemental Fig. 1), resulting in the identification of 321
genetic variants in the captured elements (Supplemental Data 3).
Twenty-three percent of the variants identified were specific to
the study population as determined by their absence from
dbSNP and the 1000 Genomes Project Consortium database
(Sherry et al. 2001; The 1000 Genomes Project Consortium
2012). The ratio of transitions to transversionswas similar between
the captured variants and those found in the 1000 Genomes
Project (Supplemental Table 1), suggesting that the novel variants
were unlikely due to systematic sequencing errors. We identified a
substantially greater fraction of rare and personal variants in our
targeted sequencing, likely due to increased sequencing depth
that supported more highly powered variant calling (Supplemen-
tal Fig. 2). The preponderance of study-specific variants emphasiz-
es the importance of assaying regulatory elements captured from
the genomes of the study population rather than from a separate
cohort.

Quantifying the effects of noncoding variation in a GWAS

population

To quantify the activity of the captured candidate regulatory ele-
ments, we cloned the captured amplicons into the 3′ UTR of the
STARR-seq reporter gene (Arnold et al. 2013) to generate an input
plasmid library. The input library covered 99% of the targeted se-
quence and included both alleles of 88% of the variants observed
in targeted sequencing of the region at a median coverage of ap-
proximately 2200× (Supplemental Table 2; Supplemental Fig. 3).
We then performed seven independent transfections of the input
library into HepG2 cells and used targeted high-throughput se-
quencing of the expressed reporter gene transcripts to measure
the allele-specific regulatory activity for each amplicon. The se-
quencing generated a median coverage of the target amplicons
of approximately 13,000× (Supplemental Fig. 4) and assayed
both alleles of 283 of 321 SNPs detected in the input library. Of
the assayed SNPs, 83 (29%) were rare, defined as a minor allele fre-
quency <1%.We observed a similar fraction of rare SNPs in the in-
put library (32%), suggesting that there was minimal bias against
rare variants in the assays.

There was strong correlation between the allele ratios in
each pair of output libraries (Spearman’s ρ between 0.90 and
0.97) (Fig. 1C), demonstrating reproducibility of the assay. There
was also strong correlation between the allele ratios in the input
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plasmid pool versus the allele ratios in each of the output libraries
(Spearman’s ρ between 0.80 and 0.88) (Supplemental Fig. 5), dem-
onstrating that variants had small effects on regulatory activity

overall. Cloning the captured candidate regulatory elements
into the STARR-seq backbone did not introduce biases in the allele
frequency in the assay as demonstrated by a strong correlation

Figure 1. Identification of regulatory variants using population-scale STARR-seq assays. (A) Schematic of population STARR-seq assay design. (B)
Candidate regulatory sites were sequenced in 95 members of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study (Urbanek et al.
2013) patient cohort using custom amplicon sequencing. The targeted regions overlap open chromatin (DHSs) in multiple cell types as described in
Methods. (C) Population STARR-seq is highly reproducible. Rep1–7 are biological replicates generated from independent transfections. The x- and y-
axes represent element activity (output RNA reads/input DNA reads). In each case, Spearman’s ρ > 0.90. (D) Plotted is a comparison of the allele frequency
of each SNP in the cohort DNA to the allele frequency of each SNP in the resulting reporter library. Allele frequencies of the cohort DNA used are shown on
the x-axis, and the allele frequencies in the resulting reporter library are on the y-axis. The allele frequencies are highly correlated, as evaluated by a Pearson
correlation (r2 = 0.94, P < 1 × 10−5). The one-to-one line is shown in blue. The least squares fit is shown in red. (E) Log2(effect sizes) for nonsignificant (pink)
and significant (FDR < 0.05, blue) variants. The effect sizes are small and range between 0.25 and 3.96 fold-change. (F) Firefly luciferase assay validations for
population STARR-seq. In all cases, the higher expressing allele in our high-throughput reporter assay, shown in green, also had higher luciferase expression.
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between the allele ratios in the plasmid DNA library and the
allele ratios in the sequencing of the initialmultiplex PCRproducts
(r2 = 0.94, two-sided P < 0.0001) (Fig. 1D). We therefore con-
cluded that the resulting assay libraries were representative of
the genetic diversity in the population. When the allele frequen-
cies of the input plasmid DNA library were compared to the allele
frequencies of the variants called in the 95 individuals, we ob-
served enrichment of rare minor alleles in the input plasmid
DNA library (Supplemental Fig. 6). Because that bias was specific
to the comparison with called variants and was not observed
when comparing to the raw sequencing reads, the bias was likely
due to underestimation of rare allele frequencies by conservative
calling of rare variants (The 1000 Genomes Project Consortium
2012).

To identify individual variants that have a statistically signifi-
cant effect on regulatory activity after taking into account differ-
ences in read depth, we pooled reads from the replicate output
libraries and compared relative variant abundance to the input li-
brary using Fisher’s exact test. We identified 27 common and nine
rare regulatory variants with a false discovery rate (FDR) < 5%. The
identified variants had fold changes in regulatory activity ranging
from 0.25 to 3.96 (Supplemental Data 4), consistent with previous
observations using saturation mutagenesis of enhancers (Fig. 1E;
Patwardhan et al. 2012). To empirically validate that the results
were not due to the candidate regulatory elements’ location in
the 3′ UTR of the reporter gene, we used a standard luciferase re-
porter assay in which the candidate regulatory element is located
upstream of the promoter. In all cases, the allele with greater regu-
latory activity in the STARR-seq assay also had increased luciferase
expression (Fig. 1F). That positive validation indicates that the ob-

served effects were not specific to the location of the candidate reg-
ulatory element relative to the reporter gene.

Regulatory variants are enriched in active enhancers

We next evaluated whether regulatory variants were enriched in
the most active enhancers or could instead be due to noise in
low-activity or silent candidate regulatory elements. We defined
an enhancer activity score as the proportion of the total reads con-
tributed by a fragment in the targeted RNA-seq output library di-
vided by the proportion of the total reads contributed by that
fragment in the input DNA plasmid library. The fragments that
contained regulatory variants had higher-ranking enhancer activ-
ity scores than those that lacked regulatory variants (U-test, P <
10−4) (Fig. 2A; Supplemental Data 5,6), consistent with regulatory
variants being located in the most active candidate regulatory ele-
ments. We also asked whether there was evidence that rare alleles
were more likely to have a stronger effect on regulatory activity,
and we did not find a statistically significant association between
effect size and allele frequency (Spearman ρ =−0.18, P = 0.28)
(Supplemental Fig. 7).

Effects of haplotypes on regulatory element activity

For 98 of the amplicons, therewasmore than one polymorphic site
(Fig. 2B), allowing us to ask whethermultiple variants act indepen-
dently to alter regulatory element activity at the haplotype level.
To investigate that possibility, we generated phased haplotype se-
quences based on the targeted sequencing data and used sequence
alignment to assign sequencing reads from the expressed reporter
library to each haplotype (Supplemental Data 7). That analysis

Figure 2. Comprehensive measurement of haplotype-specific regulatory element activity provides mechanistic insights into gene regulation. (A)
Distribution of enhancer activity scores for fragments containing regulatory variants (red) and fragments containing nonregulatory variants (blue).
(B) Histogram of number of SNPs per assayed element. (C ) Manhattan plot of eQTLs for the long noncoding RNA LINC00881. Blue dots indicate
−log10 (P-value) of LINC00881 eQTL from the Geuvadis database (left y-axis); red bars indicate −log10(FDR) for variants that alter regulatory activity in
the population STARR-seq assay (right y-axis). Red dotted line indicates a FDR = 1.0. (D) Association between normalized expression of long noncoding
gene LINC00881 in LCLs as measured by the Geuvadis project (y-axis) and the measured effect size in population STARR-seq assay (x-axis) for SNP
rs73170828 (r2 = 0.07, P = 7.6 × 10−9). (E) Allele-specific H3K27ac analysis of variants rs62274098 and rs73170828, both eQTLs proximal to and 5′ of
LINC00881; read counts (y-axis) differed substantially between alleles for rs73170828 (Wilcoxon P = 0.058, binomial P = 0.004) but not for rs62274098
(Wilcoxon P = 0.9; binomial P = 0.92).
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allowed us to estimate the relative expression of each of the more
than 450 distinct haplotypes assayed and revealed 24 haplotypes
across 16 amplicons that significantly altered regulatory element
activity (adjusted P < 0.05, Fisher’s exact test) (Supplemental
Data 8). We then evaluated the extent to which the independent
contributions of the estimated effects of each SNP in a haplo-
type predicted the observed activity of the entire haplotype
(Supplemental Fig. 8). The correlation between the effects predict-
ed by individual SNPs and the effects of the haplotype (r = 0.54, P =
0.007) supports an overall consistency between SNP effects and
their combination into haplotype effects. However, there was sub-
stantial residual variation that may be due to either experimental
noise or synergistic effects between variants within haplotypes.
Measuring haplotype-scale effects in larger populations will also
be important to establish the distribution of natural functional
variation in regulatory elements and may provide insights into
the role of gene regulation in awide variety of biological processes.

Fine mapping genetic associations with phenotypes

One of the major goals of functionally evaluating regulatory vari-
ants is to determine genetic effects on regulatory element activity
that may explain genetic associations with phenotypes. To dem-
onstrate that our strategy can support such fine mapping, we in-
vestigated a set of SNPs associated with the expression of a long
noncoding RNA LINC00881 in the region. Specifically, the
Geuvadis project (Lappalainen et al. 2013) identified a cluster
of nine eQTLs associated with the expression of LINC00881 in
lymphoblastoid cell lines (LCLs) (Supplemental Fig. 9). The vari-
ants associated with LINC00881 span ∼12 kb of the genome. The
statistical significance of the association with LINC00881 was
similar across all nine variants, likely due to high linkage dis-
equilibrium across the region (Fig. 2C). Four of the nine eQTLs
were also assayed in the 95 individuals with our population scale
reporter assays. Only one variant, rs73170828, located 242 bp up-
stream of the annotated LINC00881 transcription start site, signif-
icantly altered reporter gene expression
(FDR = 0.02). In the eQTL analysis and
in our population scale reporter assays,
the reference allele of rs73170828 was as-
sociated with increased gene expression
and increased regulatory activity, respec-
tively (Fig. 2D). Together, these results
suggest that the promoter-proximal vari-
antrs73170828isacausalvariantthatreg-
ulates the transcription of LINC00881
and explains the association of the other
eQTLs in the region. As independent
support of the regulatory function of
rs73170828, we searched for evidence
of allele-specific histone 3 lysine 27 acet-
ylation (H3K27ac), a histone modi-
fication associated with active gene
regulation (Creyghton et al. 2010). In
ChIP-seq experiments performed on
LCLs derived from five individuals het-
erozygous for rs73170828 (Kilpinen
et al. 2013), there was substantially high-
er H3K27ac on the reference allele across
the LCLs (P = 0.058, paired Wilcoxon
test). Furthermore, there was an overall
significant increase in the number of

reads aligning to the reference allele when compared to a null
model in which the same proportion of reads align to each allele
(binomial P = 0.004). Those results are concordant with increased
regulatory activity of the reference allele in our reporter assays
and increased LINC00881 expression. The second closest assayed
variant, rs62274098, did not have significant allele-specific
H3K27ac (binomial P = 0.92), suggesting again that rs73170828
and not neighboring variants mechanistically contributes to the
expression of LINC00881 (Fig. 2E). Together, these results show
that our novel approach for quantifying the effects of noncoding
variation on gene regulation within cohorts reveals likely causal
variants that contribute to genotype-phenotype associations.

Identifying candidate mechanisms of regulatory element activity

Quantifying genetic effects on regulatory element activity can also
give insight into the underlying mechanisms controlling gene ex-
pression. As an example, one of the most significant regulatory
variants in our study, the common SNP rs4266144 (minor allele
frequency = 0.40), had a 1.34-fold effect on the activity of the reg-
ulatory element in which it is located. The variant overlaps a bind-
ing site for the transcription factor TEAD4 in the HepG2 cell line
that we used in this study (The ENCODE Project Consortium
2012). The C allele more closely matches the TEAD4 consensus
motif and also had increased regulatory activity (Fig. 1F, left-
most plot; Fig. 3). The higher-activity C allele is also human-specif-
ic, whereas the ancestral G allele is conserved across nonhuman
members of the Hominidae clade; and it is possible that recent
evolution has altered the regulatory activity of that site by chang-
ing the TEAD4 recognition sequence (Blanchette et al. 2004).
Although only a case study, this example highlights the possibility
that combining the identification of regulatory variantswith exist-
ing maps of transcription factor binding can reveal regulatory
factors contributing to regulatory element activity. A systematic
evaluation of that possibility will require expanding the catalog
of functional noncoding genetic variants in larger populations.

Figure 3. SNP rs4266144 resides within a TEAD4 ChIP-seq binding site as assayed in HepG2 cells. The
C > G variant is located in a largely invariant region of the TEAD4 canonical consensus bindingmotif. The
binding site is locatedwithin a region that is enriched for H3K27ac and EP300 occupancy. Concordantly,
ChromHMM segmentation analysis scores the locus as a putative weak enhancer (Ernst and Kellis 2012).
Multispecies conservation analysis suggests that this motif resides within a region that is conserved be-
tween the great apes.
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Discussion

In this work, we developed a novel high-throughput empirical ap-
proach to measure the regulatory effects of noncoding human ge-
netic variation directly from the DNA of individuals from a
population-based study cohort. The ability to assay directly from
cohort DNA samples is an important distinction from previous
high-throughput reporter assays because it allows investigation
of variants and haplotypes that are not present in existing databas-
es of human genetic variation. As rare variants are typically not ob-
served frequently enough to support a statistical association, rare-
variant burden tests instead collapse or aggregate variants and cor-
relate the overall burden of those variants with phenotypes (Li and
Leal 2008; Zawistowski et al. 2010). Although burden testing with-
in the coding regions of the genome can leverage predicted effects
on the resulting protein (Choi et al. 2012; Hu et al. 2013), model-
ing regulatory element activity based on sequence alone remains a
major challenge. Measuring regulatory activity directly from co-
hort DNA provides a possible empirical solution that allows the
regulatory machinery of the cell to determine the cumulative ef-
fects of all regulatory variation in the element tested and allows
for inference about the activity of that regulatory element that
would not be possible otherwise.

The ability to associate empirically measured regulatory
function and phenotype is especially needed in light of recent
studies suggesting that coordination of regulatory effects between
alleles may explain how weak effects of individual noncoding
variants contribute to overall phenotypes (Corradin et al. 2014;
Stadhouders et al. 2014; Guo et al. 2015). As we have shown,
assaying regulatory elements outside the context of genetic
linkage enables identification of individual regulatory elements
that contribute to observed associations with gene expression.
Importantly, however, genetic linkage is maintained within each
individual regulatory element tested. That feature allows for mea-
suring the effects of regulatory element haplotypes on element ac-
tivity without the confounding effects of a nearby regulatory
element. For those reasons, the approach described here has the
ability to both resolve independent effects in multiple regulatory
elements while also maintaining local epistatic interactions be-
tween variants within an individual element.

For any complex disease, multiple types of cells are likely rel-
evant to an observed phenotype. Additionally, the causal regulato-
ry elements may only be active under certain environmental
conditions, or an interaction with the environment may amplify
the effect. Transient reporter assays have been shown to re-
capitulate cell-type- and environment-specific gene regulation
(Pennacchio et al. 2006; Gisselbrecht et al. 2013; Shlyueva et al.
2014). Because the input plasmid libraries generated in this study
are a renewable resource that can be readily expanded in E. coli, the
same captured regulatory elements can be assayed in numerous
cell models and environmental contexts. Doing so may have par-
ticular benefit for identifying the specific cells or environments
that are more relevant to a given genetic association signal.

There are both advantages and disadvantages intrinsic to the
architecture of the STARR-seq assay platform. Among the advan-
tages is the potential to characterize dual functioning enhancer-
promoters (Arnold et al. 2013). We detected regulatory variants
within TSS-proximal regions of two of the three genes located
within our test locus, suggesting that the elements that contain
these variants serve as dual function enhancer-promoters. The
approach is limited by the observation that enhancers often
have promoter-specific activity in transient transfection assays, in-

dicating that alternative promoters may be required in some
cases (Zabidi et al. 2015). Addressing those shortcomings will fur-
ther increase the ability to assign regulatory causes to genetic
associations.

Taken together, the approach demonstrated here enables
measurement of the functional variation in regulatory activity
across human populations and provides a novel and general
path forward to identify disease-related perturbations in regulatory
mechanisms after the completion of a genome-wide association
study.

Methods

TruSeq custom amplicon sequencing

We defined a target region as the region containing all variants in
linkage disequilibrium (LD) (D′ > 0.05) with the lead SNP previous-
ly reported to be associated with fetal adiposity (Urbanek et al.
2013). All annotated exons and all sites with evidence of putative
enhancer activity as determined by the presence of DNase I hyper-
sensitive sites (DHSs) in two or more cell lines studied by
the ENCODE Project Consortium (2012) were selected for cap-
ture (Supplemental Data 1). Captured sites included 10 bp of
flanking DNA to ensure that the entire putative regulatory site
was included in the study. Lists of annotated DHSs from the
ENCODE Project Consortium were downloaded as BED files from
http://genome.ucsc.edu/ENCODE/downloads, and the union of
overlapping DHSs was obtained using the “merge” command in
BEDTools (Quinlan and Hall 2010). TruSeq custom amplicon
probes targeting the regions as well as the exons of CCNL1,
LINC00880, LINC00881, and the five exons of VEPH1 residing
within the LD block were designed using the Illumina Design
Studio. The probes were designed to not overlap any known
SNPs and capture an additional 25 bp flanking eachDNase I hyper-
sensitive site. The final design consisted of 174 amplicons with
lengths ranging from 398 to 450 bp (mean length of 409 bp and
a median length of 402 bp) capturing a total of ∼60 kb of DNA
(Supplemental Data 2). We designed the amplicons to be <450
bp to ensure that paired-end 250-bp sequencing would cover the
entire length of the fragment. Library construction was conducted
via the standard protocol provided by Illumina using 250 ng geno-
micDNAper reaction. The libraries were pooled and sequenced us-
ing paired-end 250-bp reads on an Illumina MiSeq instrument.

Variant calling and phasing

Sequencing reads were demultiplexed and aligned to the target re-
gions using the standard Illumina Custom Amplicon Workflow
protocol. Reads were first aligned to the downstream locus-specific
and upstream locus-specific oligonucleotide primers used to am-
plify the targeted regions. Then, the alignment was performed us-
ing a banded Smith-Waterman alignment. Variant calling was
performed using tools from the Genome Analysis Toolkit (GATK)
version 3.2-2, according to GATK Best Practices recommendations
(McKenna et al. 2010; DePristo et al. 2011; Van der Auwera et al.
2013). According to September 2014 guidelines for small targeted
experiments, this workflow included using HaplotypeCaller to call
variants in target regions individually per subject, followed by
joint genotyping usingGenotypeGVCFs to produce amultisample
VCF. Default settings were used for both tools. After variant call-
ing, the following annotations and thresholds were used to
remove low confidence SNPs, based on GATK recommendations
for hard filtering: QD < 2.0; MQ< 40.0; FS > 60.0; MQRankSum<
−12.5; ReadPosRankSum<−8.0; QUAL < 100.0. Similarly, the
following filters were applied to remove low confidence indels:

High-throughput regulatory variant identification

Genome Research 1211
www.genome.org

http://genome.ucsc.edu/ENCODE/downloads
http://genome.ucsc.edu/ENCODE/downloads
http://genome.ucsc.edu/ENCODE/downloads
http://genome.ucsc.edu/ENCODE/downloads
http://genome.ucsc.edu/ENCODE/downloads


QD< 2.0; FS > 200.0; ReadPosRankSum<−20.0; InbreedingCoeff
<−0.8; QUAL < 100.0. After hard-filtering, haplotypes were esti-
mated with SHAPEIT2 software (Delaneau et al. 2012, 2013b;
O’Connell et al. 2014) using the “Read Aware Phasing” algorithm
(Delaneau et al. 2013a). According to SHAPEIT2 documentation,
linkage disequilibrium patterns necessary for haplotype inference
can be adequately captured usingMCMC sampling in studies with
at least 100 subjects; therefore, reference panels were not incorpo-
rated, and default algorithm parameters were used.

Reporter input library construction

PCR amplicons from Illumina custom capture libraries from 95 in-
dividuals were pooled in equal volume. The resulting pools were
then PCR amplified to add 15 bp of sequence matching the
STARR-seq backbone using primers TS2SSF and TS2SSpatientR us-
ing Q5 polymerase with GC buffer (New England Biolabs) using
the following cycling conditions: for 15 sec at 98°C and cycles of
10 sec at 98°C, 30 sec at 63°C, and 3 min at 72°C. The resulting
products were purified using Solid Phase Reverse Immobilization
(SPRI) beads at a 1.8× SPRI:reaction ratio.

The STARR-seq screening vector was digested overnight with
SalI and AgeI, and linearized backbone was purified with the
Wizard SV Gel and PCR Clean-Up kit (Promega). One hundred
nanograms backbone and 23 ng pooled insert were cloned in
two 20 μL Gibson assembly reactions. The reactions were purified
using SPRI beads and eluted in 5 μL ddH20 and then transformed
into Stellar chemically competent cells according to the manufac-
turer’s protocol. Transformations were recovered for 1 h in SOC
medium while shaking (225 rpm, 37°C) and then grown for 14 h
in 250 mL of Luria Broth while shaking (225 rpm, 37°C). The re-
sulting reporter input libraries were then purified using the
Promega Pure Yield Maxiprep kit.

To assess variant diversity in the population STARR-seq input
libraries, the fragments inserted into each were sequenced on an
Illumina MiSeq. Ten nanograms of each input library were PCR
amplified using indexed custom sequencing primers and Q5 poly-
merase inGCbuffer (New England Biolabs). The following thermal
cycling protocol was used: 30 sec at 98°C followed by 10 cycles of
10 sec at 98°C, 30 sec at 65°C, and 2 min at 72°C, with a final ex-
tension for 7 min at 72°C. The reporter input pool PCR product
was purifiedusing SPRI beads (1.8× SPRI:DNA ratio) and sequenced
on an Illumina MiSeq Instrument using 250-bp paired-end reads.
Primer sequences are available in Supplemental Table 4.

Reporter output library construction

Population STARR-seq input libraries were combined in equimolar
pools and transfected into T-150 flasks of HepG2 cells with Fugene
(Promega) at a 5.5:1 ratio of Fugene:DNA. Eight replicate transfec-
tions were performed. Forty-eight hours after transfection, RNA
was harvested as described next.

Cells were rinsed with PBS pH 7.4 and incubated for 3 min at
37°CwithDNase I (5mgDNase I in 1mL buffer containing 10mM
Tris-HCl pH 7.5, 150 mM NaCl, and 1 mM MgCl in DEPC-treated
water diluted to a total volume of 24 mL in PBS). Cells were rinsed
again with PBS and then dissociated with Trypsin-EDTA 0.25%
(Life Technologies). Trypsin was neutralized with HepG2 tissue
culture medium, and cells were pelleted via centrifugation. Cell
pellets were rinsed once with PBS and then lysed in 2 mL of RLT
buffer (Qiagen) with 2-mercaptoethanol (Sigma).

Total RNA was prepared using the Qiagen RNeasy Midi kit
including the on-column DNase I digestion step. Poly-A RNA
was isolated from 70 μg total RNA by double selecting with
Dynabead Oligo-dT25 beads (Life Technologies). The RNA was

then treated with turboDNAse (4 U) for 30 min at 37°C (Life
Technologies). DNase treated poly-A RNA was purified using the
RNeasy Mini kit. cDNA was synthesized using the STARR-seq
gene-specific primer using SuperScript III (Life Technologies).
Reaction volumes were scaled to 50 μL. Reactions were incubated
for 2.5 h at 55°C and inactivated by incubating for 15 min at 70°
C. Following synthesis, cDNA was treated with RNase A (Sigma)
for 30 min at 37°C. cDNA was purified with SPRI beads at a 1.5:1
bead:cDNA ratio (by volume).

The cDNA was then amplified using a two-stage PCR with a
protocol similar to the published STARR-seq protocol (Arnold
et al. 2013). The cDNA sample from each replicate was used as in-
put into first-round reporter-specific PCR reactions using primers
“reporter specific primer1” and “reporter specific primer2,” and
Q5 high-fidelity polymerase (New England Biolabs) with GC buff-
er (denaturing for 45 sec at 98°C, amplificationwith 15 cycles of 15
sec at 98°C, 30 sec at 65°C, and 70 sec at 72°C; final extension for 7
min at 72°C). Samples were then purified using SPRI beads at 1.5×
ratio of bead:PCR product and eluted in 15 μL nuclease-free water.
The resulting products were used as template for a second round
of PCR, which used a standard Illumina TruSeq indexing primer
on the p5 end of the library and custom indexing primers
(Supplemental Table 3) to barcode the samples for multiplexing
prior to sequencing (Illumina). Final sequencing libraries were pu-
rified with SPRI beads at a 1.5× SPRI:PCR reaction ratio.

Identifying regulatory variants in population STARR-seq

Haplotype sequences were imputed using the phased VCF file by
inserting phased variants into reference sequences from the
hg19 genome assembly. Sequencing reads were aligned to these
haplotypes using Bowtie 2 (Langmead and Salzberg 2012) with
strictmatch parameters (mismatch, gap open, and gap extend pen-
alties all set to 100) to ensure exact matching to individual haplo-
types. Read counts at each SNP were tallied using SAMtools
mpileup (Li et al. 2009). Replicates were pooled to increase statisti-
cal power. SNPs having fewer than two reads of either input DNA
or pooled RNAwere discarded from further analysis. Fisher’s exact
test was used to detect significant differences in minor allele fre-
quency between input DNA and output RNA; a pseudocount of
1 was added to each table entry in Fisher’s exact test. Two-tailed
P-values were adjusted to control the false discovery rate (FDR)
to <5% via procedure p.adjust() in the standard R package
“stats” (R Core Team 2015), which implements the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995). Of 283
SNPs tested, 36 were found significant at an FDR-adjusted level
of 0.05. SNP effect sizes for each allele were computed as the ratio
of normalized read counts between variants: (RNA0/DNA0)/(RNA1/
DNA1) for DNA and pooled RNA read counts for alleles 0 and
1. Haplotype effect sizes were computed as normalized ratios for
each haplotype versus all pooled haplotypes at a locus

RNAhaplotype/DNAhaplotype

RNApooled/DNApooled
.

Significance was assessed via Fisher’s exact test as above.

Luciferase validation assays

Selected regions were amplified from the genomic DNA from indi-
viduals who were heterozygous for regulatory variants identified
via the population STARR-seq assay. Primer sequences are available
in Supplemental Table 4. The amplified regions were then cloned
into a modified pGL4.13 luciferase expression vector containing a
Supercore1 promoter as described (Arnold et al. 2013). The con-
struct was then transformed into TOP-10 competent cells (Life
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Technologies) and plated onto LB agar plates with ampicillin and
incubated overnight at 37°C. In order to capture both haplotypes
from subjects who were heterozygous in those regions, multiple
colonies were selected and grown individually in LB media over-
night. Plasmids were extracted using the PureYield Plasmid
Miniprep System (Promega). Constructs were sequenced using
Sanger sequencing, and variants were confirmed in dbSNP31.
HepG2 cells were plated into white flat-bottom 96-well plates at
a density of 25,000 cells/well. After 48 h, 100 ng of plasmid/
well (1:10 Renilla:firefly luciferase ratio) was transfected with
Fugene HD (Promega) at a 5.5:1 Fugene:DNA ratio. Twelve bio-
logical replicates for each construct were transfected. After 24 h,
firefly luciferase and Renilla luciferase signal were quantified
using the Dual-glo Luciferase Assay (Promega) using a Victor3
1420 plate reader (PerkinElmer). Normalized luciferase signal
was calculated by dividing the firefly luciferase signal by the
Renilla luciferase signal. Statistical significance between the nor-
malized luciferase signals for each allele was determined using a
Student’s t-test.

Geuvadis eQTL analysis

Expression-QTLs and gene expression measurements were ob-
tained from theGeuvadis project (Lappalainen et al. 2013). The ex-
pression measurements used in this manuscript were from 462
measurements that passed Geuvadis quality control and that had
been PEER-factor normalized (Stegle et al. 2010) and transformed
to a standard normal distribution (Lappalainen et al. 2013).
Associations between quantile-normalized gene expression levels
and genotype were calculated in R via the lm() function.

Allele-specific H3K27ac analysis

Allele-specific analysis of H3K27ac ChIP-seq reads was completed
by using Bowtie (Langmead and Salzberg 2012) to read to both
possible alleles of and flanking regions for rs73170828 and
rs62274098. Reads were required to align with no mismatches
(Bowtie parameter “-v 0”), and any reads that aligned equally
well to both possible alleles were discarded (Bowtie parameter
“-m 1”). The approach follows a previously published method
thatwas shown to eliminate alignment biases toward the reference
allele (Reddy et al. 2012). To test for allele-specific H3K27ac, the
number of unique reads aligning to each allele was tabulated,
and the statistical tests described were performed using R.

Data visualization

Visualization for Figure 1B and rs4266144 case study analysis in
Figure 3 was completed on the UCSC Genome Browser using the
GRCh37/h19 release of the human genome (Kent et al. 2002).

Data access

Raw and aligned sequencing data from the input and output
STARR-seq libraries have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE68331.
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