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Background Estimating tumor purity is especially important in the age of precision medicine. Purity estimates have
been shown to be critical for correction of tumor sequencing results, and higher purity samples allow for more accu-
rate interpretations from next-generation sequencing results. Molecular-based purity estimates using computational
approaches require sequencing of tumors, which is both time-consuming and expensive.

Methods Here we propose an approach, weakly-supervised purity (wsPurity), which can accurately quantify tumor
purity within a digitally captured hematoxylin and eosin (H&E) stained histological slide, using several types of can-
cer from The Cancer Genome Atlas (TCGA) as a proof-of-concept.

Findings Our model predicts cancer type with high accuracy on unseen cancer slides from TCGA and shows prom-
ising generalizability to unseen data from an external cohort (F1-score of 0.83 for prostate adenocarcinoma). In addi-
tion we compare performance of our model on tumor purity prediction with a comparable fully-supervised approach
on our TCGA held-out cohort and show our model has improved performance, as well as generalizability to unseen
frozen slides (0.1543 MAE on an independent test cohort). In addition to tumor purity prediction, our approach iden-
tified high resolution tumor regions within a slide, and can also be used to stratify tumors into high and low tumor
purity, using different cancer-dependent thresholds.

Interpretation Overall, we demonstrate our deep learning model’s different capabilities to analyze tumor H&E sec-
tions. We show our model is generalizable to unseen H&E stained slides from data from TCGA as well as data proc-
essed at Weill Cornell Medicine.
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Introduction
In recent years, there has been an increase in tumor
DNA sequencing from cancer patients, to identify
tumor driving somatic mutations. However, samples
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that are used for sequencing consist of not only cancer
cells, but also include normal immune cells, stromal
cells and blood vessels, whose DNA also gets sequenced.
The purity of tumor samples impacts sequencing
results, making it harder to detect mutations, especially
subclonal events due to dilution of tumor DNA by nor-
mal DNA. Determining tumor purity is therefore criti-
cal before sequencing. Moreover, purity in some cases
can provide prognostic information. In glioma and
colon cancer, low tumor purity is associated with worse
survival outcomes.1,2 Therefore, tumor purity estimates
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Research in context

Evidence before study

Estimating the amount of tumor content in a slide has
previously been performed by trained pathologists.
Increasingly, computational tools have been developed
to measure tumor purity, but these require sequencing,
which is time consuming and expensive. Previous litera-
ture has shown that deep learning models can identify
key characteristics of histological tissue slides, called
H&E slides, used by pathologists to estimate tumor
purity.

Added value of this study

We present a deep learning approach trained on data
that is readily available at all medical institutions, these
H&E stained slides, to predict tumor purity. In addition,
we remove the need for sequencing of tumors to esti-
mate this purity score.

Implications of all the available evidence

This approach allows for proper correction of sequenc-
ing data in the context of precision medicine, as well as
the potential to improve understanding of clinical
outcomes.
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can help correct sequencing outputs and help predict
disease outcomes.

Traditionally, tumor purity has been estimated by
pathologists based on review of hematoxylin and eosin
(H&E) stained slides. Several methods, including
ABSOLUTE,3 ESTIMATE,4 as well as a consensus
purity estimate (CPE),5 have aimed to determine tumor
purity through computational analysis of sequencing
results. Molecularly derived purity scores, especially
those relying on DNA, are attractive because they are
thought to be highly accurate and do not need any man-
ual review or inspection. However, sequencing and
associated analysis are expensive processes, especially if
tumor sample quality is not sufficient for proper analy-
sis. On the other hand, pathologist-derived purity scores
may have limited accuracy because they may have sub-
stantial inter-pathologist variability; indeed previous lit-
erature has shown that pathology-estimated tumor
purity often fail to correlate well with sequencing-
derived purity.6 Consensus-based approached have
been one solution proposed for this problem, but they
require either multiple pathologists or multiple method-
ologies for molecular approaches, increasing monetary
and time costs.6 Thus, other approaches to quantify
tumor purity are necessary.

H&E-stained slides are cheap and quick to produce
from tumor samples and have been the gold standard
for cancer diagnosis by trained pathologists. The utiliza-
tion of artificial intelligence (AI) methods, in particular
deep learning, for analyzing histopathology images has
significantly increased over the past few years. Notable
deep learning methods were developed to identify the
presence of tumor in a tissue, segment regions of inter-
est, and classify molecularly-derived subtypes.7�16

There have been two main approaches to handling these
types of deep learning analyses, fully-supervised and
weakly-supervised. A fully-supervised approach requires
each image to have a label associated with it to train a
model. In fully supervised approaches, such as the data
that was presented for the CAMELYON16 and CAMEL-
YON17 datasets,17 expert pathologists will review all
slides used for training and testing an algorithm and
manually annotate the slides to represent classes or seg-
mented regions of interest. Due to computational con-
straints, entire gigapixel sized images, with several
thousand pixels in height and width, cannot be directly
used as input into standard deep learning techniques,
although sophisticated approaches have been proposed
to make these large images compatible.18 Instead, the
consensus approach to date has been to split the slides
into small patches or tiles (hundreds of pixels for width
and height), that can be efficiently fed into these mod-
els. In this scenario, annotated regions are necessary as
there may be small sections of the tissue, at the size of a
single patch, that have no tumor tissue within it. It is
possible to train a model using slide level labels for
patches, but this will result in noisy labels, as some
non-tumor patches within a given tumor slide will be
given the wrong label. The problem with a fully-super-
vised approach, in which manual annotations of regions
is needed, is that it requires a significant amount of
time from domain experts to label enough slides to be
used to properly train deep learning models. Therefore,
recent works have focused on using weakly-supervised
approaches.

In a weakly-supervised approach, instead of manu-
ally annotating the entire slide, region by region or
patch by patch, the slide is given a single overall label,
and deep learning models use this information to iden-
tify regions of interest or use this to classify the disease
state of the slide as a whole. This allows a much quicker
annotation process, as the entire slide can be given a
label and the heterogeneity within the slide can be
accounted for. The main premise of most weakly-super-
vised approaches for histological analysis requires pool-
ing the features from image patches, under the
multiple instance learning (MIL) framework.19 In this
scenario, a “bag” represents the entity in which the clas-
sification occurs, and “instances” represent heteroge-
neous elements that all relate to the bag entity. In the
case of the standard assumption for MIL, if at least one
instance within the bag is positive, the whole bag can be
considered positive.19 This concept was applied by Cam-
panella et al.,8 where the authors used > 15,000 cancer
patients with several years’ worth of histological slides
from the Memorial Sloan Kettering Cancer Center
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(MSKCC) slide repository in addition to external patient
slides to predict the presence of cancer within a slide.
The pooling operation used in this approach was max
pooling. In this case, a slide is positive if at least one
patch is predicted as positive (positive would be the
presence of tumor). The authors provided a proof-of-
concept study that clinical-grade performance
(described as an AUC of greater than 0.98 for all cancer
types for cancer detection) was achieved using this
approach, and that specific malignant regions within
slides were identified.8 As mentioned by Lu et al, this
requires a lot of data, since very few patches from each
slide are used for the classification; in fact, only one
patch per slide is used during backpropagation for the
max pooling operator.15 Another pooling operation that
can be used is average pooling under the collective
assumption of the MIL algorithm. In this regard, all of
the instances within a bag, have an equal influence on
the bag class.19 A seminal work was introduced in 2018,
called Attention-MIL, which introduced a new pooling
approach and is a modification of this collective
assumption.20 The principle of this approach is that a
neural network is used within the model to learn a good
aggregating function. In this sense, it is learning a
weighted sum of all the instances within a bag based on
the feature representation of that instance, to make the
prediction of interest. The different weights can then be
interpreted the level of influence a particular region has
on model prediction. This approach has been used to
find slides that contain cancer and identify cancer sub-
types,15 as well as to automatically identify the hormonal
status in breast cancer from H&E slides,21 stage of can-
cer,22 and tissue origin of metastatic lesions.23

In this study, we propose a weakly-supervised
approach to calculating tumor purity from whole slide
sections utilizing an attention-based, multi-task, multi-
ple instance deep learning model, we call wsPurity, for
whole-slide purity detection. Most of the previous work
done using weakly-supervised methods have provided
labels to perform binary or multi-class classification,
indicating 1 for the correct class label and 0 for the rest.
Previous work has incorporated tumor purity in the pre-
diction task,24 however this was performed in a fully-
supervised manner. In this work, we propose that incor-
porating tumor purity into the classification task will
allow for the proper identification of tumor regions
within the histological slide, and improved performance
over this fully-supervised approach.

We use an Attention-MIL setup to learn a weight fea-
ture for the distribution of patches within a slide and a
feature representation that can accurately predict tissue
type as well as tumor purity level. We adapt a similar
deep learning pipeline to the multi-task multiple
instance learning approach used in Lu et al.,23 but the
fully-connected layers, specific tasks, and loss functions
applied differs from their approach. Framing the purity
score prediction as an ordinal classification problem,
www.thelancet.com Vol 80 Month June, 2022
wsPurity predicts tumor purity within 9 different bins
ranging from 0 to 1, where 0 is no tumor and 1 is com-
plete tumor. We use a pathologist derived consensus
purity score developed from previous literature as the
ground-truth to train our model based on TCGA data-
base slides.24 There are several unique benefits for our
model, which include (1) We can accurately identify
tumor purity in a tissue slide and compare our results
to previously developed models, (2) We can classify
tumors into low and high purity at several different
thresholds that can be cancer type specific, and (3) we
can identify potential tumor regions that can be isolated
and used to enrich the tumor sample for improved
sequencing.
Methods

Data Preprocessing
Data was acquired from The Cancer Genome Atlas
(TCGA) database, and whole slide images (WSIs) were
exported for downstream analysis as svs file format.
5390 slides were taken from six different tumor types
and a total of 3240 total patients. These tumor types
were chosen to span the range of tumor purity present
in the TCGA database based on previous literature.5 We
analyzed adrenal adenocarcinoma (ACC), lung squa-
mous cell carcinoma and lung adenocarcinoma (LUSC
& LUAD respectively), breast invasive carcinoma
(BRCA), head and neck squamous cell carcinoma
(HNSC), prostate adenocarcinoma (PRAD), and low
and high grade serous carcinomas (ovarian serous cysta-
denocarcinoma labeled in TCGA or OV). A small num-
ber of urothelial bladder carcinoma (BLCA) normal
solid tissue slides (22 slides) were included in the train-
ing set, however, we did not include any BLCA patients
in the validation and test set, and there were no tumor
tissue from BLCA patients in the training, validation,
and test sets to be evaluated, so we do not report any
metrics on this cancer type. Each tumor type was pre-
processed separately. Slides were tiled into 512£512
patches at 20x resolution (adjusted field of view and
downsampling if 40x magnification was used). A color
threshold, empirically set for red, green, and blue, was
set for each patch to identify the amount of tissue pres-
ent, and a threshold was set at 40% tissue presence to
remove background regions. Color thresholding was
performed by converting the image into HSV color
space and performing a threshold using the opencv-
python package. A Haar wavelet transform was used to
filter out tissue that was out of focus due to issues
related to the scanner.32,33 An empirically derived
threshold was set for the blur detection to minimize
loss of tissue while still removing severely out of focus
images (41,632 out of 3,730,063 total patches or »1.1%).
The slides were split for each tumor such that there was
approximately 70% | 15% | 15% for train | validation |
3
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test sets for each tissue (Supplemental Table 1). A small
fraction of tissues in the training set had less than
N=120 number of tiles in the slide and were removed
from the analysis during training. Slides were split so
that each tissue sample was split into one category.
Therefore, for cancer samples (-01A sample code labeled
through TCGA), all slides from the same patient were
grouped into the same split, and for each normal sam-
ple (-11A sample code), the slides from a single patient
were grouped into the same split. Data distributions as
well as predictions for the validation and test sets can be
viewed in the supplemental materials (Supplemental
Tables 2�4).

In addition, we used an WCM independent cohort
(outside of TCGA) to validate our model perform. We
received 78 de-identified patient frozen section H&E
slides from 48 different patients, from three different
Figure 1. (a) Workflow of wsPurity. To get a slide output, the origina
attention mechanism to combine information from all tiles to perfor
(b) Schematic of the multi-attention multi-task MIL approach. The
Resnet model using InstanceNorm. A gated attention mechanism g
of linear and dropout layers for the final predictions. (c) Schemat
Adapted from Pan et al.26).
cancer types, BRCA and PRAD, with a pathologist-
derived purity estimate to compare with our proposed
method.
Model
We used Pytorch for this study (version 1.1)34 and uti-
lized a variant of Resnet34 that is called Resnet34-
IBN,25 which had initially been trained on ImageNet,36

and adds InstanceNorm35 (preprint) layers within the
model (Figure 1c). In histology images there are notice-
able color variations due to differences in tissue prepro-
cessing and stain protocols. InstanceNorm has been
used to filter complex color variations (i.e. color shifts or
brightness changes), and was utilized for that reason,
instead of changing the input of the image through
methods such as stain normalization done in other
l svs file is tiled, passed through a deep learning model with an
m two tasks, cancer type prediction and tumor purity prediction.
model uses the structure of Resnet-34-IBN, which is a modified
enerates two feature representations, which pass through a set
ic of a residual block from the Resnet-34-IBN-b model (Right -
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studies.7,25 To improve model performance and mini-
mize overfitting, we added several different regulari-
zation methods. We have added weight decay (L2
Norm) regularization (1£10�4), data augmentation
(imgaug package) including rotations/flips, coarse
dropout, Gaussian noise, hue/saturation/contrast
adjustment, and intensity scaling. We use a learning
rate of 0.005, the stochastic gradient descent (SGD)
optimizer, and a bag size of 120 patches, with a
batch size of 2 for the MIL set-up. We tested a bag
size:batch size ratio of 60:4, 120:2, and 300:1, and
the 120:2 gave the best results and therefore were
used for all analyses (data not shown). Multi-task
learning was performed to analyze both the tissue
type present in the slide as well as tumor purity. For
tissue type prediction cross-entropy loss was used
with inverse frequency of each class used to weight
each component in the loss function. For tumor
purity the loss used was derived from a previous
study, and is used to be able to introduce an order-
ing to the classification task.37 Using this ranked
loss function, a probability distribution (P̂ðy> riÞÞ,
where ri is the iththreshold used to separate class i� 1
from class i (where i in our case is 8) is generated for
each threshold. The additional class, in addition to the
8 that fall above each of the i thresholds, is formed for
samples that are below all thresholds (i.e. less than
0.09 or less than 9% pure). We binned tumor purity
using the following thresholds [0.09, 0.29, 0.39,
0.49, 0.59, 0.69, 0.79,0.89], such that a tumor
purity of 0 represents normal tissue (denoted as -11A
in the TCGA database) and 1 represents pure tumor.
We removed the 0.19 threshold due low representa-
tion (14 WSI examples out of 5,860 in the entire
dataset or < 0.1% of the total number of slides)
within this class. Through this approach, we can set
8 different thresholds when classifying tumors into
high vs. low purity, where different thresholds can
be used based on biological significance.

In this work, we use an embedding-level MIL
classifier. MIL allows for two types of approaches,
instance-level, where classification can be done on
each individual component associated with a bag,
and embedding-level, where the bag is classified but
the meaning of each individual instance is lost. We
chose to use the embedding level approach as previ-
ous literature has shown that the attention mecha-
nism allows for importance ranking of individual
instances within a bag.20 In traditional multiple
instance learning, under the collective assumption,
all training instances in a given bag contribute
equally to the final prediction.19 We modify this,
based on previous works, to include a weighted aver-
age of instances, which is learned through an atten-
tion mechanism. We use the gated attention
mechanism proposed previously,20,38 where the
weights derived for each patch k is calculated by:
www.thelancet.com Vol 80 Month June, 2022
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In these equations, hk represents the specific feature
embedding, V ;U 2 RLxD are the same dimension
where L has been set to 128, and D is the size of the fea-
ture embedding, and w2RLx1 to generate the weights,
which then go through a softmax function which is
used to pool feature embeddings.20,38 The idea of an
MIL-embedding classifier is that we get a prediction for
a set of patches, but do not have to predict each individ-
ual patch. We use the attention weights to identify dif-
ferent regions in the tissue that have different weights
for prediction.

The final loss function was represented as
L ¼ Lpurity þ aLtissue, where a is set to 0.125 to allow for
an equal influence for both prediction tasks based on
empirical testing. The model was trained using a single
GeForce GTX 1080 GPU for 9 epochs and we chose the
model with the lowest validation loss. Supplemental
Figure 1 shows the training loss and validation loss as a
function of training epochs.
Dataset generation
The slides in the dataset can consist of multiple individ-
ual histological slices of the same tissue. To tackle this
problem, these slices were grouped into geographical
subregions. The subregions were later used to train, val-
idate, and test the predictive models. First, we generated
a slide position matrix, consisting of the x and y coordi-
nates of all the tiles per slide. Next, to identify the indi-
vidual tissue slices, we used density-based spatial
clustering of applications with noise (DBSCAN) over
the plotted data.28 We used � of 0.3, where � is the maxi-
mum distance between two samples for them to be con-
sidered in the same neighborhood.28 The clusters
identified by the algorithm represent the individual tis-
sue slices in a slide. Finally, the tiles in each cluster
were sorted first by x and second by y and were split
into subsets of sizes 120 (to prevent memory constraint
issues when running the deep learning models). The
resulting subsets were used to train, validate, and test
the predictive models.
Data analysis and visualization
To visualize the features developed from the MIL-
embedding, we used t-distributed stochastic neighbor
embedding (tSNE) to reduce the dimensionality of fea-
ture vectors extracted from the model.39 We performed
dimensionality reduction on both arms of the multi-
task learning model, right before the last linear layer,
and visualized the purity score and tissue type label by
color for each bag based on the slide label. In addition,
5
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tissue patches were reconstructed with the predicted
label to generate heatmaps for prediction and attention
weights (normalized to span from 0 to 1 on a bag level)
were used to identify different regions on the slide that
were weighted differently by the model. We multiplied
the attention weights for the tumor type prediction by
the predicted tumor purity, to better identify the tumor
regions of interest.

As mentioned, the loss function for purity score pre-
diction generates a probability vector ŷ, which is of
length K-1, where K is the number of different catego-
ries. We generate ROC curves, using the package scikit-
learn, based on these probabilities for each of the
thresholds set. We average the probability vectors for
each slide to get a final probability vector that we use to
get the ROC curve and subsequent AUC value. For each
cancer type, we calculated F1-score, precision, recall for
each class and an overall accuracy score based on the
classification_report function in scikit-learn. We aggre-
gate the predictions from all tiles the entire slide and do
a majority voting to get slide level tissue type predic-
tions.

We compared the tumor purity score predictions by
our model to the predictions generated in a study by Fu
et al.24 In this paper, the authors use label smoothing to
predict patches for each tile in a fully-supervised
approach, where the true label is given as the tumor
purity for the sample. For the comparison, we calculate
MSE and MAE for both studies based on true versus
predicted tumor purity scores of 701 slides that were
present in the test datasets of both studies. Our model
generates a list of probabilities per tile, where the ith ele-
ment of the list corresponds to the probability the tile
has a tumor purity at least within the ith bin. To calcu-
late a tumor purity score of each tile, we used a probabil-
ity cutoff of 0.5. Next, we calculated the average tumor
purity score of all tiles in a slide to get a tumor purity
score on a slide level. Finally, to compare the predictions
generated in two studies, we used the MSE and MAE
functions from the sklearn.metrics module.

Plots were created in python using matplotlib and
seaborn.
Ethics. The study was performed in accordance with
relevant guidelines and regulations and was approved
by the Institutional Review Board at Weill Cornell Medi-
cine (IRB #1305013903) "Research for Precision Medi-
cine". Informed consent from all participants were
obtained. All data was anonymized prior to analysis.
Statistics. Most of our analyses did not require statis-
tics. We report various metrics to assess deep learning
model performance, which includes F1-score, precision,
recall and AUC-ROC for a TCGA validation set, TCGA
test set, and WCM test set. We report median and inter-
quartile range for the label distribution of our purity
scores for the TCGA dataset.
Role of funders. Funders had no role in study design,
data collection, model design, data analyses, interpreta-
tion, or writing of the report.
Results

Data and model description
A total of 5390 slides from 3240 patients, comprised of
six different cancer types, including adrenal adenocarci-
noma (ACC), lung squamous cell carcinoma and lung
adenocarcinoma (LUSC & LUAD respectively), invasive
breast carcinoma (BRCA), head and neck squamous cell
carcinoma (HNSC), prostate adenocarcinoma (PRAD),
and low and high grade serous carcinomas (ovarian
serous cystadenocarcinoma labeled in TCGA or OV),
were used to train, validate, and test our proposed deep
learning model (70% | 15% | 15% respectively). The
most frequent tumor types were invasive breast carci-
noma (BRCA) and lung cancer (LUAD & LUSC), a com-
bination of lung adenocarcinoma and lung squamous
cell carcinoma (Supplemental Table 1). The model was
tested using two separate cohorts of patients. The
TCGA database slides were used for model training and
validation (4063 and 921 slides respectively), and a
held-out test set (866 slides) from the TCGA database
was used to evaluate model performance (TCGA
cohort). In addition, we used a Weill Cornell Medicine
(WCM) cohort of 78 de-identified H&E slides from 48
patients for evaluating model performance and gener-
alizability (WCM independent cohort).

There is variability in the purity distribution between
different cancer types. Figure 2 shows the distribution
of the held-out TCGA test set purity distribution strati-
fied by tumor type. Here we can see that tumor purity
distributions are cancer-type specific, for example OV is
skewed towards higher tumor purity, whereas PRAD is
skewed to lower tumor purity, when excluding normal
tissues. In addition, pathology provided tumor purities
overall are skewed towards higher values, 0.7 (0.35-
0.85) - median (IQR), for all slides used in this study. In
addition, if the normal tissue slides are removed, the
values for median (IQR) shift higher to 0.8
(0.67�0.89).

The overall workflow of our model can be seen in
Figure 1a. WSIs first get split into a set of tiles, and tiles
are then filtered to remove out of focus regions and
regions that have little to no tissue present. These
patches get passed through a deep learning model,
where each original image patch is transformed into a
feature representation. These patches are combined
using a weighted sum of each feature vector, using an
attention mechanism, to obtain two final
www.thelancet.com Vol 80 Month June, 2022



Figure 2. Representative test set distribution for tumor purity data stratified by tissue type. Red lines show the thresholds used for
identifying low vs high tumor purity.
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representations that can be used for two downstream
tasks, prediction of tumor purity and prediction of tis-
sue type. Figure 1b shows the schematic for the pro-
posed wsPurity deep learning model. In particular, we
used a previously developed Resnet-IBN25 network that
has been shown to improve generalizability of deep
learning models, especially when there is the presence
of color variation, which is common for H&E stained
slides. The building block of the Renset-IBN model is
shown in Figure 1c and adapted from the previously
published manuscript.25
Cancer type prediction
We first aimed to be able to predict cancer type for a
given tumor. We generated the labels based on the six
cancer type categories (ACC, BRCA, LUSC&LUAD,
HNSC, PRAD, and OV) and consider normal solid tis-
sue taken from patients to be grouped into one of these
classes as well (we model these patients as having a spe-
cific cancer type with 0% tumor purity). As shown in
Table 1 our model is capable of predicting cancer type
on a held-out set of TCGA patient slides, with an overall
accuracy of 93% for both the validation and test sets.
The tissue type that performed the worst was ACC,
although this cancer type was the most infrequent class
with only 17 examples in the validation set and 7 exam-
ples in the test set). To visualize how the differences in
features extracted from each cancer type, we extract the
last fully-connected layer before classification and per-
formed non-linear dimensionality reduction using t-
SNE on the feature representation generated per set of
120 patches from a given slide (see Methods for
www.thelancet.com Vol 80 Month June, 2022
description of slide patching and grouping). From this
plot we clearly see separations between the six different
cancer types (Figure 4a, b). Interestingly, the features
from HNSC and LUAD/LUSC have some mixing with
one another (Figure 4). BRCA and PRAD, and OV gen-
erally have unique feature representations. Additionally,
we do not see any distinct pattern associated with mis-
classification.

When testing tissue type prediction on the WCM
cohort, we see that model performance varies depend-
ing on cancer type. Overall, the accuracy of the model is
62%, but we see a much higher F1-score for prostate
cancer (0.83) compared with breast cancer (0.67). The
most common misclassification is breast cancer tissue
being misclassified as lung tissue (Supplemental Figure
2). This result may be explained by previous literature,
which shows that the spatial patterns are conserved
between lung cancer and breast cancer tissue, and spe-
cifically that a deep learning model trained on breast
cancer can properly make predictions about cancer
from lung adenocarcinoma tissue.26 We do see that the
most misclassified examples in the TCGA test set for
breast cancer slides was also lung cancer (data not
shown). In addition, we see that there is a distinction
between prostate cancer and breast cancer as the false
positive rate for each of these cancers is very low or
there are few cases of breast cancer slides predicted as
prostate cancer and no prostate cancer slides predicted
as breast cancer (precision of 1.0 and 0.93 for breast
cancer and prostate cancer respectively). This may indi-
cate that there are distinct features between some cancer
types, but for others this prediction may be more diffi-
cult to make. In addition, we cannot rule out that some
7



Metric Validation set Testing set (TCGA) Testing set (WCM)

ACC F1-score 0.84 0.77 -

Precision 0.93 0.83 -

Recall 0.76 0.71 -

BRCA F1-score 0.96 0.96 0.67

Precision 0.94 0.94 1.00

Recall 0.99 0.97 0.50

HNSC F1-score 0.86 0.87 -

Precision 0.80 0.79 -

Recall 0.93 0.96 -

LUAD and LUSC F1-score 0.93 0.93 -

Precision 0.98 0.97 -

Recall 0.89 0.88 -

OV F1-score 0.89 0.91 -

Precision 0.87 0.92 -

Recall 0.91 0.90 -

PRAD F1-score 0.96 1.00 0.83

Precision 1.00 0.99 0.93

Recall 0.93 1.00 0.75

Table 1: Reported values of F1-score, precision and recall for the tissue type prediction for the validation set, test set (TCGA cohort), and
test set (WCM independent cohort).
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errors may be associated with differences between the
tissue preparation and staining between the TCGA
cohort and WCM cohort that may influence cancer type
prediction.27
Tumor purity prediction
We then look to predict tumor purity, using labels at
10% intervals, in order to provide granularity to predic-
tions, but also allowing for enough examples to be
included within each of the categories. These bins were
arbitrarily selected and can be altered to suit any other
purity based application. To assess how well our model
performed, we report both mean squared error (MSE)
and mean absolute error (MAE). When looking at model
performance between the validation and test sets, we see
that model performance for MSE/MAE is 0.0689/
0.2079 and 0.0557/0.1867 respectively, indicating good
generalizability between unseen TCGA slides. We then
compared our model against the fully-supervised
approach previously published,24 as well as compared
how our model performed in the held-out TCGA cohort
compared to the WCM cohort. We identified 701 slides
from our test set that overlapped with previously pub-
lished work in the Fu et al. paper.24 Firstly, we see that
our weakly-supervised approach performs better than
previous published work, with a MSE/MAE value of
0.0441/0.1659 vs 0 0.1538/0.2967. In addition, we see
that our model also generalizes well to our WCM inde-
pendent test cohort. The performance of tumor purity
prediction on the WCM, although significantly smaller
in size, is comparable to that of the TCGA held-out data
(MSE/MAE - 0.0354/0.1543).
In addition, to validate this model in determining
clinically relevant subclasses of tumor purity (high vs.
low tumor purity), we generated receiver operating char-
acteristic (ROC) curves based on three separate thresh-
olds for the held out TCGA dataset (Figure 4). The first
threshold is for tumor vs. normal tissue prediction.
Since we do not have any tumor purity less than 0.09,
the 10% threshold can be used to consider the classifica-
tion between tumor vs. normal groups. What we see is
that for the majority of tumor types, the AUC is greater
than 0.98. The lowest performing tissue type is HNSC,
which may be due to the lower proportion of normal tis-
sue to tumor tissue distribution (»1:20 normal to tumor
ratio). This is much lower than all other cancers besides
the most infrequent class, ACC, by a significant amount
(the next smallest was PRAD at » 1:5 ratio). ACC perfor-
mance metrics may not be completely reliable due to
the rarity of the class type and the skewed distribution
of tumor purities (all values above 80% purity and 1 nor-
mal or 0% pure example in the validation and test set),
and therefore we caution making direct comparisons
for ACC and other tissue types in terms of model perfor-
mance. Increasing the number of examples or augment-
ing this dataset may be a useful future endeavor.
However, overall, model performance shows an AUC
greater than 0.78 for all thresholds and all different can-
cer types (Figure 3).

To visualize how the differences in features extracted
from each cancer type for purity prediction, we plotted
the features from the last fully connected layer using
tSNE similar to the cancer type prediction. When ana-
lyzing the feature embeddings for the purity scores, we
see that the predicted purity values follow a uniform
www.thelancet.com Vol 80 Month June, 2022



Figure 3. ROC curves of high vs low tumor purity. We set the thresholds at 10% tumor purity, 60% tumor purity, and 70% tumor
purity to identify model performance comparing normal vs. tumor tissue.
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Figure 4. (a, b) tSNE Plots using the feature embedding from the tissue type prediction (compared true vs. predicted, respectively)
(c, d) tSNE Plots using the feature embedding from the tumor purity score prediction (compared true vs. predicted, respectively).
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pattern from highest to lowest. Since these embeddings
are on the batch or “bag” level, they may correspond to
only a subset of the tissue slice, if the number of tissue
patches within a slide exceeded 120, due to computa-
tional constraints. Therefore, what we see is that in the
extreme cases (i.e. pure tumor or no tumor), the embed-
dings match well with the predicted tumor type. When
the tumor is a mixture of normal and abnormal tissue,
we see that there is a combination of many different
tumor purities across the slide (Figure 4c, 4d).
Tumor visualization and purity distribution
To assist clinicians and basic scientists, the regions of
high tumor purity need to be visualized. In this model,
we can identify different regions within the tissue, such
as tumor and non-tumor regions (Figure 5). We do this
by relying on the attention weights generated from the
deep learning model and the output from the purity pre-
diction. Due to the multi-task attention approach, we
have two weights per patch per slide, one for tissue type
prediction and one for tumor purity prediction. We will
focus solely on the tumor purity weights, and compare
these regions with pathologist-derived labels of these
tumor regions.

Tissue sections are a priori split into batches of 120
tiles, similar to what has been done in previous multi-
task learning methods, as computationally all tiles
cannot be analyzed simultaneously.8 We use the x and y
coordinates from each tile, to determine the geographi-
cal relationship between tiles. We perform density-
based spatial clustering (DBSCAN28) on these coordi-
nates, to identify unique tissue sections within the given
tissue slide, as multiple sections can be placed on a
given slide. We next identify each cluster and sort the x
coordinates and then by the y coordinates for each tissue
patch. These generate vertical batches that are spatially
related and can be passed through the model, as shown
by the vertical purity estimates in Figure 5a. Since pre-
dictions are done on the batch or “bag” level for embed-
ding classifiers, each 120-patch bag in this process
generates a single purity prediction.

As shown in Figure 5a (right-most image column),
pathologists annotated what they classified as the tumor
regions, for several of the WCM slides, to compare to
our attention-based areas of interest for the WCM
cohort. The regions of high attention weights corre-
spond well with regions within the tissue that patholo-
gists labeled as tumor. In addition, we can infer higher
resolution tumor regions for the tumor purity with
respect to regions identified using our model. As shown
in Figure 5, we have identified specific regions within a
tumor region that have low tumor content (as shown by
white arrows on the attention map weights). In addition
to the overall tumor location map based on the attention
weights, we can identify regions with tumor content
www.thelancet.com Vol 80 Month June, 2022



Figure 5. (a) (Left) A view of the overall tissue architecture. (Middle-Left) The distribution of the tumor purity predictions. (Middle-
Right) Attention Maps based on wsPurity. (Right) Pathologist-derived annotations for the tumor region within the slide. (b) Display
of the top four (green) and bottom four (red). Rows in A correspond to rows in B. The patches were chosen by normalizing the atten-
tion weights using the maximum and minimum values per 120-patch bag, multiplying this normalized attention weight by the pre-
dicted purity, and then ranking the values and taking the top four and bottom four patches from this ranked list.

Articles
within a given slide. We do this by multiplying the pre-
dicted purity score by the batch normalized attention
weights. Figure 5b shows an example of the top four
patches and bottom four patches with this attention
weight scoring, where each row of Figure 5b corre-
sponds to the slides in the same row as Figure 5a. We
next had a pathologist review these given slides to
understand the types of tissue that were identified. Spe-
cifically for all examples of the lowest weights, no signs
of malignant cells were identified. For each example
slide we are able to show examples of cancerous tissue
for the given slide. In total, 14/15 patches showed strong
evidence for malignant cells. In addition, these patches
represent different hallmarks of cancerous tissue. For
example, for the first example slide and third example
www.thelancet.com Vol 80 Month June, 2022
slide the patches show malignant cells that appear to
have large sized nuclei compared to the benign or
immune cells within the patch. Secondly, in the second
and fourth row, we identify small glands as well as
poorly developed glands that are indicative of grade 3
prostatic adenocarcinoma. We finally matched these
patches to the spatial location within the given slide to
confirm that they were within the pathologist drawn
regions of interest for tumor regions (Supplemental
Figures 5�8).

We also compared how the selection of batches may
influence the attention maps. We flipped the sorting of
tiles for batch generation, to first sort on the y coordi-
nates and then the x coordinates (horizontal batches).
As shown through Supplemental Figure 3, the regions
11
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identified do not significantly change based on visual
inspection, indicating that our approach is not sensitive
to this artificial binning procedure.

We show several different functionalities of our
model. First, we show that we can predict the tumor
purity, within the entire slide, with a higher accu-
racy, based on MSE/MAE, as compared to a fully
supervised approach, and that we can accurately
identify the cancer type within the slide. In addition,
we can identify regions within the slide that are
tumor positive using attention weights, and we can
infer these regions at a higher resolution than what
a pathologist would annotate.
Discussion
In this paper, we present a novel weakly-supervised
approach to purity estimation from digitized frozen
H&E stained slides. Our deep learning-based pipeline
extracts several different types of information for pathol-
ogists that could benefit or augment their current work-
flow. Firstly, the model predicts pathologist estimated
tumor purity, with accuracy that outperformed a previ-
ous approach to purity estimation using fully supervised
model training based on a direct comparison of model
predictions on the same slides. Secondly, our model
outputs a probability of tumor content exceeding a set
of predefined thresholds. We show that this approach
can then be used to predict high vs low tumor purity for
a set of cancer dependent thresholds, which may be use-
ful for predicting clinical outcomes based on previous
literature.2 Lastly, our attention mechanism in the
model, which aggregates information from different
regions of the slide for final purity prediction, can be
used for visualization of high and low contributing
patches to the final tissue prediction. We show that for
this particular task the higher attention weights corre-
spond with regions that are marked as having tumor in
the slide based on pathologist-derived estimations of
tumor regions. Additionally, these regions are generated
at higher resolution than the pathologist annotations,
which could be useful in the setting of tumor enrich-
ment for downstream sequencing tasks. Finally, we
show that our model can work for many different cancer
types, which is supported by previous literature that has
shown that different tumor types have conserved spatial
patterns.26

While we highlight many attributes of this approach,
there are limitations to this work. Firstly, the model
does not cover the entire tumor purity spectrum and
our training data has skewed purity scores. A small por-
tion, 4% of all slides fell below 50% purity, when not
considering normal tissue. While this is the inherent
nature of the TCGA database, we see this as a potential
area to improve model performance in the very low
purity regime. Although our WCM test set had exam-
ples of low tumor purity slides (Figure 5), including a
more comprehensive assessment of tumor purity, in
the low purity regime, is critical for future applications.
Our plan could include finding private patient cohorts
that have lower purity scores and performing transfer
learning or retraining our model on a new set of data.
Additionally generative models, such as StyleGAN2
have shown to produce high fidelity images for natural
images as well as histological image patches.29 We
could use this approach to generate synthetic data, that
we can then label to generate artificial aggregated image
patches to represent low tumor purity examples. Syn-
thetic data generation may also be helpful as we could
assess extreme cases of low tumor purity, where there
are very few tumor cells in the entire cohort to find a
threshold of predicting whether cancer is present within
a tissue to improve our prediction of tumor vs normal
slides. Finally, there has been work that shows that for-
malin-fixed paraffin-embedded (FFPE) slides can be
used for RNA-sequencing.30 We can also look to per-
form transfer learning on a set of FFPE slides, as these
slides are used for diagnosis, and these slides maintain
a better tissue architecture in most cases compared to
frozen sections and are used for diagnostic purposes.
Supplemental Figure 4 shows examples of tissue arti-
facts associated with frozen tissue sections, which are
challenging for pathologist assessment of cancer type.

Ideally this approach could have several future appli-
cations. Firstly, in cancers such as gliomas, with known
clinical outcome correlation with tumor purity, our
model can derive a probability estimate of being high or
low tumor purity.2 The flexibility of our model to predict
this cutoff at different purity values allows for flexibility
across different cancer types and can allow for the pre-
diction of whether or not there is cancer within a given
slide. Secondly, our approach can assist in precision
medicine. Our approach could improve RNA-sequenc-
ing results by improving overall tumor content com-
pared to normal tissue during RNA-sequencing of
tumors using attention-map guided tumor enrichment.
We would need to assess how tumor enrichment would
change by comparing our model guided tumor region
identification, as compared to pathologist derived tumor
region identification, and is something that can be ana-
lyzed in future work, potentially within a retrospective
study. In addition, our approach could be used as a
method to derive a consensus purity estimate, by pre-
dicting not only pathologist derived purity estimates,
but also incorporating molecular based approaches,
such as ABSOLUTE and ESTIMATE, into model predic-
tions. Future work could increase the flexibility of the
model to fine-tune model predictions based on the
tumor purity information available at a given institu-
tion. Another possible direction for this work would be
to incorporate more fine-grain information about the
different cancer types. One modification would be to
include information of specific cancer histological sub-
types, molecular based subtypes or mutational status,
www.thelancet.com Vol 80 Month June, 2022
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for which deep learning models have shown promising
results, to provide additional information to pathologists
for their review.7,31
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