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Abstract
Acute traumatic coagulopathy (ATC) is an extremely common but silent murderer; this condition presents early after trauma and
impacts approximately 30% of severely injured patients who are admitted to emergency departments (EDs). Given that con-
ventional coagulation indicators usually require more than 1 hour after admission to yield results—a limitation that frequently
prevents the ability for clinicians to make appropriate interventions during the optimal therapeutic window—it is clearly of vital
importance to develop prediction models that can rapidly identify ATC; such models would also facilitate ancillary resource
management and clinical decision support. Using the critical care Emergency Rescue Database and further collected data in ED, a
total of 1385 patients were analyzed and cases with initial international normalized ratio (INR) values >1.5 upon admission to the
ED met the defined diagnostic criteria for ATC; nontraumatic conditions with potentially disordered coagulation systems were
excluded. A total of 818 individuals were collected from Emergency Rescue Database as derivation cohorts, then were split 7:3
into training and test data sets. A Pearson correlation matrix was used to initially identify likely key clinical features associated with
ATC, and analysis of data distributions was undertaken prior to the selection of suitable modeling tools. Both machine learning
(random forest) and traditional logistic regression were deployed for prediction modeling of ATC. After the model was built,
another 587 patients were further collected in ED as validation cohorts. The ATC prediction models incorporated red blood cell
count, Shock Index, base excess, lactate, diastolic blood pressure, and potential of hydrogen. Of 818 trauma patients filtered from
the database, 747 (91.3%) patients did not present ATC (INR � 1.5) and 71 (8.7%) patients had ATC (INR > 1.5) upon admission
to the ED. Compared to the logistic regression model, the model based on the random forest algorithm showed better accuracy
(94.0%, 95% confidence interval [CI]: 0.922-0.954 to 93.5%, 95% CI: 0.916-0.95), precision (93.3%, 95% CI: 0.914-0.948 to 93.1%,
95% CI: 0.912-0.946), F1 score (93.4%, 95% CI: 0.915-0.949 to 92%, 95% CI: 0.9-0.937), and recall score (94.0%, 95% CI: 0.922-
0.954 to 93.5%, 95% CI: 0.916-0.95) but yielded lower area under the receiver operating characteristic curve (AU-ROC) (0.810,
95% CI: 0.673-0.918 to 0.849, 95% CI: 0.732-0.944) for predicting ATC in the trauma patients. The result is similar in the validation
cohort. The values for classification accuracy, precision, F1 score, and recall score of random forest model were 0.916, 0.907,
0.901, and 0.917, while the AU-ROC was 0.830. The values for classification accuracy, precision, F1 score, and recall score of
logistic regression model were 0.905, 0.887, 0.883, and 0.905, while the AU-ROC was 0.858. We developed and validated a
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prediction model based on objective and rapidly accessible clinical data that very confidently identify trauma patients at risk for
ATC upon their arrival to the ED. Beyond highlighting the value of ED initial laboratory tests and vital signs when used in
combination with data analysis and modeling, our study illustrates a practical method that should greatly facilitates both warning
and guided target intervention for ATC.
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Introduction

Annually, traumatic injury leads to more than 5 million deaths

worldwide, comprising 10% of global mortality, and trauma

care is thus a huge burden on medical resources and health

services.1,2 Uncontrolled hemorrhage is associated with 40%
of traumatic deaths,3,4 and among such cases, *60% of

hemorrhagic deaths occur within 3 hours of admission and a

total of 94% occur within 24 hours.5 A variety of factors

contribute to massive bleeding, yet acute traumatic coagulo-

pathy (ATC) is widely considered to be a leading cause,

affecting up to 30% of severely injured patients; indeed, ATC

is understood to predict up to 4-fold increases in bleeding-

related mortality.6-9

Acute traumatic coagulopathy is an endogenous coagulopa-

thy multifactorial with many mechanisms, including tissue

damage, shock, hemodilution, hypothermia, acidemia, inflam-

mation, and hypoperfusion,8,10-12 and early detection and inter-

vention of ATC is known to significantly reduce mortality and

to ameliorate the outcomes of trauma patients.5,13 Therefore, it

is of great importance to develop prediction models that can

alert clinicians to potential ATC cases when trauma patients

arrive at the emergency department (ED). Ideally, such models

would include the following characteristics: (1) Simplicity:

The model needs to be based on data that are easily accessible

upon admission to the ED. (2) Universality: Indicators for

building models can be widely applied to medical institutions

around the world. (3) Timeliness: Observed indicators can be

obtained quickly, helping doctors get prediction result rapidly

and enabling them to take model-guided interventions in

time.14,15

Several previous studies have reported the development of

predictive models for ATC,16,17 including, for example, the

Prediction of Acute Coagulopathy of Trauma (PACT) score.

The PACT score is primarily based on prehospital treatment

data including age, injury mechanism, prehospital Shock

Index, Glasgow Coma Score values, prehospital cardiopulmon-

ary resuscitation, and endotracheal intubation. However, due to

the distinct prehospital practice patterns and variation in the

experience and technical backgrounds of ambulance crew in

different countries, these subjective variables are ultimately

limited in clinical application. In short, there is a great oppor-

tunity to use objective clinical features assessed upon admis-

sion to the ED to develop more powerful predictive models for

ACT.

To date, the diagnosis of ATC has been based on conven-

tional coagulation indicators such as activated partial thrombo-

plastin time, prothrombin time, and international normalized

ratio (INR), among others,7 and these typically require a min-

imum of 1 to 2 hours of processing time after admission to the

ED. This time lag can result in missing of therapeutic windows

for treating ATC. Notably, a previous study with ATC cases

showed that an INR >1.5 during admission to the ED is asso-

ciated with multiple adverse prognoses.9 So, it is of vital impor-

tance to develop a prediction model that can identify ATC

rapidly because it could inform ancillary resource management

and clinical decision support to help saving the lives of trauma

patients.

Here, we used machine learning methods (eg, random forest

algorithm) to develop and validate a prediction model for ATC

that is based on objective indicators which are already routinely

obtained as patients are admitted at the hospital. Our study also

developed a predictive model based on a more traditional logis-

tic regression method, enabling us to rigorously compare the

performance of the 2 models.

Methods

Source of Data

Known as Emergency Rescue Database used for modeling,

this critical care database is an integrated and de-identified

data set generated by the Chinese People’s Liberation Army

General Hospital and contains medical information for 22 941

critically ill patients from May 2015 to July 2017.18 The med-

ical data represented in the database include human demo-

graphic information, triage target, medical records, vital

signs, laboratory tests, and imaging examinations. For valida-

tion, medical information for another 924 severe trauma

patients was collected in ED from April 2018 to May 2019.

All the patients were admitted via the ED and were triaged to

a critical rescue room.

Study Cohort

Patients whose triage target was classified as “trauma” were

selected. Some of the patients had more than 1 admission to the

ED; only the data for the first admission were extracted and

analyzed. In order to rule out the nontraumatic conditions that

may have confounded interpretations about the coagulation
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system, we performed keyword in the diagnosis charts, and

patients with the following comorbidity or medical conditions

were excluded from the cohort: (1) age <18 years, (2) preg-

nancy, (3) coronary heart disease, (4) atrial fibrillation, (5)

history of stent implantation, (6) thrombocytopenia, (7) hepatic

sclerosis, (8) hypohepatia/hepatic failure, and (9) missing

admission INR value. Finally, patients with incomplete initial

data of admission to the ED were also excluded. A total of 818

patients from Emergency Rescue Database were included as

derivation cohort, and a total of 567 patients further collected

from ED were included in the study as validation cohort (Fig-

ure 1).

Predictor and Outcome Definitions

The initial INR value >1.5 after admission to the ED was

defined as the diagnostic criteria for ATC.9 The initial indica-

tors for predictive modeling included:

1. Demographic variables: age and gender.

Triage level: for the Emergency Rescue Database, a 4-level

triage scale for prioritization (wherein level 1 indicates the

most severe) was used, and prior to final data entry for each

patient, the triage level was curated by a highly trained and

experienced registered nurse.

Initial ED admission vital signs: Temperature, heart rate

(HR), respiratory rate, systolic blood pressure (SBP), diastolic

blood pressure (DBP), and SpO2.

2. Shock Index: Admission HR divided by SBP.

Initial ED quick laboratory data: potential of hydrogen (PH),

PO2, PCO2, calcium, base excess (BE), lactate (Lac), red blood

cell (RBC) count, hemoglobin (HB), and platelet count.

Feature Selection and Model Evaluation

Our initial explorations analyzed the baseline levels for the data

of the cohort. Clinical characteristics between the ATC group

and the non-ATC group were compared using either Student t

tests or rank-sum tests, as appropriate. The w2 tests or Fisher

exact tests were used to compare differences in categorical

variables. We further used Pearson correlation coefficients to

distinguish the variables that may have impacted our target

INR, which identified the top 6 variables; these were chosen

for incorporation into the final model. Prior to algorithm selec-

tion, we analyzed the distribution of the data. Whether INR >

1.5 was used to separate the ATC group and non-ATC group. In

a 3-D coordinate system, every combination of 3 factors was

chosen for distinguishing ATC patients and non-ATC patients.

The 2 groups present in comparatively 2 zone (“ATC zone” and

“relative safety zone”) in these coordinate systems. The most

typical one is shown in Figure 2. So it was reasonable to select

an algorithm from among classification algorithms (Figure 2).

Two algorithms, either random forest or logistic regression,

were developed to predict ATC. Accordingly, the clinical

meanings could be learned through the coefficients of the

derived model. Random forest is an ensemble learning method

that grows many classification trees. To classify an object from

Figure 1. Flowchart of patient selection.
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an input vector, each tree gives a classification. The forest

selects the classification that has most votes.

The derivation cohort was split into 2 data sets with the

same proportion of ATC patients at a ratio of 7:3 training

set:testing set, while the validation cohort was used as vali-

dating set. The model was trained by training set, while the

prediction result of the model in testing and validating set

was used to test and validate the performance of model. The

area under the receiver operating characteristic curve (AU-

ROC), classification accuracy, precision, F1 score, and

recall score were used as metrics to evaluate the models.

The classification accuracy is the proportion of the correct

prediction in all prediction results. The precision is the pro-

portion of true positive samples in all predicted positive

samples. Recall score is the proportion of predicted positive

samples in all true positive samples. The F1 score is an

integrated metrics combining precision and recall. In the

random forest algorithm, we used the Gini Index as the

optimization criterion, with 1000 estimators used in calcula-

tion. In the logistic regression, the l2 penalty was used to

prevent overfitting with C ¼ 100. The baseline statistical

analysis and hypothesis test were done in R studio 3.5.1.

The whole process of data mining and model fitting were

done in python 3.6.

Results

Cohort Characteristics

Of 1357 trauma patients initially identified in the derivation

cohort, 1014 patients met the inclusion criteria for the cur-

rent study, among which 196 (19.3%) patients had missing

data for one or more covariates and were, therefore,

excluded; finally, 818 patients with complete data were used

for modeling (Figure 1). Demographic and other injury

Table 1. Characteristics Between the ATC and Non-ATC Groups in
Derivation Cohort.a

INR � 1.5
(n ¼ 747)

INR > 1.5
(n ¼ 71) P

Age, mean (SD) 46.9 (17.3) 44.5 (16.7) .259
Male sex, n (%) 589 (91) 56 (9) .996
Triage level, n (%) .044

Level 1 22 (76) 7 (24)
Level 2 624 (92) 55 (8)
Level 3 92 (92) 8 (8)
Level 4 9 (90) 1 (10)

Initial ED vital signs, mean (SD)
Temperature (�C) 36.92 (0.75) 36.97 (1.08) .743

HR 94 (22) 111 (27) <.001
RR 21 (5) 23 (9) .041
SBP (mm Hg) 127 (25) 107 (39) <.001
DBP (mm Hg) 78 (15) 63 (23) <.001
SpO2 (%) 96 (6) 92 (13) .008

SI, mean (SD) 0.77 (0.24) 1.12 (0.50) <.001
Initial ED blood gas analysis, mean

(SD)
PH 7.41 (0.07) 7.33 (0.14) <.001
PO2 (mm Hg) 116 (56) 131 (95) .232
PCO2 (mm Hg) 37 (7) 34 (12) .066
Calcium 1.23 (0.30) 1.13 (0.18) <.001
BE (mmol/L) �0.97 (4.12) �7.13 (6.59) <.001
Lac (mmol/L) 2.3 (1.9) 5.6 (3.7) <.001

Initial ED blood test, mean (SD)
RBC (1012/L) 4.06 (0.80) 3.09 (0.94) <.001
HB (g/L) 125 (26) 93 (29) <.001
Platelet (109/L) 210 (82) 178 (135) .054

Abbreviations: ATC, acute traumatic coagulopathy; BE, base excess; DBP, dia-
stolic blood pressure; ED, emergency department; Hb, hemoglobin; HR, heart
rate; INR, international normalized ratio; Lac, lactate; RR, respiratory rate; SBP,
systolic blood pressure; SD, standard deviation; SI, Shock Index; RBC, red
blood cell.
aValues reported as median (SD) or number (%).

Figure 2. Distribution of the data. A 3-D coordinate system was used to distinguish the ATC group and non-ATC group. The admission criteria
of ATC patients (in “ATC zone”) and non-ATC patients (in “relative safety zone”) are clearly distinguishable. ATC indicates acute traumatic
coagulopathy.
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characteristics for the 818 trauma patients for the primary

analysis are shown in Table 1. Seven hundred forty-seven

(91.3%) patients did not present ATC, and 71 (8.7%)

patients had ATC at their ED admission. We noted that

patients with ATC expressed significantly higher values for

clinical features including HR, SI, BE, and Lac but had

lower values for SBP, DBP, SpO2, PH, calcium, RBC, and

HB. The details are shown in Table 1. We generated a

Pearson correlation coefficient matrix (Figure 3) which

revealed that the top 6 variables associated with ATC were

Lac (0.45), BE (�0.36), PH (�0.35), RBC (�0.33), DBP

(�0.3), and SI (0.27). Both logistic regression and random

forest algorithm were used to fit the model based on these 6

variables.

Logistic Regression Model

The hyperparameters used in our analysis were as follows:

C ¼ 100.0, dual ¼ False, fit_intercept¼ True, intercept_scaling

¼ 1, max_iter ¼ 100, n_jobs ¼ 1, penalty ¼ “l2,” random

state ¼ 1, solver ¼ “liblinear,” tol ¼ 0.0001, verbose ¼ 0, and

warm start ¼ False. In the logistic regression model, the coeffi-

cient and odds ratio (OR) for the 6 selected variables are shown

in Table 2. Notably, DBP (coefficient ¼ �0.008, OR for each 1

mm Hg increase ¼ 0.992), BE (coefficient ¼ �0.099, OR for

each 1 mmol/L increase ¼ 0.905), RBC (coefficient ¼ �0.949,

OR for each 1012/L increase ¼ 0.387) were associated with

decreased probability of ATC. In contrast, SI (coefficient ¼
1.367, OR for each 1-unit increase ¼ 3.923), PH (coefficient

¼ 0.930, OR for each 1-unit increase ¼ 2.535), and Lac (coeffi-

cient ¼ 0.118, OR for each 1 mmol/L increase, 1.125) were

associated with increased probability of ATC (Table 2).

Figure 3. Pearson correlation of clinical features. Pearson correlation coefficient was used to distinguish the clinical features that may affect
INR. The top 6 ranking variables were Lac (0.45), BE (�0.36), PH (�0.35), RBC (�0.33), DBP (�0.3), and SI (0.27). Positive values indicate
positive correlation and negative values indicate negative correlation. BE indicates base excess; DBP, lactate, diastolic blood pressure; INR,
international normalized ratio; Lac, lactate; RBC, red blood cell; SI, Shock Index.

Table 2. Results From the Logistic Regression Model.

Intercept SI DBP PH BE Lac RBC

Coef �7.172 1.367 �0.008 0.930 �0.099 0.118 �0.949
Exp

(coef.)
– 3.923 0.992 2.535 0.905 1.125 0.387

Abbreviations: BE, base excess; DBP, diastolic blood pressure; Lac, lactate;
RBC, red blood cell; SI: Shock Index; PH: potential of hydrogen.
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Random Forest

The hyperparameters used in our analysis were as follows: boot-

strap¼ True, criterion¼ “gini,” max_depth¼ 10, max_features

¼ “auto,” min_samples_split ¼ 2, n_estimators ¼ 1000, n_jobs

¼ 2, random_state ¼ 1, verbose ¼ 0, and warm_start ¼ False.

We classified all the patients according to their ATC status and

then used the random forest algorithm to assess the feature

importance for each of the 6 clinical features on the disease

(Figure 4). Specifically, feature importance was calculated as

the sum of the decrease in error when split by a variable,

which reflects the contribution that each variable makes in

classifying a patient’s status in the ATC or non-ATC group;

this revealed that indicators for traumatic coagulopathy were

ranked as follows: RBC (0.254), SI (0.180), BE (0.175), Lac

(0.146), DBP (0.141), and PH (0.104; Figure 4).

Performance Comparison of the Models

Model discrimination was assessed using the AU-ROC, besides

which we also applied standard machine learning evaluation

metrics including accuracy, precision, recall, and F1 score. The

details of the results are presented in Table 3. Notably, the

random forest model offers superior accuracy (0.940) and pre-

cision (0.933), as well as higher F1 (0.934) and recall scores

(0.940). In contrast, the logistic regression–based model had a

higher AU-ROC (0.849; Figure 5).

Performance Comparison of the Validation Cohort

For the random forest algorithm, the values for classification

accuracy, precision, F1 score, and recall score of our prediction

model were 0.916 (95% CI: 0.891-0.936), 0.907 (95% CI:

0.881-0.928), 0.901 (95% CI: 0.874-0.922), and 0.917 (95%
CI: 0.892-0.937), while the AU-ROC was 0.830 (95% CI:

0.770-0.887; (Table 4). For the logistic regression, the values

for classification accuracy, precision, F1 score, and recall score

of our prediction model were 0.905 (95% CI: 0.879-0.926),

0.887 (95% CI: 0.859-0.910), 0.883 (95% CI: 0.855-0.906),

and 0.905 (95% CI: 0.879-0.926), while the AU-ROC was

0.858 (95% CI: 0.808-0.903; Figure 6).

Discussion

In this study, by establishing 2 predictive models for ATC, we

screened for admission indicators that are informative for the

onset of ATC. With our newly developed models—both of

which incorporated only 6 objective and readily obtainable

indicators that are already universally available during admis-

sion to the ED—we can very confidently predict patients at risk

for ATC (random forest: accuracy 94%, precision 93.3%, recall

94%, and F1 score 93.4% vs logistic regression: accuracy

93.5%, precision 93.1%, recall 93.5%, and F1 score 92%).

Preliminary inferential statistical and correlation-based analy-

ses suggested that the most informative clinical features for

ATC were likely RBC, SI, BE, Lac, DBP, and PH (Figure 4);

findings are in line with other studies.7,11,19

It is important to note that both models performed very well

in both test and validation samples. The discrepancy between

the 2 modeling strategies is that the random forest model is

better in terms of accuracy, precision, F1 score, and recall

scores, while the logistic regression model offered superior

predicted performance in AU-ROC. Considering a lower rate

of missed diagnosis is preferred in medical model, the logistic

model may provide more information in this given topic. Fur-

ther, there are many reports in the literature which highlight

that machine learning–based models can often outperform

logistic regression models for predicting various medical out-

comes,20-23 yet our study emphasizes that traditional

regression-based models also often perform well. It may be

because our study cohort is not large enough to show critical

difference in every performance metrics. Further study could

be done if possible. Ultimately, our comparison of the

Figure 4. Feature importance derived from the random forest. The
most important factors on the disease by the random forest algorithm.
Feature importance reflects the contribution of each variable makes in
classifying ATC groups and non-ATC groups. The clinical features
affecting ATC were ranked thusly: RBC (0.254), SI (0.180), BE (0.175),
Lac (0.146), DBP (0.141), and PH (0.104). ATC indicates acute trau-
matic coagulopathy; BE, base excess; DBP, lactate, diastolic blood
pressure; Lac, lactate; RBC, red blood cell.

Table 3. Performance Comparison Between the Random Forest and Logistic Regression Prediction Models for ATC.

AU-ROC (CI) (%) Accuracy (CI) (%) Precision (CI) (%) F1 score (CI) (%) Recall (CI) (%)

Random forest 0.810 (0.673-0.918) 0.940 (0.922-0.954) 0.933 (0.914-0.948) 0.934 (0.915-0.949) 0.940 (0.922-0.954)
Logistic regression 0.849 (0.732-0.944) 0.935 (0.916-0.95) 0.931 (0.912-0.946) 0.920 (0.9-0.937) 0.935 (0.916-0.95)

Abbreviations: ATC, acute traumatic coagulopathy; AU-ROC, area under receiver operating characteristic curve; CI, confidence interval.
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performance of the 2 models suggests that clinical computer-

aided workflows should probably combine a variety of models

to capitalize on their individual strengths while overcoming

any particular limitations.

Potentially pathogenic roles of RBCs in coagulopathy has

been little explored until recently, yet there are now multiple

studies that propose multiple functions for RBCs in hemostasis

and in thrombosis in trauma patients. The hemorheological

effects of RBCs can be an essential prothrombotic factor

because impaired blood flow is a known pathophysiological

mechanism of thrombosis.24 It is also known that many bleed-

ing disorders can be treated by increasing the RBC count,

regardless of the platelet level.25 Furthermore, RBC count is

interconnected with clot contraction, fibrinolysis, and endothe-

lium homeostasis.26 Our random forest model ranked RBC first

in terms of feature importance, a finding which affirms previ-

ously reported findings.

Shock Index and DBP are sensitive indices of shock.27,28

Corresponding to our observation, hemorrhagic shock (HS) has

been widely illustrated to be significantly correlated with the

occurrence of ATC in both clinical and animal experiments.29-32

Shock Index was interpreted to be a favorable predictor of

massive hemorrhage in both prehospital and ED settings, when

SI �0.9 postinjury can recognize patients with critical bleed-

ing.27 As a primary indicator of hemodynamic monitoring,

DBP may be predictive for patient mortality in cardiogenic

shock and/or septic shock.28,33 For HS, the HR undergoes a

compensatory increase due to hypovolemia that leads to a short

diastolic phase and results in the elevation of DBP. Further-

more, ATC is associated with metabolic acidosis that origi-

nates from systemic hypoperfusion as a result of

hypovolemia.7,34 As excellent indicators of hypoperfusion,

BE, Lac, and PH predict higher incidence of shock-related

complications such as acute respiratory distress syndrome,

multi-organ failure, and the need for transfusion.35-38

Similar to past prediction models like PACT score,17 we

intended to incorporate risk stratification into our model, so

we selected patients with severe injuries with triage target

reported as “trauma” and narrowed down to patients who were

assigned to a critical rescue room. In contrast to previous mod-

els, our model is based on the routinely obtained data that are

taken during admission to the ED, rather than data acquired in a

prehospital stage. On the one hand, this means our model inher-

ently lags behind in prediction window compared to the PACT

score. On the other hand, however, given that we applied objec-

tive indicators that showed strong linear relationships with the

occurrence of ATC, we anticipate that our model will be

extremely helpful in the ED setting, especially as computer-

aided prediction and triage technologies become more and

more common. Our study has several limitations. First, we

have used admission INR >1.5 to define ATC, a value that has

been well verified in both civil and military settings.9,39 How-

ever, this selected value cannot fully account for ATC patho-

genesis; consider, for example, the known role of fibrinolysis

and insufficient platelet function in ATC.40-42 Multiple studies

have suggested that viscoelastic tests could be effective supple-

ments for the detection of ATC, and these have been increas-

ingly applied in trauma situations43,44; they provide rapid

information about the underlying mechanism of ATC and

allow clinicians to focus on particular aspects of clotting, facil-

itating targeted coagulation supervision and intervention(s) in

accordance with the particular needs of a given individual.

Unfortunately, the Emergency Rescue Database had relatively

little information from viscoelastic test for subjects. As such

tests become increasingly common, there should be adequate

data to conduct follow-on analyses from our modeling work

which will likely add yet better predictive performance for

ATC. Second, injury severity score (ISS) has been indepen-

dently associated with increased coagulopathy,34,45,46 yet in

practice—owing to the need for staff training as well as enor-

mous workloads and ED urgency—it is difficult to routinely

calculate ISS. We did anticipate this in our study design and

had intended to enroll triage level as a potential proxy indicator

Figure 5. Discrimination of the 2 acute traumatic coagulopathy
prediction models. Model discrimination was assessed using AU-ROC.
In the logistic regression, AU-ROC is 0.849 (95% CI: 0.732-0.944),
while in the random forest model, the AU-ROC is 0.810 (95% CI:
0.673-0.918). AU-ROC indicates area under receiver operating
characteristic curve; CI, confidence interval.

Table 4. Validation Comparison Between the Random Forest and Logistic Regression Prediction Models.

AU-ROC Accuracy Precision F1 score Recall

Random forest 0.830 (0.770-0.887) 0.916 (0.891-0.936) 0.907 (0.881-0.928) 0.901 (0.874-0.922) 0.917 (0.892-0.937)
Logistic regression 0.858 (0.808-0.903) 0.905 (0.879-0.926) 0.887 (0.859-0.910) 0.883 (0.855-0.906) 0.905 (0.879-0.926)

Abbreviation: AU-ROC, area under receiver operating characteristic curve.
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for severity instead of ISS. However, our data analysis revealed

that triage level did not show an obvious correlation or impor-

tance for ATC. Perhaps triage modes could be optimized in the

future to better characterize the severity of trauma. Third, our

single-center study will obviously need external validation

with data from other trauma centers to enhance its application.

Conclusion

We developed a prediction model based on objective, rapidly

accessible data that can powerfully predict which trauma

patients are at risk for ATC upon admission to the ED. An

important purpose of our study is that routinely acquired objec-

tive clinical features offer a rich source of predictive power as

more and more computer-aided workflows are incorporated

into modern medicine. Moreover, we ultimately found that a

machine learning algorithm did offer certain benefits as we

developed predictive models, but our impressive predictive

power from a more traditional logistic regression model also

highlighted the fact that computer-aided clinical guidance tools

can profit from both emerging and traditional methods from

computer science and biostatistics.
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