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Abstract: The purpose of this study was to investigate the balance between transfer ribonucleic acid (tRNA) supply and demand in 
retrovirus-infected cells, seeking the best targets for antiretroviral therapy based on the hypothetical tRNA Inhibition Therapy (TRIT). 
Codon usage and tRNA gene data were retrieved from public databases. Based on logistic principles, a therapeutic score (T-score) was 
calculated for all sense codons, in each retrovirus-host system. Codons that are critical for viral protein translation, but not as critical for 
the host, have the highest T-score values. Theoretically, inactivating the cognate tRNA species should imply a severe reduction of the 
elongation rate during viral mRNA translation. We developed a method to predict tRNA species critical for retroviral protein synthesis. 
Four of the best TRIT targets in HIV-1 and HIV-2 encode Large Hydrophobic Residues (LHR), which have a central role in protein 
folding. One of them, codon CUA, is also a TRIT target in both HTLV-1 and HTLV-2. Therefore, a drug designed for inactivating or 
reducing the cytoplasmatic concentration of tRNA species with anticodon TAG could attenuate significantly both HIV and HTLV pro-
tein synthesis rates. Inversely, replacing codons ending in UA by synonymous codons should increase the expression, which is relevant 
for DNA vaccine design.
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Introduction
The human immunodeficiency virus (HIV) and 
human T-cell lymphotropic virus (HTLV) are two of 
the most pathogenic human retroviruses; currently, 
they affect around 33.5 and 20 million people world-
wide, respectively.1 Both viruses have in common 
many structural characteristics, the same transmis-
sion routes and the fact that they predominately, but 
not exclusively, infect CD4+ T cells. However, these 
viruses present distinct disease manifestations. HIV 
infection is associated with a progressive damage to 
the immune system which leads to the development 
of acquired immunodeficiency syndrome (AIDS) 
within a variable time frame in the great majority 
of infected individuals. In contrast, HTLV is associ-
ated with adult T-cell leukemia/lymphoma (ATL) and 
HTLV-1-associated myelopathy/tropical spastic para-
paresis (HAM/TSP); however, 95% of HTLV infected 
individuals never develop symptoms.2 Unfortunately, 
there is currently no therapy capable of curing or vac-
cinating against either HIV or HTLV infection.

The translation of messenger ribonucleic acid 
(mRNA) into protein is an unidirectional process 
mediated by ribosomes, aminoacylated transfer RNAs 
(aa-tRNAs), and several factors regulating translation 
initiation, peptide chain elongation, and translation 
termination.3–5

The primary information gathered from non-
redundant coding sequences in a genome, relevant 
for translational studies, is the counts of the 61 sense 
codons. For many species this data can be retrieved 
from the Codon Usage Database. (Nakamura et  al, 
2000).6 The relative amount of each codon species 
determines the codon usage of the species. As each 
codon needs to be decoded by a cognate tRNA spe-
cies during translation, codon usage and tRNA content 
have coevolved towards translation optimization.7–12 
However, tRNA statistics are only available for some 
model organisms, limiting the studies on the balance 
between codon usage and tRNA abundance, as in this 
work.

Most studies of codon usage evolution within spe-
cies and between closely related species, as well as 
correlating tRNA abundance and codon usage,7–21 
were based on the unequal use of codons encoding 
the same amino acid, known as codon usage bias 
(CUB). However, recent results22 suggest that CUB is 
not relevant for translation. Analyzing the correlation 

between ∼152,000 protein chains and the associated 
mRNAs retrieved from public databases (PDB, 
Uniprot, TREMBL, EMBL), Saunders and Deane 
found that CUB is less informative than tRNA con-
centration for assigning translation speed. Previously, 
Tuller et al17 obtained similar results for yeast. This 
finding, apparently contradictory, is because CUB 
does not take into account the use of amino acids that 
is relevant to the logistics of translation. Therefore, 
our model, rather than rely on CUB, is based on 
codon frequencies. For this reason we need to develop 
proper bioinformatics tools.

Pathogens and hosts are immersed in an antag-
onistic coevolution that results in a never-ending 
arms race.23 Some of the arms developed by HIV 
and the human host cell have already been described. 
In particular, van Weringh et al24 found changes in 
the tRNA pool elicited by the presence of HIV, and 
Kofman et al25,26 found evidence of the existence of 
codon usage-mediated mechanisms of viral gene 
expression inhibition in mammalian cells, assumed 
to be independent of translation. More recently, a 
novel innate antiviral mechanism in the host cell 
was identified, in which a human protein, Schlafen 
11 (SLFN11), selectively inhibits viral protein syn-
thesis in HIV-infected cells.12 SLFN11 is induced 
directly by pathogens via the interferon regula-
tory factor 3 (IRF3) pathway and was shown to 
bind specific tRNAs modulating the translation of 
viral proteins without affecting the translation of 
cell proteins.12 However, downregulating the abun-
dance of specific tRNA species in the cell in order 
to selectively inhibit viral protein synthesis can be 
done by interfering any of the processes occurring 
in the tRNA life-cycle, and not only by binding to 
the aminoacylated tRNA molecule.4 For example, 
pseudomonic acid (mupirocin) and furanomycin, 
a non-proteinogenic amino acid, inhibits the isole-
ucyl-tRNA synthetase, interfering the amino acyla-
tion process of the tRNA species decoding codon 
AUA.27 Based on these premises, and taking into 
account that viral mRNA is translated by the host cell 
translational system, we investigated the logistical 
support for a hypothetical antiretroviral therapy 
consisting of inhibiting specific transfer RNA spe-
cies. Such tRNA Inhibition Therapy (TRIT) should 
severely attenuate the rate of viral protein transla-
tion with moderated collateral effects.
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Our approach uses production logistics principles 
used for ensuring that each workstation is being sup-
plied with the right product, in the right quantity 
and quality, at the right time.28 The eukaryotic cell 
is undoubtedly the most complex chemical indus-
try, especially its translational apparatus. The ribo-
some can be viewed as a molecular machine which 
receives protein-production orders from the cell in 
the form of mRNAs. Because viral mRNAs compete 
for resources in infected cells, mainly for ribosomes 
and for tRNAs, with the host mRNA pool it seems 
reasonable to investigate whether the translation of 
retroviral mRNA could be attenuated by limiting the 
supply of certain species of transfer RNA, but with-
out a severe impact on the host cell. Therefore, it was 
assumed a TRIT drug is capable of selectively inhib-
iting a specific tRNA species. Under this assump-
tion, the challenge was to identify the best targets for 
TRIT. With this purpose, we designed an index called 
T-score, proven to be maximized by tRNA species 
with the best TRIT potential. From this point, we will 
refer indistinctly to codons and their cognate tRNAs, 
except when strictly needed. We will mostly refer to a 
generic ordinal i which varies from 1 to 64, according 
to an ordering scheme described in the material and 
methods section.

Material and Methods
Firstly, we characterize data sources and introduce a 
codon ordering scheme, leading to a new arrangement 
of the genetic code table. Secondly, we describe how 
the integral differences of codon usage of the consid-
ered species were measured. Then, upon the analysis 
of tRNA data and identification of pyrimidine-ending 
synonymous tRNA-poor and tRNA-rich codon pairs 
in humans, we describe a translational model with the 
smallest logistic complexity—that is, one that mini-
mizes resource sharing—by assuming that tRNA spe-
cies are shared by the codons in such pairs. Finally, 
the rationale behind T-score is described.

Data sources
The overall number of codons in Homo sapiens, 
HIV-1, HIV-2, HTLV-1, and HTLV-2 genomes were 
retrieved from the Codon Usage Database (http://
www.kazusa.or.jp/codon/ accessed on May 2013). 
The copy number of the genes encoding each tRNA 
species in human genome was obtained from the 

Genomic tRNA Database (http://gtrnadb.ucsc.edu/ 
accessed on May 2013).

Codon ordering and genetic code 
representation
According to the intracodon purine gradient observed 
in most coding sequences29 we introduced a new codon 
ordering scheme. Codons were ordered according to 
the nucleotide type (purine or pyrimidine) in the differ-
ent codon positions. Purines (A before G) come first, 
followed by pyrimidines (C before U). Thus, denot-
ing by ord(x) the ordinal of a given base x, we have 
ord(A) = 1, ord(G) = 2, ord(C) = 3, and ord(U) = 4. 
This implies that AAA is the first, ord(AAA)  =  1, 
while UUU is the last, ord(UUU) = 64. For a generic 
codon b1b2b3, such that bi = {A,G,C,U} for i = 1,2,3, 
we have ord(b1b2b3)  =  ord(b3) + 4(ord(b2) − 1) + 
16(ord(b1) − 1); this way, the first 32 codons begin 
with purine and the last 32 codons with pyrimidine. 
Besides, this codon ordering lead to a new arrange-
ment of the translation table (Table 1) that resembles 
the classification scheme of the genetic code pro-
posed by Wilhelm and Nikolajewa.37 The adopted 
codon ordering scheme provides better insights into 
the symmetry of the underlying box-structure reflect-
ing the redundancies in the genetic code that will be 
published elsewhere. However, in this case it was 
useful in identifying regularities on tRNA abundance 
in the human genome, as well as an atypical codon 
composition of HTLV.

Codon usage comparison
The codon usage pattern of a given species s is, in first 
instance, given by the list of the genomic frequencies 
of the codons, 0 # Ci,s # 1, i = 1,2, … ,64 such that 
∑iCi,s = 1. The genomic frequency of codon i is cal-
culated as the ratio of the counts of the codon, Ni, in 
the genome and the total number of codons N = ∑j Nj, 
that is Ci = Ni/N. The stop-codon frequencies (at posi-
tions 49, 50, and 53) in this context were considered 
null. To measure the degree of similarity between 
codon usage patterns of two species “a” and “b”, we 
introduced the dot product coefficient of similarity S, 
given by
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which differs from most common indexes used for 
codon usage studies because it is not based on CUB 
and varies between 0 and 1. S ranges from 0 to 1 
because it is the cosine of the angle spanned by the 
pair of codon frequency vectors being compared 
([C1,a, C2,a, …, C64,a] and [C1,b, C2,b, …, C64,b]) on a 
64-dimensional Euclidean hyperspace, and the two 
vectors have no negative components.

Translation model
We used the relative codon frequencies in each syn-
onymous pyrimidine-ending codon pairs to establish 
a translational balance between tRNA gene number 
and pair-wise synonymous codon frequency. Denote 
by gi and gj the number of tRNA genes decoding 
codon i (tRNA-poor) and j (tRNA-rich), respectively, 
in a tRNA-sharing pair (column g in Table  1). Let 
G = gi + gj denote the overall tRNA gene number in the 
codon pair; denote also by Ni and Nj the genomic codon 
counts for codons i and j, respectively, retrieved from 
the human genome data. The codon-pair wise relative 
frequency of the tRNA-poor codon is given by fi = Ni/
(Ni + Nj). Thus, we calculate what we call functional 
tRNA gene numbers as g f Gi i

* =  and g G gj i
* *= − , 

shown at column g* in Table 1. Note that for codons 
not forming tRNA-sharing pairs, that is, ending with 
purine (A or G), we repeat on column g* the genomic 
tRNA gene number g. Functional tRNA gene numbers 

were used to calculate the relative tRNA abundance 
t g gi h i j j,

* */= ∑  needed for calculating T-score.

Therapeutic score calculation
In productive systems, the ratio of demand (di) and supply 
(si) for a generic resource i is a measure of the imbalance 
(ui = 1 − di/si) of the supply chain for this resource. The 
imbalance is positive (ui . 0) when the supply exceeds 
the demand, and negative (ui , 0) when the supply does 
not match the demand. Taking into account that virus and 
host mRNA pools compete for the same finite transla-
tional resources in the host (si,h), the performance of the 
supply chain will differ between virus (ui,v = 1 − di,v/si,h) 
and host (ui,h = 1 − di,h/si,h) perspectives as their demands 
differ. There are two main translational resources, ribo-
somes and tRNA species, for which virus and host 
compete. Here if we focus tRNA species decoding 
each sense codon i, then the demands are given by the 
codon frequencies, that is di,v = Ci,v and di,h = Ci,h, for 
virus and host, respectively, while the supply is given 
by the relative abundance of the cognate tRNA spe-
cies, that is, si,h = ti,h. In fact, we hypothesized that for 
some tRNA species there may exist a negative imbal-
ance for the virus (ui,v , 0) but a positive imbalance 
for the host (ui,h . 0). If this case ever exists, it must 
hold that ∆ui  =  ui,h − ui,v  ..  0; thus by calculating 
the difference of imbalance ∆ui for each codon i in a 
given virus-host system, and looking at the maximum 

Table 1. Copy number of cognate tRNA genes in Homo sapiens by codon species.

n Codon aa g g* n Codon aa g g* n Codon aa g g* n Codon aa g g*
1 AAA Lys 16 16 17 GAA Glu 13 13 33 CAA Gln 11 11 49 UAA STOP - -
2 AAG 17 17 18 GAG 13 13 34 CAG 20 20 50 UAG - -
3 AAC Asn 32 18 19 GAC Asp 19 10 35 CAC His 11 6 51 UAC Tyr 14 8,8
4 AAU 2 16 20 GAU 0 8,8 36 CAU 0 5 52 UAU 1 6,2
5 AGA Arg(2) 6 6 21 GGA Gly 9 9 37 CGA Arg(4) 6 6 53 UGA STOP - -
6 AGG 5 5 22 GGG 7 7 38 CGG 4 4 54 UGG Trp 9 9
7 AGC Ser(2) 8 4,9 23 GGC 15 10 39 CGC 0 5 55 UGC Cys 30 16
8 AGU 0 3,1 24 GGU 0 4,9 40 CGU 7 2 56 UGU 0 14
9 ACA Thr 6 6 25 GCA Ala 9 9 41 CCA Pro 7 7 57 UCA Ser(4) 5 5
10 ACG 6 6 26 GCG 5 5 42 CCG 4 4 58 UCG 4 4
11 ACC 0 5,9 27 GCC 0 17 43 CCC 0 5 59 UCC 0 5,9
12 ACU 10 4,1 28 GCU 29 12 44 CCU 10 5 60 UCU 11 5,1
13 AUA lle 5 5 29 GUA Val 5 5 45 CUA Leu(4) 3 3 61 UUA Leu(2) 7 7
14 AUG Met 20 20 30 GUG 16 16 46 CUG 10 10 62 UUG 7 7
15 AUC lle 3 9,6 31 GUC 0 6,2 47 CUC 0 7 63 UUC Phe 12 6,4
16 AUU 14 7,4 32 GUU 11 4,8 48 CUU 12 5 64 UUU 0 5,6

Notes: g, copy number of the cognate tRNA gene; g*, copy number of the cognate tRNA gene after tRNAs sharing within synonymous codons pairs 
comprised by pyrimidine ending tRNA-poor and tRNA-rich codons (shadowed cells).
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max(∆ui), we can identify the species of tRNA that could 
be therapeutically inhibited (decreasing si,h) to worsen 
the imbalance for the virus, but without affecting (turn-
ing negative) imbalance for the host. In order to priori-
tize codons less abundant in the human genome and to 
minimize the impact on the host cell, ∆ui was divided 
by the frequency of the codon i in the human genome 
Ci,h, thus resulting in the T-score index formula

	
T score

u

Ci
i

i h

-
 

=
∆

, 	

given in explicit form as

	
T score

C C

t Ci
i v i h

i h i h

- =
−, ,

, , 	

In accordance with T-score definition, tRNA tar-
gets for TRIT must have large positive T-score values 
with respect to the average over all tRNA species.

Results and Discussion
Codon usage comparison
The codon frequencies of HIV and HTLV types 1 and 2 
were plotted using the same scale (Fig. 1A). There are 
slight differences between types but a large difference 
between retroviruses. Strikingly, the data show that the 
bias toward codons beginning with purine observed in 
most organisms,29 assumed to be a reminiscence of an 
ancestral R:N:Y (puRine:aNy:pYrimidine) codon,30 is 
not present in HTLV. Such dissociation from a uni-
versal pattern opens questions about HTLV’s origin 
and evolution, which deserves further attention but 
is beyond the scope of this paper. To quantify the 
departure of HTLV from the universal compositional 
pattern consisting of a purine gradient from the third 
to the first codon position,29 we introduced a new 
compositional feature given by the ratio of codons 
with purine and pyrimidine in the first codon position 
(R1/Y1). The R1/Y1 values for HTLV are less than 
1 (0.59 for HTLV-1, 0.82 for HTLV-2, whilst HIV-1, 
HIV-2 and human have R1/Y1 values of 1.81, 1.57, 
and 1.39, respectively (Fig. 1B).

The similarity index values (S) of the codon fre-
quency patterns are shown in Table  2. HIV-1 and 
HIV-2 are ∼98% similar, while HTLV-1 and HTLV-2 
are only ∼88% similar. Compared with human, the 

codon usages of retroviruses have similarities varying 
from ∼76% (human versus HTLV-1) to ∼87% (human 
versus HIV-2).

Translation model
Until now, a total of 506 tRNA genes in the human 
genome have been annotated. However, those genes 
encode only 48 tRNA species (anticodons). Therefore, 
there are 13 tRNA-less sense codons in the human 
genome (see column g in Table 1). Those tRNA-less 
codons must be decoded by a tRNA species cog-
nate to their synonymous codon(s) via wobble base 
pairing.31,32 We noticed that in the 16 pairs of synony-
mous codons ending with pyrimidine (eight with U 
and eight with C) on the standard genetic code, there 
is a significant bias in the number of cognate tRNA 
genes, being one codon tRNA-poor, with no or very 
few tRNA genes and the other tRNA-rich, and with 
a number of tRNA genes above the average genome 
(see column g in Table 1). Interestingly, this regularity 
is amino acid-independent and is determined by the 
chemical structure or size of the nucleotide at the third 
codon position, purine or pyrimidine. Purines con-
sist of two carbon-nitrogen chemical rings, whereas 
pyrimidines have only one ring. We found that only 
pyrimidine-ending codons have scarce tRNA genes 
(see shadowed cells in Table 1). We also noticed that 
all 13 tRNA-less codons form part of such tRNA-
poor and tRNA-rich codon pairs. Since regularities in 
nature are always related to functional constraints, this 
finding suggests that the 16 tRNA-poor codons are 
translated mainly by the tRNA species of their syn-
onymous tRNA-rich codons, giving rise to a model of 
tRNA sharing at pyrimidine-ending codon-pair level.

It also suggests that the most frequent wobble 
codon-anticodon pairings in the human cell are U-G 
and C-A, depending on the third base of the tRNA-
poor codon.

Under this assumption we can calculate the frac-
tion of tRNA cognate to the tRNA-rich codon in a 
pyrimidine-ending synonymous codon pair that is 
more likely used to decode the tRNA-poor codon; 
this can be done in order to obtain a balance of trans-
lation (see material and methods). In columns g and 
g* in Table 1, we show the tRNA gene numbers before 
(genomic) and after redistribution (tRNA-sharing 
model based), respectively.
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tRNA and codon frequency balance
The expression profile of human genes was assumed 
to be uniform, not only due to the lack of expression 
data in human T-cells, but with the aim of giving the 
same importance to all genes, including those with 

low expression in host cells. This is important when 
an antiviral therapeutic approach that attenuates 
selectively tRNA abundances is being investigated. 
In the absence of better data, we assumed a uniform 
profile of tRNA genes transcription, that is, that tRNA 
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Figure 1. (A) Codon frequencies in human retroviruses (HIV and HTLV). Upper frame: HIV-1 and HIV-2. Bottom frame: HTLV-1 and HTLV-2. The codon 
number Ci, i = 1,2, … ,64 is given by the formula i = ord(b3) + 4 * (ord(b2) − 1) + 16 * (ord(b1) − 1), where bk is the number of the nucleotide at codon posi-
tion k = 1,2,3. Nucleotides are numbered as: A = 1, G = 2, C = 3 and U = 4. Codons 49, 50 and 53 are non-coding codons and their frequencies were set 
as zero in all cases. The frequency of the first 32 codons, beginning with purine, in the genome of HTLV is lower than that observed in the HIV genome. 
(B) Ratio of purine and pyrimidine at first codon position in retroviruses and human genome. Note that the HIV genome is richer in codons starting with 
purines than the human genome, whereas the human genome is more rich in purine beginning codons than the HTLV genome.
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abundance is determined by the number of genes of 
each tRNA species. In the upper frame of Figure 2, 
we show a bar plot of relative codon frequency ci and 
relative tRNA abundance ti for human. The correla-
tion coefficient was R = 0.6325. In the bottom frame 
of Figure 2, the relative frequency of tRNA [(ti − ci)/
ci] was plotted. A negative value indicates deficit of 
tRNA and positive value tRNA a surplus. Data sug-
gest that there are eleven codons (AAC, AAU, ACG, 

AUG, AUU, CAA, UGC, UGU, UCG, and UUA) in 
human genome favored with abundant tRNA species 
[(ti − ci)/ci $ 0.5] and five codons (AGC, AGU, CCC, 
CCU, CUG) neglected [(ti − ci)/ci # −0.5]. We con-
cluded that the tRNA species decoding such neglected 
codons should never be selected as targets for TRIT.

T-score analysis in retroviruses
The T-scores for the tRNA species decoding the 
61  sense codons in HIV-1, HIV-2, HTLV-1, and 
HTLV-2 are plotted in Figure 3A. The best tRNA tar-
gets for TRIT are those having highest positive scores 
(see material and methods). The results for HIV and 
HTLV show that approximately 90% of the codons 
have T-scores in ranging from −85 to 100 (Fig. 3B). 
Therefore, we assumed that tRNA species with 
T-score ..  400 are the best TRIT targets, whilst 
negative outliers are the worst choices (Fig. 3B).

HIV-1 and HIV-2 have the same five best tRNA 
targets for TRIT decoding codons AGA, AUA, GUA, 
CUA, and UUA. The worst tRNA target (negative 
outlier) for HIV types 1 and 2 is the tRNA species 
decoding the codon CGU. It seems that HIV types 1 

Table 2. Similarity of codon usage patterns between HIV, 
HTLV and human genomes.

Compared species Similarity 
index—S

HIV-1/HIV-2 0.981
HTLV-1/HTLV-2 0.882
HIV-1/HTLV-1 0.615
HIV-2/HTLV-1 0.645
HIV-1/HTLV-2 0.726
HIV-2/HTLV-2 0.775
Human/HIV-1 0.841
Human/HIV-2 0.874
Human/HTLV-1 0.762
Human/HTLV-2 0.832
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and 2 have the same tRNA targets due to the high 
intraspecies similarity of their codon usages, yield-
ing a similarity index of SHIV-1, HIV-2 = 0.98 (Table 2). 
Interestingly, four of the five TRIT targets in HIV 
types 1 and 2 end in UA, and carry isoleucine, valine 

and leucine, which are large hydrophobic residues 
(LHR) known to have a central role in protein fold-
ing.33,34 More precisely, the HIV cone-shaped capsid 
depends on the correct folding of the side chains 
of the N-terminus domain (NTD) ring that forms a 
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hydrophobic region.36 They found that the correct 
folding of the side chains depends on four valine (24, 
26, 27, and 59), three leucine (20, 52, and 56), and 
three alanine (22, 31, and 65). This finding suggests 
that inhibiting the found target tRNA species in HIV-
infected patients should affect the assembly of capsids 
limiting the production of virions.

Regarding HTLV, we found only three tRNA tar-
gets for HTLV-2 decoding codons CCC, CUA, and 
UCC, and one negative outlier decoding codon AGU. 
However, we found eight tRNA targets for HTLV-1 
decoding codons GCG, CGU, CCG, CCC, CUA, 
CUC, CUU, and UCG, and the same negative outlier. 
Analyzing the T-score results for HTLV, we noticed 
that the tRNA-poor CCC codon is one of the five 
neglected codons in human cells, and that the tRNA 
species decoding its tRNA-rich synonymous codon 
CCU was excluded from the target list. The differ-
ence in tRNA targets between types 1 and 2 of HTLV 
can be explained by the large dissimilarity of their 
codon usages (1 − SHTLV-1, HTLV-2 = 0.22) (Table 2).

It should be remarked that despite the large dis-
similarities between codon usages of HIV and HTLV 
species, ranging from 0.23 for HIV-2 and HRLV-2 
to 0.39 for HIV-1 and HTLV-1, we noticed that the 
codon CUA is decoded by one of the best tRNA tar-
gets for TRIT for the four studied retrovirus species 
(HIV-1, HIV-2, HTLV-1, and HTLV-2). Thus, a TRIT 
drug designed for inhibiting the tRNA with anticodon 
UAG could probably control both HIV and HTLV 
types 1 and 2 replication. Finally,  it must be noted 
that, unlike in HIV cases, we found three tRNA tar-
gets in HTLV-1 or HTLV-2 decoding codons ending 
in pyrimidine (CGU, CUC and CUU). For this rea-
son, the calculated T-score values for such tRNA tar-
gets depend on the chosen translation model

Conclusion
In this article, we addressed for the first time the bal-
ance between tRNA and codon usage in virus-host 
systems, seeking novel therapeutic alternatives. More 
precisely, the current study aimed to investigate the 
viability of a hypothetical TRIT expected to attenuate 
the translation of retroviral proteins without induc-
ing collateral damage to the host cells. A T-score that 
quantifies the potential of each tRNA species to be 
targeted by a TRIT was derived from a steady state 
balance at ribosome of the relative tRNA species’ 

abundance and cognate codon relative frequencies, 
in both host and viral mRNA pools. In this case, 
viability is, on first instance, ensured by differences 
between the virus and the host codon usage profiles. 
Available data show significant differences between 
codon-frequency profiles in retroviruses and humans, 
which varies from 13% (HIV-2) to 24% (HTLV-1). 
It is important to remark that a significant singularity 
in the HTLV codon usage profile was found, since 
it does not follow the universal pattern observed in 
most known organisms consisting of a purine gradi-
ent towards first codon position. This finding suggests 
further studies addressing HTLV origin and evolution 
are needed.

In the next step, we looked for tRNA targets using 
T-score. To achieve that, a putative distribution of 
the relative abundance of tRNA species effectively 
translating each of the 61 sense codons was needed. 
Available human tRNA gene data show that there are 
only 48 anticodon species encoded in the genome. 
Therefore, using wobble pairing theory and logistic 
principles, we designed a low-complexity translation 
model that was used to calculate a complete tRNA 
frequency profile in the human cell, assuming uni-
form tRNA gene expression. Subsequently, calcu-
lating the T-score profile for each retrovirus-host 
system, we showed that, in all virus types, the T-score 
of most codons are distributed in the range of −85 
to approximately 100 (Fig.  3B). Codons with the 
greatest T-scores were outside the main distribu-
tion (positive outliers), leading to two conclusions: 
(1) T-score is a robust linear discriminator which per-
forms in a similar way with different genomes like 
HIV and HTLV, and (2) codons (their cognate tRNAs) 
with T-score .100 are all TRIT targets in retrovirus-
human cases. Analyzing such TRIT targets in HIV-1, 
we observed that four of the five codons ending in 
UA, which encode LHR, were identified between the 
five TRIT targets. Moreover, codon CUA is also the 
best of the three TRIT targets in HLTV-2, as well as 
the best of eight TRIT targets in HTLV-1. This coin-
cidence allowed us to suggest the design of a single 
TRIT drug, theoretically effective against both types 
of HIV and HTLV. Our data also suggest that substi-
tuting adenine with guanine at the third codon posi-
tion of tRNA-poor codons ending in UA in the HIV 
genome should increase the availability of tRNA 
for the mutant codon, and that it may then enhance 
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HIV protein synthesis. The later can be relevant 
for increasing antigenicity of vaccine candidates. 
Previous results support this hypothesis; in particu-
lar, Lemey et  al38 found a correlation between syn-
onymous codon substitutions in the virus genome 
and the replication rate of HIV which determines the 
disease progression. As synonymous substitutions do 
not change the amino acid encoded, such increases 
in the replication rate of the virus are unlikely to be 
associated with escape from the humoral and cell-
mediated immune responses; they are more likely due 
to an improvement in translation rate as a result of 
choosing better codons, which is, having more abun-
dant tRNA. This assumption was also supported by 
the results of Zhou et al39 which found that papilloma-
virus capsid protein expression depends on the match 
between codon usage and tRNA availability. In our 
work we found that codons ending in UA have the 
highest T-score, indicating a deficit of tRNA decod-
ing such non-rare codons during translation of HIV 
proteins in the human cell. However, further studies 
are needed for testing our in silico-born hypothesis.

Currently, there are five classes of antiretrovi-
ral agents combined in Highly Active Antiretroviral 
Therapy (HAART). They act at different stages in the 
lifecycle of HIV, inhibiting entry, reverse transcrip-
tion, integration, and protein cleavage. If an HIV 
infection becomes resistant to standard HAART, 
there are limited options. Some patients may benefit 
from clinical trials of new drugs, but this opportunity 
is very limited in the developing world. In this sce-
nario, TRIT represents a new and promising alterna-
tive for controlling the replication of retroviruses, 
which can give rise to a new class of antiretroviral 
drug for HAART. One or two nonsynonymous muta-
tions in the viral genome can provide resistance to 
certain HAART drugs. Therefore, it is highly relevant 
to design personalized antiretroviral therapies by 
screening for resistance mutations in the strains col-
lected for each HIV patient. (Altman et al, 2009).40 
However, to escape from TRIT the virus needs to 
select several synonymous mutations of the codons 
decoded by the target tRNA, which does not happen 
easily by chance.
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