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Neutrophils are themost abundant leukocytes in human peripheral blood. They

form the first line of defense against invading foreign pathogens and might play

a crucial role in malaria. According to World Health Organization (WHO),

malaria is a globally significant disease caused by protozoan parasites from

the Plasmodium genus, and it’s responsible for 627,000 deaths in 2020.

Neutrophils participate in the defense response against the malaria parasite

via phagocytosis and reactive oxygen species (ROS) production. Neutrophils

might also be involved in the pathogenesis of malaria by the release of toxic

granules and the release of neutrophil extracellular traps (NETs). Intriguingly,

malaria parasites inhibit the anti-microbial function of neutrophils, thus making

malaria patients more susceptible to secondary opportunistic Salmonella

infections. In this review, we will provide a summary of the role of

neutrophils during malaria infection, some contradicting mouse model

neutrophil data and neutrophil-related mechanisms involved in malaria

patients’ susceptibility to bacterial infection.

KEYWORDS
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Introduction

According to the WHO, malaria is a globally significant disease caused by protozoan

parasites from the Plasmodium genus. There are five species of the protozoan genus

Plasmodium known to infect humans: P. falciparum, P. vivax, P. malariae, P. ovale, and

P. knowlesi, of which P. falciparum is responsible for most cases of severe malaria and

death (1). The parasites caused over 241 million clinical cases and 627,000 deaths in 2020;

this represents about 14 million more cases in 2020 compared to 2019 and 69 000 more

deaths. Sub-Saharan Africa continues to carry the heaviest malaria burden, accounting

for about 95% of all malaria cases and 96% of all deaths in 2020 (2). There are three

clinical presentations of malaria identified: severe or complicated, mild or uncomplicated
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(3) and asymptomatic (4). The host immune response to malaria

infection varies depending on factors. Factors like the genetic

make-up of parasite proteins, co-infections, host genetics, host

ethnic background, and geographical locations (5, 6). The

response starts with physical barriers, progresses to an innate

immune response, and leads to more adaptive responses.
Brief overview of the Plasmodium
life cycle

The malaria parasites have a complex life cycle requiring a

human and mosquito host (7). During the blood meal of the

female Anopheles mosquito, sporozoites are transmitted into the

human hosts (8). The pre-erythrocytic developmental stage is

initiated when the released sporozoites migrate to the host liver.

In the liver, the released sporozoites infect the hepatocytes (liver

cells) in a process known as the liver stage. Within the

hepatocytes the parasites grow and replicate as hepatic

schizonts over a period of 10–12 days after which they are

released as merozoites. The blood stage of the parasite starts

when the merozoites rapidly invades the red blood cells (RBCs)

in the bloodstream. During the blood stage, the merozoites

replicates to produce more daughter parasites which are then

released from the host cell upon parasite egress and subsequently

re-invade RBCs to start a new asexual replication cycle (9). A

small proportion of the malaria parasites will eventually

differentiate into gametocytes to begin the sexual cycle which

are subsequently taken up by mosquitos during the next blood

meal (10).
Neutrophil functions

Neutrophils are the most abundant white blood cell

accounting for up to 70% of all blood leukocytes (11). They

are also known as polymorphonuclear cells (PMNs) and are

terminally differentiated leukocytes. Neutrophils are

professional phagocytes, which use receptor mediated

phagocytosis to internalize pathogens into phagolysosomes

(12). Cytoplasmic granules include cathepsins, elastases, and

myeloperoxidases that fuse with the phagolysosome to digest

phagocytosed pathogens, in a process known as degranulation

(12). Release of reactive oxygen species (ROS), produced via an

NADPH oxidase-dependent process is a crucial bactericidal

mechanism. Neutrophils can also kill extracellular pathogens

by degranulation, secretion of ROS, or the release of neutrophil

extracellular traps (NETs). NETs is the release of decondensed

chromatin laced with granular proteins and histones to prevent

the spread of pathogens (13).

Neutrophils are crucial for the body’s innate immune

response (14, 15) and are involved in various disease

processes, including pathogen infection (16), pulmonary
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diseases (17), cardiovascular diseases (18), inflammatory

disorders (19) and cancer (20). They are challenging to study

because they are short-lived effector cells of the innate immune

system. Upon sensing infection, neutrophils are the first cells to

migrate to the infection site (21). At the affected tissues,

neutrophils use multiple antimicrobial functions such as

engulfing foreign matter for internal digestion, reactive oxygen

species (ROS) production and releasing NETs. The immune

system plays a vital role in controlling the parasite’s growth (22).

Clinical data has shown that the number of circulating

neutrophils is high in patients with acute uncomplicated

malaria (23), in contrast to circulating lymphocytes, which

decrease during P. falciparum infections. During Plasmodium

infection, parasites components and cytokines are produced and

might activate circulating neutrophils. Activated neutrophils are

equipped with several weapons to mount an immune defense

against the parasite. While on the other hand, these neutrophil

weapons might also be involved in the pathogenesis of severe

malaria, though the underlying mechanism is still unclear.

During malaria infection, the immune system is

overwhelmed resulting in immune suppression thereby

making malaria patients to be at risk of developing secondary

infections. One well-documented risk factor for invasive

bacterial infection is Plasmodium falciparum malaria (24, 25).

In Sub-Saharan Africa countries, bacterial infection in children

is highly associated with malaria infection (26–28). In this

review, we assess the literature examining the role of

neutrophils during malaria infection and the neutrophil

related mechanism involved in malaria patients’ susceptibility

to bacterial infection.
The role of neutrophils in response
to Plasmodium parasite

One of the ways by which neutrophil play a role in the

clearance of malaria parasites is by phagocytosis. Neutrophils

express immunoglobulin (Ig) binding receptors Fcg receptors

and complement receptor 1 (CR1) and complement receptor 3

(CR3) (29). Phagocytosis of the released sporozoites during

malaria infection are facilitated by the FcgR-receptors and by

the presence of antibodies against the circum-sporozoite protein,

one of the main surface antigens on sporozoites (30).

Phagocytosis of parasite infected red blood cells (iRBC) in vivo

has been observed in children with malaria (31) and in bone

marrow aspirates which show neutrophils with internalized

merozoites and trophozoites (32). The interaction between

neutrophils and iRBCs is mediated by PfEMP1 on the iRBC

surface and ICAM-1 expressed on neutrophils (33).

Neutrophil phagocytosis of free merozoites could be in an

antibody dependent manner or via a complement mediated

opsonization manner (23, 34) and can be enhanced in the
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presence of immune sera or when cytokines such as interferon

gamma and tumor necrosis factor was added (35, 36). Recently,

it was demonstrated that at high antibody levels, neutrophils are

more effective via the action of FcgRIIA and FcgRIIIB (37). This

may suggest that neutrophils are responsible for the

phagocytosis of parasites in immune patients. In addition,

neutrophil uptake of serum opsonized merozoites has been

demonstrated in vitro and ex vivo (38). In contrast to

complement dependent merozoites phagocytosis, phagocytosis

of iRBC in neutrophil is largely dependent on the presence of

IgG (39). Neutrophils phagocytose gametes in vitro in conditions

similar to those of the mosquito gut when immune sera is

present especially IgG (40). However, ex vivo evidence of the

specific role of neutrophil phagocytosis of intra erythrocytic

gametes in human is still lacking.

Neutrophils can clear pathogens by producing ROS by

converting oxygen to superoxide via nicotinamide adenine

dinucleotide phosphate oxidase (NADPH) oxidase (NOX).

This superoxide is converted into hydrogen peroxide (H2O2)

and hydroxyl radicals (-OH), collectively known as ROS (41).

Neutrophils may also be involved in the control of parasite

growth through antibody-dependent respiratory burst (ADRB)

(35). Neutrophils isolated from malaria patients have been

shown to exhibit higher ADRB activity in vitro and promote

parasite clearance by inhibiting parasite growth (42). ROS

related parasite inhibition occurs during the parasite intra-

erythrocytic development stage (43) rather than during the

merozoite stage. This was further demonstrated by Dasari

et al. that ROS production from stimulated neutrophils does

not inhibit merozoite growth in vitro (34). Though the

mechanism underlying the observed impaired ROS production

in neutrophils during malaria is unclear but released hemozoins

(23) and digestive vacuoles (DV) (34) from iRBC have been

suggested to be responsible.
Evidence of NETs in Malaria

Neutrophil extracellular trap (NET) formation is an essential

innate strategy for immobilizing and killing foreign pathogens

by neutrophils. It occurs when activated neutrophils degranulate

and release their antimicrobial factors into the extracellular

environment. Several factors might induce NET formation

during Plasmodium infections such as crystal uric acid is a

potent inducer of NETosis (44) (Plasmodium cannot

synthesize purines and imports hypoxanthine as a purine

source (45). Upon erythrocyte rupture and release, xanthine

dehydrogenase, which is normally present in the blood (46) will

efficiently degrade it into uric acid and are released into

circulation during malaria. Plasmodium-infected erythrocytes

accumulate hypoxanthine, a precursor for uric acid), pro-

inflammatory cytokines like TNF and IL8 increase during

Plasmodium infections (47), H2O2 is secreted by immune cells
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stimulated by the malaria parasite and Plasmodium antigens

induce NETosis in vitro (48). NETs may contribute to the host

defense against sporozoites and merozoites (35). Studies have

shown that in the peripheral blood of children with complicated

and uncomplicated P. falciparum infections, NETs like

structures are present (49, 50). The release of NETs might play

a crucial role in controlling parasite dissemination, but on the

other hand, it may also contribute to the development of severe

complications. Few studies have reported the possible role of

NETs in controlling parasite growth during malaria. For

example, Kho and colleagues reported that NET formation

was inversely associated with parasitemia levels in patients

with asymptomatic malaria (51). Another study by Rodrigues

et al. showed that Pulmozyme (active molecule: DNase 1)

treatment to inhibit NETosis resulted in increased parasitemia

levels in P. berghei infected mice and subsequently decreased

survival rate (49). However, the group also reported that the

same observation was not recorded when P. chabaudi-infected

mice were treated with Pulmozyme. Interestingly, Plasmodium

parasites express TatD-like DNases to cleave NETs. In vivo

mouse data have shown that treatment of mice with

recombinant TatD resulted in low parasitemia and ultimately

increased survival rate (52). Knackstedt et al. demonstrated that

NETs might be driving inflammatory pathogenesis in malaria

(53). However, evidences that NETs released in response to

malaria parasite and proof that NETs are present in tissues is still

debatable. For example, Feintuch and colleagues reported that

brain tissue sections from children with fatal cerebral malaria

(CM) and associated retinopathy were stained with NET

markers, neutrophil elastase, and citrullinated histones, with

no evidence of NETs was observed (54). In contrast, a recent

study by Knackstedt et al. examined and analyzed retinal tissue

from fatal pediatric cases who had died of cerebral malaria. The

authors showed the image of NETs by colocalizing citrullinated

histone H3, elastase, and DAPI (53).
The role of neutrophils in the
pathogenesis of malaria

Neutrophils may also contribute to the pathophysiology of

malaria complications. Studies have associated high number of

neutrophils with severe malaria cases (51, 53). The association

between plasma levels of MPO, lysozyme and neutrophil

lipocalin and malaria severity has been reported by several

studies (35, 51, 53). In patients with severe malaria, neutrophil

granule proteins such as neutrophil elastase and defensin have

been observed to be increased compared to uncomplicated

malaria patients (55). Another study also reported that during

CM, neutrophil proteins in plasma are associated with CM and

may contribute to CM pathology (endothelium damage via

neutrophil elastase) (56) (Figure 1). Another indication for
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neutrophil activation is the release of matrix metalloproteinase

(MMP)-8 and 9. For example, increased levels of plasma protein

MMP-8 was reported in malaria patient, but no significant

difference between uncomplicated and severe malaria.

Furthermore, in Sub Saharan African children with CM,

immunohistochemical staining revealed the presence of MMP-

8 in the retina tissue accompanied with oedema, thus suggesting

the role of MMP-8 in vascular endothelial barrier disruption

(57). In addition, in vivo data further demonstrated that

knocking out MMP-9 had no significant effect on CM

development and survival in mice (58). Chemokines such as

CXCLI and CXCL8 are known neutrophil chemoattractants,

were at an increased level in the plasma of severe malaria

patients (59). Furthermore, studies have associated a link

between hemozoin laden neutrophils and disease severity has

been reported in several malaria patients (60–62). In conclusion,

these studies suggest a link between neutrophil activation and

malaria severity.
Murine malaria model to understand the
role of neutrophils in malaria
pathogenesis

Animal models have been used to study the role of

neutrophils in malaria complications including lung injury,

CM and liver injury (17, 63, 64). Murine models have

demonstrated the association of accumulated neutrophils in

the lungs with lung injury. Murine models of CM have

demonstrated that neutrophils express cytokines such as IL2,

IL12, IL18, IFNg, and TNF and chemoattractive-chemokines
Frontiers in Immunology 04
(65) suggesting a role for neutrophils in cytokine and

chemokine secretion during CM. Nacer and colleagues

reported that neutrophils in murine CM are detected in the

vasculature (66) and their depletion prevented CM

development (67). Using chimeric mice, Ioannidis and

colleagues identified neutrophils as the main cellular sources

of CXCL10, a CXCR3 binding chemokine which is essential for

the attraction of pathogenic CD8+ T cells to the brain in

murine CM (68). In addition, studies revealed that

circulating levels of CXCL10 is the most accurate predictor

of CM mortality (69) (70) and its neutralization with specific

mAbs, significantly prevents brain intravascular inflammation

and protects infected animals from CM by reducing peripheral

parasitemia level (71–73).
Murine malaria models: Neutrophil
contradicting data

Murine models have over the years played a valuable role in

understanding the role of neutrophils in malaria (Table 1)

however, there are contradicting data on the role of

neutrophils using the mouse model, and as such, neutrophils’

role in malaria is still unclear. For example, Schumak et al. (74)

suggested that the number of circulating neutrophils in the blood

and brain increased in P. berghei ANKA infected mice, while in

contrast, Pai et al. reported no increase in the number of

circulating neutrophils in the brain (79) though the

experimental approach to count neutrophils were different in

the two studies. In Schumak study, brain tissue was fixed in

buffered formalin and quantification of neutrophils in tissue
FIGURE 1

Roles of neutrophils in defense and pathology of malaria. Neutrophils play crucial roles in the immune defense against malaria, through parasite
clearance via neutrophil phenotypic functions such as phagocytosis, reactive oxygen species (ROS) production and NETs release. On the other
hand, neutrophils might play a role in the development of malaria complications, and haemozoin-containing neutrophils are associated with
malaria severity. In addition, the release of toxic granules, such as myeloperoxidase (MPO), neutrophil elastase (NE) and matrix metalloproteinase-
8 (MMP-8), causes endothelial cell damage via apoptosis. Finally, the release of NETs may aggravate complications during malaria infection.
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sections was performed in 10 high power fields (HPF). While in

Pai study, neutrophils were quantified in real time using 2-

photon intravital microscopy. Another contradiction is the link

between neutrophil depletion and survival rate in murine CM

model. For example, some in vivo studies demonstrated that

depletion of neutrophils using anti-CD11a resulted in an

increased survival rate and slowed down the rate of CM

development (67, 80) (Table 1). In these studies, depletion of

neutrophils was done using anti-CD11A or anti-GR1 before

parasite infection, which depleted neutrophils and other

leukocytes. In contrast, when anti-GR1 was administered late
Frontiers in Immunology 05
during the infection, the authors still observed CM development

in their model except for a study by Senaldi and colleague (76).

In contrast, another study showed that when specific anti-Ly6G

antibody was used for neutrophil depletion, no CM development

was observed (74) (Table 1). Interestingly, neutrophil released

CXCL10 is known to recruit pathogenic CD8+ T cells to the

brain in murine CM (68). The indirect effect on CD8+ T cells in

the murine CM by the anti-GR1 antibody might explain the

contradicting data. Therefore, there is a need for more in depth

studies to elucidate whether neutrophils count plays a role in the

development of CM.
TABLE 1 Showing studies on neutrophil in murine malaria.

Mouse
strain

Parasite strain/Load/
route of infection

Procedure for neutro-
phil depletion

Strategy of neutrophil
detection

Outcome of neutrophil depletion Ref.

C57BL/6 Transgenic P.berghei ANKA
expressing ovalbumin (PbTg)
infected RBC/5*104/i.v

250 mg of anti-GR1(day 0 of
infection or day 3-5 p.i for 30
mins i. p1)

Flow cytometry on blood
samples: CD11b+ Ly6Cint Ly6G+

CM developed on day 6 post infection, survival
rate was 80% and no effect on parasitemia level.

(74)

C57BL/6 Transgenic P.berghei ANKA
expressing ovalbumin (PbTg)
infected RBC/5*104/i.v.

250 mg of anti-GR1(day 3 and
day 5 i.p)

Flow cytometry on blood
samples: CD45+ Ly6Cint Ly6G+

Decreased CM development on day 6 p.i, high
survival rate and no effect on parasitemia level.

(74)

C57BL/6 P.berghei -ANKA infected
RBC/1*106/i.p.

200 mg of anti-CXCL10
(between day 3 and 9 p.i)

Flow cytometry on spleen
samples: Ly6G+

High CM, low survival rate and low parasitemia
level.

(68)

C57BL/6 P.berghei -ANKA infected
RBC/1*105/i.v.

Pulmozyme (5mg/kg for
every 8h i.p.)

Not Applicable Low survival rate at 20%, 100% mortality by day
10 post infection and parasitemia increased day 6
p.i.

(49)

C57BL/6,
BALB/c

P.berghei -ANKA and NK65
infected RBC/1*106/i.p.

Immunization with rPbTatD
or rPcTatD (50 mg intra-
muscularly every 14 days).

Not Applicable 100% survival rate and reduced parasitemia level. (52)

CBA/
NSlc

P.berghei -ANKA infected
RBC/1*106/i.p.

250 mg of anti-GR1 (day 1 or
day 5 i.p.)

Tail blood no CM development (low hemorrhage), survival
rate was 90% by day 10 post infection and no
effect on parasitemia level.

(67)

DBA/2 P.berghei -ANKA infected
RBC/1*106/NA

anti-GR1(0.2mg on day 1 p.i) Flow cytometry on blood
samples and microscopy of blood
smear

Low MA-ARDS development, survival rate was
90% by day 10 post infection and no effect on
parasitemia level.

(17)

129/Ola
+ C57BL/
6J mice

P.berghei -ANKA infected
RBC/1*107/NA

anti-GR1(1mg on day 6 post
infection i.p.)

Flow cytometry on blood
samples: GR1+

There was 60%-80% of CM development and
survival rate was 0% after 24h of CM
development.

(75)

CBA/Ca P.berghei -ANKA infected
RBC/1*106/i.p.

anti-GR1(0.5mg on day 5
post infection i.p.)

Microscopy of blood smear BBB was not disrupted, delayed death and high
survival rate (80%).

(76)

BALB/c PyMDR/NA anti-GR1(day 3 until day 7
post infection i.p.)

Not Applicable Low liver injury (low AST, ALT and ALP levels2). (77)

C57BL/6 P.chabaudi AS infected RBC/
1*104/i.v.

DNase-/- Flow cytometry on blood
samples: CD45+ CD3− Ly6G/
Chi

Low liver injury, low AST level and no effect on
parasitemia level.

(53)

C57BL/6 P.chabaudi AS infected RBC/
1*104/i.v.

NE/PR3−/− Flow Cytometry on blood
samples: CD45+ CD3− Ly6G/
Chi

Low liver injury, low AST level and no effect on
parasitemia level.

(53)

C57BL/6 P.chabaudi AS infected RBC/
1*104/i.v.

Anti-G-CSF (day 7 post
infection i.v.)

Flow Cytometry on blood
samples: CD45+ CD3− Ly6G/
Chi

Low liver injury, low AST level. (53)

C57BL/6 P. yoelli 17XNL infected
RBC/2*104/i.v.

MPO−/− Not Applicable Not determine, however no effect on parasitemia
level on day 6-12 post infection, parasitemia level
increased after day 12 post infection.

(78)

C57BL/6
+
Py17XNL

P. yoelli 17XNL infected
RBC/2*104/i.v.

Anti-Ly6G (500 mg i.p.) Flow Cytometry on blood
samples: CD11b+ Ly6Cint GR1+

Not determine, however no effect on parasitemia
level.

(78)
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Malaria co-infection with bacteria:
Any neutrophil link?

Salmonella co-infection is a common bacterial infection, and

it remains a global health concern. One well-documented risk

factor for Salmonella is Plasmodium falciparum malaria (25). It’s

often a lethal complication of P. falciparum infection in

Sub-Saharan Africa. In Gambia, the incidence of invasive

NTS infection mirrors that of malaria, and about 43% of

children with Salmonella bacteremia had concurrent P.

falciparum infections (81). In Tanzania, invasive NTS in young

children is highly associated with recent malaria infection (26).

Interestingly evidence from co-infection models supports this idea

(Table 2). For example, a study by Cunnington and colleagues

demonstrated that prior infection of mice with non-lethal P. yoelii

resulted in decreased survival of S. typhimurium in the mice.

Though the authors suggested that the decrease in the survival rate

of the mice was a result of impaired ROS production in

neutrophils (85), the mechanism underlying the neutrophil-

associated immune suppression remains unclear.
Underlying mechanisms of neutrophil
associated immune suppression
during malaria

During malaria infection, the parasite continuously breaks

down RBCs followed by eryptosis of many uninfected RBCs

(87). The direct destruction of RBC leads to the release of

hemoglobin, or its breakdown product heme, into the plasma.

Free heme is prooxidant and highly cytotoxic, contributing to

endothelial injury (88). Intracellular heme is then degraded into

equimolar amounts of iron, carbon monoxide, and biliverdin

through the action of heme oxygenase (HO). Significantly,
Frontiers in Immunology 06
plasma heme is raised during both acute (89) and subclinical

(90) P. falciparum malaria infections in humans and during

acute P. yoelii infection in mice (85) https://jlb.onlinelibrary.

wiley.com/doi/full/10.1002/JLB.3RI1018-400R - jlb10293-bib-

0063. Studies have shown that hemolysis might be responsible

for inhibiting neutrophil functions during malaria. For example,

Cunnington and colleagues using a malaria mouse model

demonstrated that neutrophils from malaria-infected mice

could phagocytose S. typhimurium; however, their ability to

kill was impaired.

The authors further reported that the phagocytosed bacteria

remained viable and replicated within the phagosome due to

deficient ROS production (85). In another study, neutrophils

from children with acute malaria were observed to exhibit

impaired ROS production. The authors recorded that the

dysfunctional ROS production persists for up to 8 weeks after

drug treatment (89). The authors suggested that this might

explain why children with acute malaria remain susceptible to

secondary bacterial infection (27). Several studies have shown

that during malaria infection, the migration of neutrophils into

the infected tissues, including blood (85), intestine (82), and liver

(84) is impaired. Neutrophils precursors of Plasmodium-infected

mice have been shown to express heme oxygenase-1(HO-1) (85),

which has been reported to reduce neutrophil migration into the

inflamed lung (91), thus suggesting an association between HO-

1 and neutrophil migration.

During the parasite life cycle in the RBC, the malaria parasite

feeds on the hemoglobin and packages the waste product

hemozoin in an organelle designated the digestive vacuole

(DV) (92). Large numbers of DVs are released into blood

circulation during severe malaria infection. Some reports have

implicated the role of DVs in suppressing the host immune

system via the inhibition of neutrophil functions. For example, a

study by Dasari and colleagues demonstrated that phagocytosed
TABLE 2 Showing studies on malaria and salmonella co-infection.

Plasmodium
spp.

Bacteria
Strain

Bacteria
load

Route of bacteria
challenge

Time of bacte-
ria Co infection

End
point

Bacteria-related
Outcome

Animal
strain

Ref.

P. yoelii
nigeriensis

S. typhimurium
strain (IR715)

1×108

CFU3.
Intragastric Day 10 Day 14 Reduced intestinal

inflammation to NTS
CBA/J (82)

P. yoelii
nigeriensis

S. typhimurium
strain (IR715)

Not
available

Intragastric Day 10 Day 11 Increased NTS colonization in
feces.

C57BL/6J (83)

P. yoelii
nigeriensis

S. typhimurium
strain (IR715)

1×108

CFU.
Intra-
peritoneal

Day 10 Day
12, 13

Increased CFU in liver. CBA/J (84)

P. fragile S. typhimurium
strain (IR715)

1×108

CFU.
Ligated ilieal loops Day 14, 15 8h Reduced intestinal

inflammation to NTS.
Macaca
mulatta

(82)

P. yoelii
nigeriensis

S. typhimurium
strain (IR715)

1×108

CFU.
Intragastric Day 0 Day 5 Increased CFU in liver, spleen

and peyer’s patch and spleen
CBA/J (84)

P. yoelii
17XNL

12023-GFP 1x105

CFU
Intra-
peritoneal

Day 15 18h Increased CFU in blood,
spleen, and liver.

C57BL/6 (85)

P. yoelii
17XNL

S. typhimurium
strain (BRD509)

1×108

CFU.
Intravenous Day 14, 28 Day

17, 31
Increased CFU in liver C57BL/6 (86)
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DVs induce oxidative burst in human neutrophils. However, the

capacity to generate a subsequent ROS response to kill

phagocytose bacteria was impaired (34). Thus, the anti-

microbicidal activity was compromised. They suggested that

DV might explain the risk of developing bacterial sepsis in

patients with severe malaria. However, much more work is

needed to fully characterize the content of these DVs and their

effect on neutrophil migration during malaria infection.
Future direction and conclusion

Neutrophils in malaria remain understudied and they play a

double-edge sword role in malaria. During malaria infection,

neutrophils may be involved in defense mechanisms against

parasites via phagocytosis and ROS production. On the other

hand, neutrophils might also be involved in the pathogenesis of

severe malaria via NETs and toxic granule proteins release.

Therefore, more research studies are required to understand

the specific roles of neutrophils in malaria.

During malaria, small extracellular vesicles (EVs) are

secreted by Plasmodium infected RBC (iRBCs). EVs

contribute to the immune regulation by transferring cargoes

including RNAs from the iRBCs to immune cells, resulting in

immune suppression or immune activation depending on the

cellular context. Currently, it’s not clear if these EVs are

involved in the observed immune suppression via the

modulation of neutrophil functions in malaria patients. It

will be interesting to know if EVs can deliver their biological

cargoes to neutrophils which in turn maybe responsible for the

observed immune suppression.

There seems to be a lot of contradicting neutrophil data

using both in vitro and in vivomalaria models. We suggest that a

novel ex vivo microfluidic platform, modelling the in vivo

malaria infection microenvironment, will allow studying the
Frontiers in Immunology 07
interaction of neutrophils and malaria at single cell resolution

and in real time. Such platform should allow the investigation of

neutrophil migration, NETs release and parasite killing during

neutrophil-parasite interaction.
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