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Abstract: The aim of our study was to set up a panel for targeted sequencing of chemoresistance
genes and the main transcription factors driving their expression and to evaluate their predictive
and prognostic value in breast cancer patients. Coding and regulatory regions of 509 genes, selected
from PharmGKB and Phenopedia, were sequenced using massive parallel sequencing in blood
DNA from 105 breast cancer patients in the testing phase. In total, 18,245 variants were identified
of which 2565 were novel variants (without rs number in dbSNP build 150) in the testing phase.
Variants with major allele frequency over 0.05 were further prioritized for validation phase based on
a newly developed decision tree. Using emerging in silico tools and pharmacogenomic databases for
functional predictions and associations with response to cytotoxic therapy or disease-free survival
of patients, 55 putative variants were identified and used for validation in 805 patients with clinical
follow up using KASPTM technology. In conclusion, associations of rs2227291, rs2293194, and
rs4376673 (located in ATP7A, KCNAB1, and DFFB genes, respectively) with response to neoadjuvant
cytotoxic therapy and rs1801160 in DPYD with disease-free survival of patients treated with cytotoxic
drugs were validated and should be further functionally characterized.

Keywords: breast cancer; chemoresistance; pharmacogenomics; next generation sequencing; in
silico prediction
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1. Introduction

Breast cancer is the most frequent cancer in women worldwide [1]. The efficacy of breast cancer
therapy is associated with a number of cellular processes that in some cases lead to tumor resistance.
Among other factors, inactivation of anticancer drugs by biotransformation enzymes, decreased
uptake and/or increased efflux of drugs, changes in cell-cycle checkpoints, increased DNA repair or
reduced cell death, and cellular compartmentalization may contribute to the development of multidrug
resistance [2].

The majority of currently used cytotoxic drugs are metabolized by biotransformation enzymes in
liver and extrahepatic tissues. Biotransformation often leads to inactivation of drugs which become
more polar to allow for body elimination. On the other hand, prodrugs are designed to be activated
via biotransformation in the first place and then follow the same principles of metabolism as drugs.
Consequently, germline genetic variability in biotransformation enzymes is considered as important
factor determining individual patient sensitivity to an administered drug. These enzymes are in
general divided into phase I (activation) and phase II (conjugation) enzymes [3]. Cytochromes P450
(CYP) constitute a major group of (in)activation enzymes in phase I whereas phase II enzymes are
more heterogeneous. Numerous pharmacogenomic studies in breast cancer patients concentrated
mostly on analysis of selected polymorphisms in single or several genes from all biotransformation
phases (reviewed in [4]), but a comprehensive germline genetic variability screen of the majority of
these enzymes in breast cancer patient cohorts is virtually missing.

Since drug efflux is mediated by membrane-bound ATP-binding cassette (ABC) transporters [5]
and drug uptake is provided by solute carrier (SLC) transporters [6] it seems obvious that equilibrium
of these exporters/importers is important for prediction of cancer drug resistance [7,8]. Indeed,
comprehensive transcriptomic profiling studies demonstrated gene expression deregulations of a
number of ABCs and SLCs between tumor and paired non-malignant tissues from patients with solid
tumors, e.g., colorectal [9], breast [10], pancreatic [11,12], and ovarian [13] suggesting their potential
role in cancer progression. Moreover, these studies revealed a number of associations between gene
expression levels of transporters, therapy response and survival of the patients with implications for
prognosis and individualized therapy.

Data from publicly available large-scale sequencing studies have shown that genetic alterations in
drug targets, cell death and major cancer driving pathways, e.g., PI3K/AKT/MTOR or RAS/MAPK,
and nuclear receptors can be found across all cancer types; however, at highly variable frequencies [14].
Very recently, highly frequent deleterious somatic mutations relevant for clinical management,
including PIK3CA, RTK/RAS/MAPK and cell cycle pathway genes, were found in inflammatory
breast cancer patients through next generation sequencing analysis [15].

Pharmacogenomics represents an important tool for personalized medicine. Two major types of
studies may be found in the published literature dealing with the issue of genetic susceptibility and
drug response in oncology. First, studies of germline genetic variation, mainly polymorphisms, in
homogeneous groups of patients treated with defined drug regimens [16]. Second, in vitro screening
of drug response in human cancer cell lines with well characterized somatic genetic profile also
helped to elucidate the genetic background of chemoresistance [17,18]. However, recent data from
analysis of sensitivity of 993 cell lines to 265 drugs show that germline genetic variability can be of
the same importance as somatic one [19]. Thus, continuing with studies in patients is imperative
for further understanding and subsequent translation of these aspects into clinical setting. There
are several genome-wide association studies (GWAS) in the literature demonstrating the power
of pharmacogenomics in breast cancer [20] and accelerated implementation of the next generation
sequencing into clinical studies will undoubtedly bring further progress in this area. Very recently,
analysis of available big data demonstrated that priority pharmacogenes for population-adjusted
genetic profiling exist with highly variable distribution across populations [21], suggesting that use of
sequencing-based approaches may enable “true personalized medicine”.
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Here, we explored the genetic variability of a panel of 509 genes relevant for pharmacogenomics
using targeted sequencing in a testing set of patients treated with neoadjuvant or adjuvant cytotoxic
therapy. Genetic variants significantly associating with therapy outcome measured as clinical response
in neoadjuvant setting or disease-free survival (DFS) of the patients were evaluated in a larger
validation set of patients. To our knowledge, this is the first research study providing genetic data
with association to drug chemoresistance evaluated as prognosis and therapy outcome of breast cancer
patients with aid of in silico prediction in the Czech population to such an extent. The validated
variants may further be used for functional studies and prospective follow up trials evaluating their
prognostic and predictive utility in clinical setting.

2. Results

2.1. Testing Phase

The clinical characteristics of the patients in the testing set (n = 105) are shown in Table 1.
Patients were treated with neoadjuvant cytotoxic therapy and/or with adjuvant therapy following
surgical treatment. Cytotoxic therapy was based on monotherapy or combinations of anthracyclines,
cyclophosphamide, 5-fluorouracil and taxanes (Table S1). The mean follows up of the patients was 70
± 28 months. One patient was lost to follow up.

Table 1. Clinical data of patient in the testing set.

Characteristics Patients, n (%) 1

Age at diagnosis, mean ± S.D. 2 (years) 51.7 ± 9.4

Menopausal status
Premenopausal 46 (46)
Postmenopausal 55 (55)

Missing data 4

Tumor size (pT)
pTis 8 (8)
pT1 50 (48)
pT2 40 (39)
pT3 5 (5)
pTX 2

Lymph node metastasis (pN)
Absent (pN0) 68 (65)

Present (pN1–3) 37 (35)

Pathological stage
SI 46 (44)
SII 47 (45)
SIII 12 (11)

Histological type
Invasive ductal carcinoma 88 (84)

Other type 17 (16) 4

Pathological grade (G)
G1 11 (11)
G2 35 (35)
G3 54 (54)
GX 5

Estrogen receptor status
Positive 38 (38)

Negative 61 (62)
Missing data 6
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Table 1. Cont.

Characteristics Patients, n (%) 1

Progesterone receptor status
Positive 39 (39)

Negative 60 (61)
Missing data 6

Expression of HER2
Positive 2 (2)

Negative 97 (97)
Missing data 6

Expression of Ki-67, mean ± S.D. 2 (%) 32.9 ± 20.3

Molecular subtype
Luminal A 15 (16)
Luminal B 23 (24)

Triple negative 58 (60)
Missing data 9

Response to neoadjuvant cytotoxic therapy
Complete or partial response 47 (69)
Stable disease or progression 21 (31)

Not applicable 3 37

Footnotes: 1 Number of patients with % in parentheses; 2 S.D. = standard deviation; 3 patients treated with adjuvant
therapy without neoadjuvant cytotoxic therapy; 4 six lobular, six medullary, two metaplastic, one mucinous, one
papillary, and one neuroendocrine invasive carcinomas.

In these patients, a panel of 509 genes (Table S2) representing major drug metabolizing and
transporting enzymes, nuclear receptors, cell death, chemotherapy target, and signaling pathway genes
(Figure S1), selected using PharmGKB (www.pharmgkb.com) and Phenopedia (https://phgkb.cdc.gov)
databases was assessed using targeted sequencing.

2.1.1. Targeted Sequencing, Processing and Quality Control of Raw Data

Processing of raw reads, quality control, filtering and annotation of the variants is depicted in
Figure 1.
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Quality control of the reads was performed in FastQC program and coverage was calculated after
raw reads preprocessing (trimming and duplicate removal) by GATK 3.7. The average coverage was
76.9 ± 19.3 and 94% of the captured regions were covered at least 10 times. Altogether, we found
18,245 variants in exonic and adjacent intronic sequences.

Of the total number 509 genes, 503 genes (99%) contained at least one genetic alteration. No
alterations were found in ABCF1, HSPA1A, RXRB, TAP1 (ABCB2), TAP2 (ABCB3) and VDAC1P4
genes. On the other hand, the most polymorphic genes with over one hundred alterations were
NCOR2, ABCA13, RPTOR, ABCA4, CIT, BIRC6, ABCC1, ABCA1, RXRA, NCOR1, ABCA7, ABCC4
and ABCB5. Of the total number 18,245 variants, 3256 were in exons, 9458 intronic, and 3872
were in 3′UTR or 5′UTR regions according to NCBI Reference Sequence Database, RefSeq (RefSeq;
https://www.ncbi.nlm.nih.gov/refseq/) in Annovar (Table 2).

Table 2. Overview of the observed alterations in breast cancer patients by function according
to Annovar.

Type Total Percentage

Downstream 1 353 1.9
Exonic (coding) 3256 17.8

Intergenic 372 2.0
Intronic 9458 51.9

Splicing 2 40 0.2
Upstream 1 414 2.3

UTR3 3106 17.0
UTR5 766 4.2
Other 480 2.7

Footnotes: 1 Variant is within 1 kb region downstream/upstream of transcription end site; 2 Variant is within 2 bp
of a splicing junction.

7539 variants (41%) had minor allele frequency (MAF) > 0.05; the rest, 10,706 variants, had MAF
0.05 or below. On average, each patient showed 3792 ± 240 variants.

We found 88 loss of function truncating variants that were either affecting the stop codon (gain or
loss) or frameshift insertions or deletions (indels). 1646 of the variants were non-synonymous single
nucleotide variants (SNVs) and 1455 were synonymous SNVs (Table 3).

Table 3. Overview of the observed exonic alterations in breast cancer patients by coding consequence.

Classification Count Percentage

Frameshift deletion 24 0.7
Frameshift insertion 22 0.7

Non-frameshift deletion 17 0.5
Non-frameshift insertion 8 0.2
Non-synonymous SNV 1646 50.6

Stopgain 40 1.2
Stoploss 2 0.1

Synonymous SNV 1455 44.7
Unknown 42 1.3

Altogether, 2565 (14%) of the variants were novel (i.e., not found in dbSNP Build 150). The
distribution of the variants and position in protein according to their functional classes and frequencies
of novel variants in the groups of genes are shown in Figure 2.

https://www.ncbi.nlm.nih.gov/refseq/
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Figure 2. Distribution of alterations in the studied groups of genes. The picture shows: (a) the frequency
of genetic alterations according to their functional classes; (b) The frequency of genetic alterations
according to their exonic functional classes analyzed by RefSeq: NCBI Reference Sequence Database
(https://www.ncbi.nlm.nih.gov/refseq/) shown according to the groups of studied genes; (c) The
number of novel variants according to the groups of genes. The number of the variants normalized
to the counts of genes per each group are shown for each plot on the right axis and depicted by the
overlaid line. Column plots for all gene groups are shown in Figure S2.

https://www.ncbi.nlm.nih.gov/refseq/
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2.1.2. Prioritization of Variants for the Validation Phase

Variants with MAF > 0.05 were considered relevant to achieve adequate statistical power for
variant interpretation. Variants that were not in Hardy-Weinberg equilibrium (n = 842) were excluded
from analyses. In addition, variants with the missing data in more than 50% patients were excluded
(n = 432). Further filtration parameters were applied (see Section 4 Materials and Methods) and
these resulted in set of 5875 variants. In these variants, the associations with response of patients
to neoadjuvant cytotoxic therapy and survival of patients were assessed in order to reveal genetic
alterations with putative functional effect in vivo.

We found 327 variants (two novel) associated with the response to neoadjuvant cytotoxic therapy
and 418 (three novel) variants associating with DFS (Table S3). Using Kaplan-Meier plots for variants
associated with DFS, gene dosage relationship was evaluated. Those variants in which heterozygous
genotype had the most pronounced effect (compared to both homozygotes) were excluded and a
final set of statistically significant variants with clinical associations was built. The testing set was
composed of both neoadjuvantly and adjuvantly treated patients. Therefore, we divided the testing set
into two corresponding subsets and computed the DFS separately. The neoadjuvant subset (n = 68)
comprised three molecular subtypes (luminal A, luminal B and triple negative; data were missing for
nine patients) while the adjuvant subset (n = 37) comprised only patients with triple negative tumors.
Due to this unevenness, we have also analyzed the associations of variants with molecular subtypes
and displayed these for comparison in Table S3.

In order to select the most relevant functional alterations from the statistically significant set of
variants we down-sampled the results using information from in silico predictions and according
to confirmed pharmacogenomic and clinical evidence. Annotations were conducted by Annovar
and Variant Effect Predictor (VEP). Choice of in silico tools was based on the scope of the prediction
for given software with the intention to ensure annotation for all types of coding and noncoding
alterations (see Figure 3 and Section 4 Materials and Methods). Pharmacogenomic evidence was based
mostly on PharmGKB database of published phenotypes (manual data curation is depicted in Figure
S3). Variants with records in ClinVar indicating drug or any disease association were considered
pathogenic. Additionally, in cases where information regarding drug response was available in ClinVar
and/or dbSNP databases, a match with PharmGKB data provided an extent of evidence and level
of priority. All variants significantly associated with response to neoadjuvant cytotoxic therapy of
DFS were compared with records in these databases and variants were ordered by the level of priority
(Table 4).

Table 4. Priorities and data input used for prioritization of variants for the validation phase.

Data Input Priority

Variant functionality Highest High Medium Low

Response or disease-free survival significant significant significant significant

PharmGKB associated associated no data no data

ClinVar drug response or
cancer/neoplasm no data drug response or

cancer/neoplasm no data

In silico prediction call deleterious deleterious/neutral deleterious neutral

Cancer related functionality no no no yes

Following these priorities, 58 variants (56 SNVs and two indels; Table 5) were selected for
validation in a larger cohort (n = 805) of breast cancer patients. The overall variant prioritization
scheme is depicted in Figure 3.
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Figure 3. Variant prioritization scheme. Numbers of unique variants shared with statistically significant
results are depicted in brackets. Statistical analysis using germline variants from targeted sequencing
and clinical data of patients with Hardy-Weinberg equilibrium (HWE, p > 0.01) and Minor allele
frequency (MAF > 0.05) was conducted to search for drug response (A) and (B) disease-free survival
(DFS) associations. In silico prediction was applied on synonymous (sSNVs) and non-synonymous
(nsSNVs) single nucleotide variants and indels from next generation sequencing (NGS) data in
VCF format using several web-based and command-line software tools (see Section 4 Materials
and Methods). In pharmacogenomic (PGx) databases with no batch or download option, only
statistically significant variants were considered for manual curation (*). GRCh37 = Genome Reference
Consortium Human Build 37 (hg19); TFBS = transcription factor binding site; TFBP = transcription
factor binding profile.
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Table 5. Prioritized variants for the validation phase.

Gene HGVS Coding HGVS Protein Classification in
Annovar 1 Rs ID ClinVar DFS 2 Response 2 Function 3 AF 4 ExAC 5 NCMG 6

ABCA4 c.5603A>T p.N1868I NS rs1801466 likely benign 0.03 D; CADD 0.105 0.066 0.065

ABCB1 intronic rs2032583 0.03 PA166157317 0.106 0.123 0.093

ABCB5 intronic rs11983326 0.04 0.038 DFS & response 0.279 0.297 0.246

ABCB8 intronic rs3214587 0.01 miR-670-3p 0.115

ABCC1 c.*1512T>C UTR3 rs212091 0.05 PA166154987 0.180 0.114

ABCC1 c.*543C>T UTR3 rs3743527 0.05 PA166155049 0.205

ABCC3 intronic rs4148413 0.002 1f, PINES 0.168

ABCC6 c.2835C>T p.P945P synonymous rs2856585 pathogenic 0.03 ClinVar 0.064 0.099 0.044

AHRR intronic rs2013782 0.02 1f 0.587 0.623 0.597

AKR7A2 c.424G>A p.A142T NS rs1043657 0.01 PA166161794; CADD 0.095 0.093 0.081

AKT1 intronic rs3803304 0.05 PA166154802; 1f 0.292 0.289

ATP7A c.2299G>C p.V767L NS rs2227291 benign 0.003 PA166157866 0.260 0.217 0.225

BAK1 dist = 114 downstream rs210134 0.033 1f, PINES 0.750

BIRC7 c.528C>T p.S176S synonymous rs2273487 <0.001 1b 0.486 0.467 0.464

BLK c.-53667C>T UTR5 rs922483 benign 0.023 1f 0.229

CDA c.79A>C p.K27Q NS rs2072671 0.01 PA166153667 0.362 0.343 0.296

CES1 c.-75T>G UTR5 rs3815583 0.038 PA166155058 0.202 . 0.162

CES1 c.224G>A p.S75N NS rs2307240 0.01 PA166155039 0.067 0.054 0.063

CES1 intronic rs76336259 0.001 0.046 DFS & response 0.063 0.060

CMPK1 c.22G>C p.G8R NS rs7543016 0.05 PA166153793 0.451 0.538 0.320

CYP2C9 intronic rs1934969 0.03 PA166153986 0.613 0.658

CYP2D6 c.100C>T p.P34S NS rs1065852 likely benign 0.021 PA166156062; PharmVar 0.214 0.249 0.206

CYP2D6 c.985 + 39G>A ncRNA_intronic rs28371725 0.011 PA166156155 0.059 0.095 0.084

CYP2E1 c.1263T>C p.F421F synonymous rs2515641 benign 0.03 PA166154017 0.856 0.887 0.880

CYP2E1 intronic rs2070677 0.05 1f 0.856 0.867

CYP4F12 intronic rs12460651 0.02 0.029 DFS & response 0.882

DFFB intronic rs4376673 0.04 0.047 DFS & response; PINES 0.909 0.947 0.901

DPYD c.2194G>A p.V732I NS rs1801160 likely_benign 0.02 PA166153647 0.052 0.047 0.045

DPYD c.1896T>C p.F632F synonymous rs17376848 likely_benign 0.03 PA166153874; CADD 0.057 0.037 0.047

DPYD c.496A>G p.M166V NS rs2297595 drug_response PA166153696; D 0.148 0.103 0.125

DPYS intronic rs2669429 not_provided 0.01 PA166157579 0.540 0.557
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Table 5. Cont.

Gene HGVS Coding HGVS Protein Classification in
Annovar 1 Rs ID ClinVar DFS 2 Response 2 Function 3 AF 4 ExAC 5 NCMG 6

ENOSF1 intronic rs2612083 0.01 1f 0.381 . 0.322

EPHX2 c.662G>A p.R221Q NS rs751141 risk_factor 0.03 sequence in silico tools set 0.114 0.095 0.115

EPHX2 dist = 55 downstream rs4149259 0.03 1f 0.167

ESR2 c.*39G>A UTR3 rs4986938 0.05 PA166154805 0.371 0.379 0.347

GSTA1 c.-9630T>C UTR5 rs3957357 0.047 PA166157094 0.591

GSTA2 c.335G>C p.S112T NS rs2180314 0.017 PA166157020 0.592 0.590 0.581

GSTP1 c.313A>G p.I105V NS rs1695 drug_response 0.05 PA166154249 0.329 0.319 0.320

GSTP1 intronic rs762803 <0.001 1f; PINES 0.386 0.406 0.323

IRS1 c.*4476A>G UTR3 rs2288587 0.05 1f 0.057

KCNAB1 intronic rs2293194 0.04 0.013 DFS & response 0.476 0.515

MADD intronic rs10501320 0.05 IW; PINES 0.281

NR5A2 dist = 45 upstream rs2816948 0.05 0.036 DFS & response; PINES 0.130

PIK3C2G c.2732C>T p.P911L NS rs12312266 0.04 sequence in silico tools set 0.205 0.298 0.242

PIP4K2B intronic rs2075061 0.02 1f 0.605 0.592

PPARA c.*5977G>A UTR3 rs9626814 0.019 1d 0.101 .

PPARG c.1347C>T p.H449H synonymous rs3856806 likely_benign 0.046 PA166156388 0.120 0.125 0.133

RALBP1 c.*756G>A UTR3 rs3322 0.03 1f 0.095 0.092 0.072

RARB c.*1287T>G UTR3 rs1058378 0.013 IW, miR-665 0.091 0.083

RPTOR c.90T>C p.F30F synonymous rs61750765 0.03 IW 0.238 0.126 0.142

RRAGD c.*1105T>A UTR3 rs1555403 0.019 1f 0.238 .

SLC22A1 c.1222A>G p.M408V NS rs628031 0.028 PA166156933 0.600 0.592 0.605

SLC28A3 c.338A>G p.Y113C NS rs10868138 0.022 PA166157820 0.067 0.085 0.091

SLC2A1 c.*462G>C UTR3 rs4658 benign 0.01 PA166153544 0.210 0.178

SLCO1A2 c.-189_-188insA UTR5 rs3834939 0.05 PA166163600 0.295

SLCO1C1 intronic rs34288910 0.03 0.028 DFS & response 0.144 0.128 0.152

TUBB1 c.*817G>C UTR3 rs10485828 0.03 PA166155965 0.212

UGT2A1 c.949G>A p.G317R NS rs4148301 0.033 sequence in silico tools set 0.110 0.096 0.104

Validated variants (Section 2.2.2.) in bold. Variants rs3815583, rs1065852, and rs3322 were excluded due to technical failure. Footnotes: 1 NS = non-synonymous; 2 p-value provided for
clinical associations; 3 Prediction based on combination of pharmacogenomic databases, e.g., PharmGKB (“PA” designation stands for specific diseases, genes and drugs in the database)
and in silico individual tools, e.g., TargetScan (micro RNA target prediction), metaLR and metaSVM (D = deleterious), CADD (cut-off value ≥ 19), Nexus IW score under 0.01 (IW), PINES
(p-value ≤ 0.05) or Regulome DB (score provided), and sequence in silico tools set (see Section 4 Materials and Methods and data provided in Table S4); 4 AF = non-reference allelic
frequencies in the testing set; 5 Exome Aggregation Consortium (ExAc), allelic frequencies in European non-Finnish population; 6 National Center for Medical Genomics (NCMG), allelic
frequencies in general Czech population.
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2.2. Validation Phase

The clinical characteristics of the patients in the validation set (n = 805) are shown in Table 6.

Table 6. Clinical data of patients in the validation set.

Characteristics Patients, n (%) 1

Age at diagnosis, mean ± S.D. 2 (years) 58.9 ± 12.5

Menopausal status
Premenopausal 197 (25)
Postmenopausal 590 (75)

Missing data 18

Tumor size (pT)
pTis 65 (8)
pT1 489 (62)
pT2 208 (27)
pT3 18 (2)
pT4 10 (1)
pTX 15

Lymph node metastasis (pN)
Absent (pN0) 509 (67)

Present (pN1-3) 253 (33)
pNX 43

Pathological stage
S0 61 (8)
SI 358 (47)
SII 282 (37)
SIII 67 (9)

Not determined 37

Histological type
Invasive ductal carcinoma 598 (25)

Other type 197 (75)
Missing data 10

Pathological grade (G)
G1 177 (23)
G2 385 (50)
G3 209 (27)
GX 34

Estrogen receptor status
Positive 618 (77)

Negative 181 (23)
Missing data 6

Progesterone receptor status
Positive 579 (73)

Negative 220 (27)
Missing data 6

Expression of HER2
Positive 194 (24)

Negative 602 (76)
Missing data 9
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Table 6. Cont.

Characteristics Patients, n (%) 1

Expression of Ki-67, mean ± S.D. 2 (%) 23.3 ± 22.6

Molecular subtype
Luminal A 330 (41)
Luminal B 313 (39)

Triple negative 93 (12)
HER2 63 (8)

Missing data 6

Response to neoadjuvant cytotoxic therapy
Complete or partial response 127 (75)
Stable disease or progression 43 (25)

Not applicable 3 635

Footnotes. 1 Number of patients with % in parentheses; 2 S.D. = standard deviation; 3 patients treated with adjuvant
therapy without neoadjuvant cytotoxic therapy.

Patients were treated with neoadjuvant cytotoxic therapy and/or with adjuvant therapy following
surgical treatment. Cytotoxic therapy was based on the same drug combinations as in the testing set
(Table S5). A small fraction of patients with localized disease and good prognosis was not treated with
cytotoxic or hormonal therapy (n = 83). The mean follows up of the patients was 76 ± 30 months. Sixty
patients were lost to follow up and could not be further evaluated in survival analyses.

All clinical characteristics were tested as modifiers of survival functions. High tumor grade
(p = 0.008), advanced disease stage (p < 0.001), and the lack of expression of estrogen (p = 0.004) and
progesterone (p = 0.013) receptors predicted worse DFS. Thus, these clinical factors were subsequently
used for adjustment of multivariate survival analyses. Analogously, all clinical characteristics were
tested on association with response. Only the advanced disease stage was a modifier of therapy
response (p < 0.001) and was used for adjustment of multivariate analysis.

2.2.1. Genotyping

Together, 58 variants were assessed by KASPTM method in 805 DNA samples within the validation
phase. Despite several attempts to optimize detection techniques, three variants (rs1065852, rs3815583
and rs3322) failed to perform consistently and could not be further evaluated for clinical associations.
No variants significantly departed from Hardy-Weinberg equilibrium (p > 0.01). Out of theoretical
55 × 805 (44,275) data points, 257 (less than 1%) were missing due to uncertainty in genotype calling or
absent signal. Highest missing data rate among individual variants was 30 (3.7%) and 800 samples had
less than 10% of missing data. For 86 samples from the testing phase results of KASPTM genotyping
were available for validation of the sequencing results. Overall non-reference discordance rate across
55 × 86 (4730) data points was 2.3 with all but one mismatches in heterozygotes (n = 45). Also, the
MAFs of variants in the validation set did not substantially differ from those observed in the testing
set (Table 7).
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Table 7. Distribution of genotypes for variants assessed in the validation phase.

Gene SNV
Genotypes 1 MAF 2

Common
Homozygous Heterozygous Rare Homoz

Ygous
Validation Set

(n = 805)
Testing Set

(n = 105)

AKR7A2 rs1043657 660 136 6 0.09 0.10
TUBB1 rs10485828 521 252 27 0.19 0.21
MADD rs10501320 428 318 51 0.26 0.28
RARB rs1058378 666 134 2 0.09 0.09

SLC28A3 rs10868138 681 108 8 0.08 0.07
ABCB5 rs11983326 409 332 59 0.28 0.28

PIK3C2G rs12312266 462 290 44 0.24 0.21
CYP4F12 rs12460651 683 111 8 0.08 0.12
RRAGD rs1555403 432 318 48 0.26 0.24
GSTP1 rs1695 366 355 76 0.32 0.33
DPYD rs17376848 724 76 2 0.05 0.06
DPYD rs1801160 729 74 0 0.05 0.05
ABCA4 rs1801466 678 117 4 0.08 0.11
CYP2C9 rs1934969 281 387 135 0.41 0.39
AHRR rs2013782 312 389 97 0.37 0.41
ABCB1 rs2032583 639 158 6 0.10 0.11
CYP2E1 rs2070677 626 164 9 0.11 0.14

CDA rs2072671 360 366 66 0.31 0.36
PIP4K2B rs2075061 301 383 119 0.39 0.40

BAK1 rs210134 398 335 62 0.29 0.25
ABCC1 rs212091 598 186 14 0.13 0.18
GSTA2 rs2180314 251 409 141 0.43 0.41
ATP7A rs2227291 499 262 37 0.21 0.26
BIRC7 rs2273487 227 405 161 0.46 0.49
IRS1 rs2288587 735 59 3 0.04 0.06

KCNAB1 rs2293194 229 373 198 0.48 0.48
DPYD rs2297595 617 169 16 0.13 0.15
CES1 rs2307240 699 72 1 0.05 0.07

CYP2E1 rs2515641 627 166 9 0.11 0.14
ENOSF1 rs2612083 332 370 101 0.36 0.38

DPYS rs2669429 246 421 135 0.43 0.46
NR5A2 rs2816948 619 165 11 0.12 0.13

CYP2D6 rs28371725 672 112 11 0.08 0.06
ABCC6 rs2856585 719 80 2 0.05 0.06
ABCB8 rs3214587 636 159 7 0.11 0.12

SLCO1C1 rs34288910 597 186 19 0.14 0.14
ABCC1 rs3743527 476 278 46 0.23 0.21
AKT1 rs3803304 407 317 64 0.28 0.29

SLCO1A2 rs3834939 366 360 77 0.32 0.30
PPARG rs3856806 592 181 26 0.15 0.12
GSTA1 rs3957357 260 412 124 0.41 0.41

UGT2A1 rs4148301 644 147 10 0.10 0.11
ABCC3 rs4148413 499 236 43 0.21 0.17
EPHX2 rs4149259 569 212 22 0.16 0.17
DFFB rs4376673 694 106 1 0.07 0.09

SLC2A1 rs4658 506 266 26 0.20 0.21
ESR2 rs4986938 329 367 103 0.36 0.37

RPTOR rs61750765 575 208 17 0.15 0.24
SLC22A1 rs628031 302 372 122 0.39 0.40
EPHX2 rs751141 652 137 9 0.10 0.11
CMPK1 rs7543016 240 409 143 0.44 0.45
GSTP1 rs762803 289 402 108 0.39 0.39
CES1 rs76336259 714 87 0 0.05 0.06
BLK rs922483 429 304 61 0.27 0.23

PPARA rs9626814 627 163 9 0.11 0.10

Footnote: 1 Genotypes do not sum up to 805 due to missing data; 2 MAF = minor allele frequency.



Cancers 2018, 10, 511 14 of 26

2.2.2. Clinical Associations

In order to validate clinical associations observed in the testing phase, variants were evaluated
against response and survival of patients in the validation set. All homozygous genotypes observed in
less than five patients were grouped with the corresponding heterozygous genotype for enhancing the
statistical power of comparisons.

The variants that associated with response in both testing and validation phase are listed in
Table 8 and thus these variants are considered validated variants with putative clinical importance.

Table 8. Validated variants significantly associating with the response of patients to neoadjuvant
cytotoxic therapy in the validation phase.

Gene SNV Genotypes Responders 1 Non-Responders 1 p-Value 2 p-Value Adj 4

SLC28A3 rs10868138 0.013 0.266

Solute Carrier Family 28 (Sodium-Coupled
Nucleoside Transporter), Member 3—Nucleoside
transporter with broad specificity for pyrimidine

and purine nucleosides

Common
homozygous 102 41

Rare allele 3 23 1

ATP7A rs2227291 <0.001 0.004

ATPase Copper Transporting Alpha—Copper
transporter

Common
homozygous 88 16

Heterozygous 29 24

Rare
homozygote 9 2

KCNAB1 rs2293194 0.003 0.030

Potassium Voltage-Gated Channel,
Shaker-Related Subfamily, Beta Member

1—Pottasium channel

Common
homozygous 42 9

Heterozygous 66 17

Rare
homozygous 19 17

DFFB rs4376673 0.007 0.017

DNA Fragmentation Factor Subunit Beta—DNA
fragmentation factor involved in apoptosis

Common
homozygous 115 32

Rare allele 3 12 11

Footnotes: 1 numbers of responders (complete or partial remission) or non-responders (stable or progressive disease);
2 p-value by the Pearson test; 3 in the absence of rare homozygotes in any of the compared groups, effect of rare
allele was evaluated; 4 adjusted p-value by the multivariate logistic regression adjusted to disease stage.

Analogously to the testing phase, associations of variants with DFS of all patients or patients
stratified according to therapy were evaluated. Two variants (rs12460651 and rs751141) significantly
associated with DFS of all patients (n = 745; without 60 patients lost to follow up) and three
other variants (rs17376848, rs1801160, and rs2288587) associated with DFS of patients treated with
neoadjuvant and/or adjuvant cytotoxic therapy (n = 371; without six patients lost to follow up). These
patients comprised molecular subtypes: luminal A (n = 101), luminal B (n = 166), HER2 (n = 36) and
triple negative (n = 66); data were missing for two patients. Variant rs2075061 associated with DFS
only in patients treated with hormonal therapy without cytotoxic drugs (n = 312. Luminal A, n = 187;
luminal B, n = 118 and seven missing). Of these variants, rs12460651, rs2075061, and rs751141 did not
pass the gene dosage condition (Figure S4) and thus these variants could not be further considered
validated. Validated variants associating with DFS in the cytotoxic therapy treated patients are depicted
in Figure 4. In order to clarify the effect of molecular subtype on prognosis of the patients treated
with neoadjuvant and/or adjuvant cytotoxic therapy, these patients were further stratified according
to their molecular subtype. Associations with DFS were then calculated separately for each subtype
(Table 9 and Figure S5). If single p-value of stratified patients was delivered (pooled log-rank test),
variants rs1801160 and rs2288587 remained significantly associated with DFS (p < 0.001 and p = 0.030,
respectively), but rs17376848 was non-significant (p = 0.083).
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Figure 4. Kaplan-Meier plots with validated associations of variants with DFS of patients treated with 
cytotoxic therapy. Solid line represents the common homozygous genotype and dashed line the rare 
allele. Significance was evaluated by the log-rank test, n = number of individuals. In the absence of 
rare homozygotes in any of the compared groups, effect of rare allele was evaluated. (a): rs1801160; 
(b): rs17376848; (c): rs2288587. 

In multivariate analyses, using Cox regression adjusted to tumor grade, disease stage and 
expression of hormonal receptors, the rare allele in rs1801160 in DPYD was associated with a 
significant hazard ratio (HR = 2.58, 95% CI = 1.48–4.50, p = 0.001), but the other two variants 
(rs17376848 also in DPYD and rs2288587 in IRS1) were non-significant (p = 0.071 and p = 0.115, 
respectively). 

Table 9. Validated associations of variants associating with DFS of patients treated with cytotoxic 
therapy according to their molecular subtypes. 
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was evaluated; 2 p-value by the log-rank test and numbers of patients (significant associations are 
depicted in bold); 3 Triple negative; NS = Non-significant. 

  

Figure 4. Kaplan-Meier plots with validated associations of variants with DFS of patients treated with
cytotoxic therapy. Solid line represents the common homozygous genotype and dashed line the rare
allele. Significance was evaluated by the log-rank test, n = number of individuals. In the absence of
rare homozygotes in any of the compared groups, effect of rare allele was evaluated. (a): rs1801160;
(b): rs17376848; (c): rs2288587.

In multivariate analyses, using Cox regression adjusted to tumor grade, disease stage and
expression of hormonal receptors, the rare allele in rs1801160 in DPYD was associated with a significant
hazard ratio (HR = 2.58, 95% CI = 1.48–4.50, p = 0.001), but the other two variants (rs17376848 also in
DPYD and rs2288587 in IRS1) were non-significant (p = 0.071 and p = 0.115, respectively).

Table 9. Validated associations of variants associating with DFS of patients treated with cytotoxic
therapy according to their molecular subtypes.

Gene SNV Genotypes Luminal A 2 Luminal B 2 HER2 2 TN 2,3

DPYD rs1801160 NS <0.001 NS 0.018

Dihydropyrimidine
Dehydrogenase—Pyrimidine

catabolic enzyme

Common
homozygous 90 150 33 63

Rare allele 1 11 16 3 3

DPYD rs17376848 NS NS 0.012 NS

Dihydropyrimidine
Dehydrogenase—Pyrimidine

catabolic enzyme

Common
homozygous 88 146 33 59

Rare allele 1 13 20 3 7

IRS1 rs2288587 0.002 NS NS NS

Insulin Receptor Substrate
1—Protein mediating various
cellular processes by insulin

Common
homozygous 93 150 33 57

Rare allele 1 7 14 3 8

Footnotes: 1 In the absence of rare homozygotes in any of the compared groups, effect of rare allele was evaluated;
2 p-value by the log-rank test and numbers of patients (significant associations are depicted in bold); 3 Triple
negative; NS = Non-significant.
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3. Discussion

There is no doubt that drug therapy tailored to individual genetic predisposition could bring
substantial cost-benefit effects in terms of both enhanced drug efficacy and decreased risk of
adverse drug reactions. Pharmacogenomics seem so far instrumentally more accessible than routine
pharmacokinetics or pharmacodynamics in clinical day use. However, current approaches, including
the state-of-the-art technological platforms such as the next generation sequencing, are still in the early
evolutionary phase. Except the considerable decrease of cost per genotype in the last few years, the
complexity of data management and the need for robust evaluation of results to make them clinically
meaningful still hinder broader usage, especially in the pharmaceutical area. Thus, studies addressing
these aspects are urgently needed.

The present paper shows that out of quite large number of germline variants (18,245) detected
among 509 pharmacogenes and other drug-related genes in breast cancer patients, only a few
may be important from the view of individualized therapy after robust validation. Four variants
associated with response of patients to neoadjuvant cytotoxic therapy and three, out of which
just one was significant in multivariate analyses, were prognostic in terms of DFS after cytotoxic
therapy. Responders to the neoadjuvant cytotoxic therapy carried, significantly more frequently than
non-responders, the rare allele in rs10868138 of SLC28A3, the common homozygous genotype in
rs2227291 (ATP7A), or rs4376673 (DFFB) or the common allele in rs2293194 (KCNAB1). However, the
association of rs10868138 with response should be treated with caution while this association was
non-significant after adjustment for disease stage in multivariate analysis. Rs2293194 was significantly
associated with response only in patients with early stage disease 0 or I (p < 0.001). Patients with the
common homozygous genotype in rs1801160 of DPYD survived longer without relapse after cytotoxic
therapy than carriers of the rare allele. This effect was particularly pronounced in patients with luminal
B and triple negative molecular subtypes.

Protein coding gene SLC28A3 (Solute carrier family 28 member 3) is a sodium-dependent
nucleoside transporter involved in the homeostasis of endogenous nucleosides and regulating
multiple cellular processes, e.g., neurotransmission and metabolism and transport of nucleoside
drugs [22] (https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC28A3&keywords=A-3).
Genetic variability in SLC28A3 was previously connected with pharmacokinetics of nucleoside
analogs [23] and cardiotoxicity of anthracyclines [24] although a more recent study did not
confirm the latter observation [25]. Variation rs7867504 in SLC28A3 was shown to be involved in
gemcitabine pharmacobiology and toxicity in metastatic breast cancer patients receiving maintenance
therapy [26] or in patients with pancreatic carcinoma [27]. The rs10868138 in SLC28A3 is a less
studied variant; however, it was recently connected with higher concentration of azathioprine
in erythrocytes of patients with neuromyelitis optica [28], suggesting that it may be functional
in vivo. The other relevant gene to pharmacogenomics of nucleoside analogs is dihydropyrimidine
dehydrogenase (DPYD). The protein encoded by this gene (DPD) is a pyrimidine catabolic
enzyme and the initial and rate-limiting factor in the pathway of uracil and thymidine catabolism
(https://www.genecards.org/cgi-bin/carddisp.pl?gene=DPYD). DPD is active in the catabolic
pathway of 5-fluorouracil and mutations in its gene result in an increased risk of toxicity in cancer
patients receiving 5-fluorouracil chemotherapy [29]. DPYD polymorphism rs1801160, associated with
survival of breast cancer patients in our study, is very frequently studied. Carriage of rs1801160 in
DPYD associated with grade 3 or 4 5-fluoropyrimidine associated adverse risk effects, e.g., neutropenia,
in a recent study of colon cancer patients treated with regimens consisting of 5-fluoro-uracil or
capecitabine combined with oxaliplatin [30]. Although DPYD genotype-guided individualized dosing
for better safety of fluoropyrimidine treatment was recently suggested as a new standard of care [31],
the present study was not designed to address adverse effects and the validated association of DPYD
variant with DFS adds a new observation to the knowledge base.

Of the other validated variants associated with response to the therapy, the rs2227291 in ATP7A
raises particular attention since it is non-synonymous (V767L) and thus probably more directly

https://www.genecards.org/cgi-bin/carddisp.pl?gene=SLC28A3&keywords=A-3
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DPYD
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functional. Notably, rs2227291 is the only association with response in the validation set that passes
the false discovery rate (p = 0.011). Copper transporter ATP7A encodes a transmembrane protein
that functions in copper transport across membranes and it is frequently studied in connection
with sensitivity to platinum drugs, e.g., cisplatin. Very recently, the rs2227291 was associated with
cisplatin resistance in patients with epithelial ovarian cancer treated with combination of platinum and
taxane [32]. However, though the authors state that carriers of the minor allele are more sensitive to
cisplatin, the functional link is missing and must be obtained using further study. GWAS studies show
that regulatory non-coding variants may play a role in multiple distinct diseases such as cancer [33] and
thus the other two intronic variants associated with response (rs2293194 in KCNAB1 and rs4376673 in
DFFB) also represent a potential target for further studies. KCNAB1 (Potassium Voltage-Gated Channel,
Shaker-Related Subfamily, Beta Member 1) gene encodes a potassium channel involved in an important
dopamine pathway, chemical transmission of signal across synapses and various CYP450 pathways
(https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNAB1). In cancer genetics, KCNAB1
variation may play a role in breast cancer pathogenesis because its overexpression was found in breast
tumors in comparison to non-tumor tissues [34]. Finally, DFFB is a subunit Beta and active component
of DNA Fragmentation Factor protein (DFF). DFFB has been found to trigger both DNA fragmentation
and chromatin condensation during the apoptosis (https://www.genecards.org/cgi-bin/carddisp.pl?
gene=DFFB). For example, enhanced expression of DFFB with doxorubicin or in combination with
sulfonamides enhanced the killing of T47-D breast cancer tumor cells via apoptosis [35,36]. Thus,
variation and deregulation of the DFFB gene in the presence of apoptosis-inducing drugs might have
an impact on their efficiency in tumor cells.

Of the 88 loss of function variants identified in our study, only seven frameshift variants had
MAF above 5% ensuring the necessary statistical power to estimate the associations with DFS or
response. None of the associations of frameshift indels with outcome was statistically significant. Of
the genes harboring these variants, only RRM2B, was in the first quartile of the most intolerant genes
to functional variation, according to LoFtool gene score [37]. The rest of the genes in the first quartile
were ABCA5/A6/A7/A10/A13, ABCB4/B10, ABCC2/C3/C5/C10/C11/C12, DHCR7, NR1I3, SLC35C2 and
SLCO3A1. Of their corresponding proteins, mainly the multidrug resistance protein (MRP)2, MRP3,
MRP5, and MRPs 7–9 coded by membrane transporters ACBC2, ABCC3, ABCC5, ABCC10, ABCC11,
ABCC12 and the organic anion transporter polypeptide-related protein (OATP)3A1 coded by SLCO3A1
are of the highest importance because of the relation of MRPs and OATPs in the chemotherapy
resistance or sensitivity [5,6]. However, associations with response or DFS in these genes could not be
assessed due to the modest size of our cohort and the low frequency of these variants in population.

Population context is currently broadly discussed, for example considerable gene-dependent
variability between African and European Americans has recently been demonstrated [21]. The
present study was performed on homogeneous population of Slavic Europeans. As such, adds unique
information to the existing clinically associated datasets. The only publicly available data in the Czech
population on the germline whole exome level are in the National Center for Medical Genomics
(NCMG) set of healthy Czech population (n = 309 at time of writing). Of the total number of 509
genes, 503 genes (99%) contained at least one genetic alteration. No alterations were found in ABCF1,
HSPA1A, RXRB, TAP1 (ABCB2), TAP2 (ABCB3) and VDAC1P4 genes in the present study. However, in
comparison to the data in the NCMG set of healthy Czech population, these genes, except VDAC1P4,
were polymorphic. In total, 54 variants were found in ABCF1, 13 in HSPA1A, 16 in RXRB, 78 in
TAP1, and 88 in TAP2. Whether these differences are due to the different composition of both sets in
terms of individual characteristics of participants (the present set contained only females while the
NCMG set is composed of both genders) or due to the disease etiology (breast cancer patients versus
healthy population) remains to be elucidated. Differences between sequencing platforms, raw data
management and annotation cannot be excluded either. On the other hand, the most polymorphic
genes with over one hundred alterations were NCOR2, ABCA13, RPTOR, ABCA4, CIT, BIRC6, ABCC1,
ABCA1, RXRA, NCOR1, ABCA7, ABCC4 and ABCB5 in the present study and except for RXRA, all

https://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNAB1
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DFFB
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these genes showed more than 100 alterations in the NCMG set as well. ABCA13 is overall the 80th
most polymorphic gene in NCMG data coming from the whole exome sequencing, while the rest of
the top 80 variable genes in NCMG data were not analyzed in this study. Thus, although there are
some similarities in these sets, the direct comparison of data from two sets within the same population
points to some differences, mainly in the low MAF variants, and thus, multiethnic cohorts must be
very carefully evaluated in this regard. The recent study by Kozyra et al. [21] reported ABCA4, ABCA1
and ABCC1 among genes with highest counts of variations suggesting that the most variable genes
may be conserved across diverse populations.

We aimed not only to contribute to the search for predictive genetic biomarkers for oncology,
but also to set up a pipeline for processing of raw data generated by massively parallel gene panel
sequencing, including quality controls. Last but not least, complex variant prioritization scheme
including both evaluation of variants by associating them with individual patient data relevant to their
pharmacological response and further filtration using in silico predictive tools and pharmacological
databases is provided. Moreover, robust validation by means of comparison of results obtained by two
technological platforms and two stage study evaluation using testing and validation clinical cohorts
was accomplished.

Public databases such as PharmGKB are wealthy sources of germline variants which evolved from
laborious curation of published studies and a strong need for systematic use of perished knowledge
in personalized medicine [38,39]. At the time of writing of this article, 21,115 annotations in 647
drugs associated with drug response at pharmacodynamic and/or pharmacokinetic level were in
PharmGKB (https://www.pharmgkb.org/, accessed 4 November 2018). Despite the significant
number of annotations available, automated prediction for drug response of sequenced variants
is not available. Many in silico tools have been developed to aid with the prediction mostly for coding
variants. Evolutionary characteristics of variants in pharmacogenes involved in biotransformation
and transport of drugs are, however, different. This complicates accurate estimates provided by
methods mostly built on Mendelian disease principles [40]. Consequently, genomic evolutionary rate
profiling or evolutionary constraint algorithms, as well as tools trained on disease pathogenic/neutral
variants were not included in our in silico sequence tools set. Several attempts have been made to
generate specialized tools scaled for pharmacogenes or to optimize current models for pharmacogenetic
assessments [40,41]. Nonetheless, “gold standard” methods are still lacking in the public domain.
Furthermore, even no standard recommendations on the number or types of in silico tools to be
considered in analyses which may have significant impact on results are available [42]. While this
prevents to a certain extent potentially incorrect use and interpretation in clinical practice, academic
research is also hindered. In our research we attempted to combine different approaches to acquire
complex information for given variants. Prediction or knowledge acquired for prioritized variants was
not further manually curated. The reason was to verify the ability of automated prioritization and to
estimate the added value of in silico tools for our further studies.

The modest size of the testing set may be seen as a limitation of the study. Due to this fact,
the importance of very rare (MAF < 0.001) and rare (<0.01) variants could not be assessed. Thus,
we prioritized variants with MAF > 0.05. In the light of the recently acknowledged contribution of
rare variants to inter-individual variability in drug response [40] this limitation needs to be considered
in future pharmacogenomic studies in oncology. On the other hand, ethnical homogeneity and
completeness of clinical follow up is considered beneficiary. Moreover, the study may be extended
by addition of more patients or compiling with similarly designed set of patients with whole exome
or genome data. Another limitation of this study is the nonhomogeneity of the patient sets. The
advanced disease stage and the molecular subtype can be seen as the strongest modifiers of patient
prognosis. We have employed the multivariate analyses adjusted to disease stage and we have
analyzed the associations of variants with molecular subtype in the testing set to circumvent these
issues. We also analyzed associations with survival separately in neoadjuvantly treated patients (with
predominant luminal subtype) and adjuvantly treated patients (triple negative tumors only) in the

https://www.pharmgkb.org/
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testing set and ran the full prioritization pipeline again. Despite some slight discrepancies which might
be caused by chance due to small sizes of compared groups, all the major conclusions of this study
remained unchanged.

Functional studies of the identified variants and genes will be the next step. Functionality of
a variant may be studied using CRISPR-Cas9 gene editing in a suitable tumor cell model in vitro.
Subsequently gene function, including response of the model cell line to clinically relevant drugs, e.g.,
taxanes, may be followed.

4. Materials and Methods

4.1. Patients

The testing study included a total of 105 breast cancer patients of Caucasian origin diagnosed in
the Institute for the Care for Mother and Child and Medicon in Prague and Hospital Atlas in Zlin (all
in the Czech Republic) during 2006–2013. Patients underwent neoadjuvant cytotoxic therapy with
regimens based on 5-fluorouracil/anthracyclines/cyclophosphamide (FAC or FEC) and/or taxanes
(n = 68) or postoperative adjuvant therapy using the same cytotoxic drugs (n = 37). The validation set
was composed of 805 breast cancer patients recruited in Motol University Hospital, Institute for the
Care for Mother and Child, and Medicon in Prague and Hospital Atlas in Zlin during 2001–2013.

Collection of blood samples and retrieval of clinical data was performed as described
previously [43]. The following data on patients were retrieved from medical records: age at
diagnosis, menopausal status, personal medical history, family history (number of relatives affected by
breast/ovarian carcinoma or other malignant diseases), stage, tumor size, presence of lymph node
metastasis, histological type and grade of the tumor, expression of estrogen, progesterone, and ERBB2
(v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, OMIM:164870) receptors, expression
of Ki67 (proliferation-related Ki-67 antigen, OMIM:176741), response to the therapy according to
RECIST criteria [44], and DFS. DFS was defined as the time elapsed between surgery and disease
recurrence. Response to the neoadjuvant therapy was evaluated based on ultrasonography performed
before and after the cytotoxic therapy.

All patients were informed about the study and those who agreed and signed an informed consent
participated in the study. The study was approved by the Ethical Commission of the National Institute
of Public Health in Prague (ethic code: Č.15-25618A, 6 August 2014). The methods were carried out in
accordance with guidelines approved by the Ethical Commission.

4.2. DNA Extraction

Blood samples were collected during the diagnostic procedures using tubes with K3EDTA
anticoagulant. Genomic DNA was isolated from human peripheral blood lymphocytes by the standard
phenol/chloroform extraction and ethanol precipitation method [45]. DNA was quantified by Quant-iT
PicoGreen DNA Assay Kit (Invitrogen, Carlsbad, CA, USA). DNA samples were stored in aliquots at
−20 ◦C prior to analysis.

4.3. Gene Panel Selection

The genes were selected according to the following criteria: (i)gene in PharmGKB with published
association to anthracyclines, doxorubicin, daunorubicin, 5-fluorouracil, cyclophosphamide, paclitaxel
or docetaxel; pharmacokinetics pathway of doxorubicin, 5-fluorouracil, cyclophosphamide, docetaxel
or paclitaxel; (ii)association with metabolism of xenobiotics, drug metabolism, sulfur metabolism
and transport in Phenopedia. The selected genes were divided into groups according to major
function, i.e., transport (ABCs, SLCs), metabolism (CYPs, UGTs, etc.), cell death (CASPs, BCLs, etc.),
nuclear receptors, targets and signaling genes (Figure S1). All selected genes were validated using
NimbleDesign web tool (Nimblegen, Roche, Prague, Czech Republic) (list of genes in (Table S2).
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4.4. Targeted Sequencing

Libraries encompassing all exons of selected genes were prepared following the previously
published design [46]. Based on the character of probe design, i.e., tiling; the exons were surrounded
by approximately 30 bp regions of intronic sequences which were also sequenced in both directions.
Target enrichment was performed by the Nimblegen’s SeqCap EZ Choice (Roche, Prague, Czech
Republic) using a standard SeqCap protocol [47]. Samples were sequenced on an Illumina MiSeq
platform (Illumina Inc., San Diego, CA, USA). Twelve samples were sequenced in each run with
the planned minimal coverage 60–100. Data were aligned to the hg19 reference genome with the
Burrows-Wheeler Aligner (BWA, Cambridge, UK) 0.7.12 [48], SAM to BAM conversion was done by
Samtools 1.4.1 (Wellcome Trust Sanger Institute, Hinxton, UK), duplicate removal by Picard 2.17.10
and base recalibration, local realignment and detection of single nucleotide polymorphisms (SNP) and
small indels were done by the Genome Analysis Toolkit (GATK, Broad Institute, Cambridge, UK) 3.7
Haplotype Caller according to GATK Best Practices [49]. The variants were annotated using Annovar
(version 2018 Apr 16, Pennsylvania, PA, USA) [50] and VEP 94 (Wellcome Trust Sanger Institute,
Hinxton, UK) [51] (Figure 1).

4.5. Genotyping

In the validation phase, 58 genetic variants with clinical associations were analyzed in DNA
from 805 breast cancer patients using KASPTM technology (LGC Genomics, Hoddesdon, UK). Quality
control was performed by determination of duplicate samples for approximately 10% of the samples
in both phases. The genotyping concordance between duplicate samples exceeded 99%.

4.6. Data Analysis

The raw variants from targeted sequencing were recalibrated using GATK 3.7. Hardy-Weinberg
test was computed using Bcftools 1.5 (Cambridge, UK). Only variants in Hardy-Weinberg equilibrium
(p > 0.01), with MAF > 0.05 and with less than 50% of missing data were considered for statistical
and functional evaluations. Comparison of response to the therapy with respect to groups of patients
(common homozygous, heterozygous and rare homozygous) was based on the Pearson chi-square
test for each variant. Adjusted p-value was calculated for each variant and each of these tests.
Computation of adjusted p-value was as follows: (1) p-value based on original data was calculated;
(2) 1000 permutations of original data were generated; (3) value of test statistic was calculated for each
permutation; (4) proportion of p-values based on permuted data (1000 p-values for each test) which
were higher or equal than p-value based on original data was calculated; and (5) adjusted p-value was
obtained for given variant. For multivariate analyses, binary logistic regression was used.

Comparison of DFS with respect to groups of patients (common homozygous, heterozygous and
rare homozygous) was performed by the log-rank test for each variant separately. Kaplan-Meier plot
for each variant separately was generated as well for visual comparison. As study follow-up was
set to 120 months (10 years) then if the value of DFS for some subject was higher than 120 months,
value for this subject was set to 120 and censored. Adjusted p-value for log-rank test was based on 100
permutations of original data. Methodology of computation for adjusted p-value for each variant was
performed in a similar way as it was mentioned previously. A p-value of less than 0.05 after adjustment
for multiple testing by using 100 permutations for survival and 1000 permutations for response was
considered statistically significant. Analyses were conducted using the statistical program SPSS v16.0
(SPSS, Chicago, IL, USA) and using the R script. Cox regression was also performed in analysis of
DFS separately for variants which were statistically significant based on adjusted p-values. Response
variable was DFS and predictor variable was variant. Based on likelihood ratio test for testing
statistical significance of variant, p-value was recorded. After that, adjustment on multiplicity only for
these p-values was performed. Considered adjustments were Bonferroni method, Hochberg method,
Hommel method, Holm method and false discovery rate method.
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Analysis for comparison of DFS with respect to groups of patients was also performed for
subgroups of adjuvantly treated patients and neoadjuvantly treated patients. Methodology for adjusted
p-values derivation, Cox regression analysis and adjustment methods on multiplicity are the same as
previously. Permutations of original data (100 permutations) were generated separately for adjuvant
patients and for neoadjuvant patients.

For functional prediction germline variants were annotated by Annovar and VEP. Choice of in
silico tools was based on scope of the prediction for given software with the intention of ensuring
prediction for all types of consequences in our set. For non-synonymous/missense and splice site
variants, dbNSFP 3.5a provided binary predictions by ensemble scores metaSVM, metaLR and
dbscSNV scores, respectively [52]. In addition, a strict consensus in prediction results while excluding
all variants for any of the missing prediction was applied to missense variants in “sequence in silico
tools set”. The set encompass Mutation Assessor (H/M = functional), SIFT (D: Deleterious; ≤0.05),
LRT (D: Deleterious) and Provean (D: Damaging) software tools. This approach is not based on
machine learning methods and thus overcomes the concern of type 2 circularity due to insufficient
discrimination of deleterious variants from neutral ones within given protein in training dataset [53].
CADD v1.3 (cut-off value ≥ 19, VEP) for all types of variants (i.e., coding, non-coding SNVs and
short insertion/deletions) provided supplementary ensemble score. Further, splicing defect prediction
was also annotated by VEP, flagging variants in a high information position of a transcription factor
binding profile (TFBP). Splice donor/acceptor variants were annotated by MaxEntScan (based on the
Maximum Entropy principle and neural networks) with score for reference and alternative variants.
The higher score in MaxEntScan implied for a higher probability of the sequence being a true splice
site. Known regulatory elements in the intergenic regions (e.g., DNAase hypersensitivity, binding
sites of transcription factors, and promoter regions that have been biochemically characterized to
regulation transcription) were predicted for deleteriousness by Regulome DB score [54] following
classification category 1. These variants were considered likely affecting binding to transcription
factors and expression of a gene target. A very recently developed web-based IW-Scoring framework
(http://www.snp-nexus.org/IW-Scoring/) and PINES (Phenotype-Informed Noncoding Element
Scoring) [55] were additionally used. IW score was provided for known (IW score K11) and novel (IW
score N8) non-coding and coding synonymous variants. PINES (p-value ≤ 0.05) provided a ranked
list of non-coding variants with functional characterization for liver tissue as a major site of drug
biotransformation. Biological targets of miRNAs and conserved sites of given variant (UTR3) were
matched by TargetScan (release 7.2, Cambridge, MA, USA).

Complementary to in silico predictions, evidence from pharmacogenomic and clinical databases
was provided. Queried databases included, e.g., PharmGKB [38], PharmVar (available only for
CYP2C9, 2C19, 2D6 genes), ADReCS-Target an Adverse Drug Reaction Classification System-Target
Profile (http://bioinf.xmu.edu.cn/ADReCS-Target) [56], which provides comprehensive information
about ADRs caused by drug interaction with protein, gene and genetic variation, PheWas Resources
(phenome-wide association studies with antineoplastic drugs), Clinvar and dbSNP.

5. Conclusions

Through massive parallel sequencing, germline variability within a panel consisting of genes
with relationships to drug metabolism and disposition, cell death and major oncogenic pathways
was assessed in Czech breast cancer patients for the first time. Technically and clinically validated
associations of rs2227291 in ATP7A, rs2293194 in KCNAB1 (in early stage patients), and rs4376673
in DFFB with response to neoadjuvant cytotoxic therapy provide new putative loci for subsequent
functional studies. The frequently studied rs1801160 in DPYD significantly associated with disease-free
survival of patients treated with cytotoxic drugs and represents additional provocative target with
prognostic potential namely in patients with luminal B or triple negative tumors.

Additionally, the present study brings complex insights into the prioritization of variants using
individual clinical data, emerging in silico tools and established pharmacogenomic databases.

http://www.snp-nexus.org/IW-Scoring/
http://bioinf.xmu.edu.cn/ADReCS-Target
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