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ABSTRACT Intermediate wheatgrass (Thinopyrum intermedium, IWG) is a perennial grain crop with high
biomass and grain yield, long seeds, and resistance to pests and diseases. It also reduces soil erosion,
nitrate and mineral leaching into underground water tables, and sequesters carbon in its roots. The do-
mestication timeline of IWG as a grain crop spans only 3 decades, hence it lags annual grain crops in yield
and seed characteristics. One approach to improve its agronomic traits is by using molecular markers to
uncover marker-trait associations. In this study, we performed association mapping on IWG breeding
germplasm from the third recurrent selection cycle at the University of Minnesota. The IWG population
was phenotyped in St Paul, MN in 2017 and 2018, and in Crookston, MN in 2018 for grain yield, seed
length, width and weight, spike length and weight, and number of spikelets per spike. Strong positive
correlations were observed among most trait pairs, with correlations as high as 0.76. Genotyping using high
throughput sequencing identified 8,899 high-quality genome-wide SNPs which were combined with phe-
notypic data in association mapping to discover regions associated with the yield component traits. We
detected 154 genetic loci associated with these traits of which 19 were shared between at least two traits.
Prediction of breeding values using significant loci as fixed effects in genomic selection model improved
predictive abilities by up to 14%. Genetic mapping of agronomic traits followed by using genomic selection
to predict breeding values can assist breeders in selecting superior genotypes to accelerate IWG
domestication.
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Compared to annual crops, perennial crops provide better environ-
mental services by reducing soil andwater erosion andnutrient leaching
as well as sequesteringmore carbon per square area (Tilman et al. 2006;
Glover et al. 2015; Jungers et al. 2015). Perennials such as intermediate
wheatgrass (Thinopyrum intermedium, IWG) add less stress to the

environment from reduced chemical use and overall energy inputs
while providing substantial agricultural value (Hoffman et al. 1995;
Christian et al. 1997; Rogers et al. 2014). For example, IWG grains
have been used to produce several food products and beverages
(Wagoner 1990; Zhang et al. 2015; DeHaan and Ismail 2017). Because
of its ecosystem services and food values, IWG has been identified as an
ideal perennial crop for domestication (DeHaan et al. 2018). A cool-
season perennial grass native to theMediterranean and Eastern Europe
(Tsvelev 1984), IWG is currently being improved for better agronomic
qualities at the University of Minnesota in St Paul, MN, The Land
Institute in Salina, KS, and University of Manitoba in Winnipeg,
Canada.

Domestication of plant and animal species for human consumption
has beenunder practice for several thousandyears. The outcomes of this
practice are numerous plant and animal species adapted to specific
human needs and the environment of selection (Brown 2010; Fuller
et al. 2010). Adaptations during the domestication process include fast
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changes in a suite of both physiological characteristics and genetic
makeup, known as the ‘domestication syndrome’ (Hammer 1984).
For example, the earliest traits selected in wheat during its domestica-
tion were reduced spikelet shattering, easier threshability, seed size, and
other changes in plant morphology (Harlan et al. 1973). Selection of the
best wheat plants adapted to these traits also improved other domesti-
cation syndrome traits such as reduced tiller number, straw strength,
lodging resistance, and reduced seed dormancy (Dubcovsky and
Dvorak 2007).Modern plant breeding has further improved these traits
in virtually all domesticated crop species with the discovery and appli-
cation of DNA markers.

Study and improvement of domestication traits have typically been
donebyusingmolecularmarkers inmarker assisted selection assays and
quantitative trait loci (QTL) mapping projects. Of different QTL
mapping approaches, associationmapping or genome-wide association
study (GWAS) is onemethodwheremarkers associatedwith the traits of
interest are determined via linkage disequilibrium and allele frequency
(Weir 2008). Such mapping studies uncovering the genetic factors
controlling domestication traits have been carried out in multiple crop
species including wheat, rice, maize, soybean, tomato, and common
bean (Peleg et al. 2011).Many of these studies have shown that few gene
clusters with large effects separate domesticated crops from their wild
counterparts (Koinange et al. 1996; Gepts 2004). While some studies
have indicated that multiple domestication-related traits are controlled
by the same few genetic loci (Poncet et al. 2002; Cai and Morishima
2002), recent evidence suggests that a larger number of genes may also
be involved. For example, Thomson et al. (2003) reported that 76 QTL
control 13 traits in rice; nearly 1,800 candidate genes were found to be
associated with domestication traits in maize (Hufford et al. 2012), and
more than 500 loci were associated with 47 traits in foxtail millet (Jia
et al. 2013). Of the traits studied, yield and yield component traits such
as kernel size, seed dimensions, and spike characteristics are among the
most prioritized traits because of their impact on agricultural produc-
tion and food security.

During and post-domestication, higher yield has been a focus of
breeding efforts in all plant species including cereal grasses. One of the
very first traits to undergo domestication, resistance to shatter, is a key
element in increasing yield by preventing grain loss during and after-
harvest (Peleg et al. 2011). Other key components in maintaining high
yields are spike-relatedmorphological attributes such as length, weight,
number of spikelets per spike as well as seed weight and seed dimen-
sions (Slafer 2007; Qin et al. 2015). As yield is usually an amalgam of
many subsidiary traits and has complex underlying genetic architec-
ture, identification and selection of high-yielding genotypes requires
the understanding of other single traits, mainly the yield component
traits (Robson et al. 2013). A better understanding of genetic factors
that control yield component traits will be important in improving
IWG and establishing it as a successful perennial grain crop. One
approach to accomplish this is through the discovery of genetic loci
associated with these traits and their genetic variations in IWG breed-
ing populations followed by their use in recurrent selection of superior
genotypes. Genomic selection (GS) is one such tool that can be used to
realize this goal. Using GS to improve IWG breeding populations has
already been demonstrated as a sound strategy in accelerating its do-
mestication (Zhang et al. 2016). Discovery of additional genomic re-
gions linked with traits of interest will help understand their genetic
control and further advance IWG’s domestication process.

The University of Minnesota started its IWG breeding program in
2011 andhas since completed three breeding cycles. During these cycles,
progress has beenmade in improving the germplasm for yield and yield
component traits as well as other agronomic traits such as plant height

and disease resistance. After statewide trials of candidate synthetic
varieties during 2015-2018, the best candidate will be released in
2019 as the first synthetic IWG variety. Despite the progress made,
IWG is still in the nascent stages of domestication. Some traits needing
further improvementare lowgrainyieldand small seedsize compared to
annual cereal crops.Determination of optimal plant height and biomass
without sacrificing above- and below-ground plant performance is
important as well. Synchronous flowering times and uniform maturity
arealso equally imperative in synthetic crossingblocks andcultivationof
the variety.

With this in mind, this study was carried out with the following
objectives: i)Discovermarkers anddetermine the genetic control of seed
and yield component traits in the IWG breeding program at the
University of Minnesota; ii) Characterize the amount of variability
existent in the UMN IWG breeding germplasm by assessment of trait
heritabilities, linkage disequilibrium, and population structuring; iii)
Investigate the value of including significant markers detected by QTL
mapping as fixed-effects in genomic selection models and their impact
on trait predictive abilities.

MATERIALS AND METHODS

Plant materials
The IWG population used in this study is from the third recurrent
selection cycle (C3) at the University of Minnesota and is referred to as
UMN_C3. It was initiated from 70 cycle 2 (UMN_C2) genets based on
their genomic estimated breeding values (GEBVs) obtained from GS
models trained on UMN_C2 agronomic data collected during 2014-
2015. A genet is defined as a genetically unique organism and refers to
individual plants in an outcrossing species such as IWG (Zhang et al.
2016). These genets were vernalized at 4� for 8 weeks during November-
December 2015 and allowed to intercross in the greenhouse during
January-March 2016. Eight random seeds were germinated in June
2016 from each mother plant, cloned into two groups in August 2016,
and transplanted in the field as single replication in September
2016 in two MN locations: St Paul and Crookston. Transplanting
was done with 1 m distance between the genets and plots were sur-
rounded on all sides with IWG border plants. Plots were not fertilized
in 2017, but 45 kg ha-1 of N was applied in April 2018 in St Paul and
in May 2018 in Crookston. Weed control was primarily done with
manual labor and mechanical cultivation. The herbicide Dual II Mag-
num (S-Metolachlor 82.4%, Syngenta) was applied in April of both
years at a rate of 1.2 L per ha. Post-harvest, plants were mowed to a
height of 15-20 cm. The environments St Paul 2017, St Paul 2018, and
Crookston 2018 are referred to as StP17, StP18, and Crk18, respec-
tively. The Crk17 environment was abandoned due to flooding of the
field that resulted in poor plant establishment. Because of plant death
and loss of genets between two locations, 451 genets were used in the
final association analysis.

Genotyping
Fromeach genet, 10-15 cmof leaf tissuewas collected anddried on silica
for 5 d. DNA was extracted from ground leaf tissue using the BioSprint
96 DNA Plant Kit (QIAGEN, Valencia, CA). Extracted DNA was
digested with PstI and MspI to create double digested libraries and
sequenced in 192-plexed libraries on Illumina’s Hiseq 2500. Obtained
sequences were passed through a quality filter of Q . 30 then
de-multiplexed to obtain reads for each individual genet. Reads were
aligned to the draft IWG reference genome v2.1 (Thinopyrum inter-
medium Genome Sequencing Consortium) using bwa (Li and Durbin
2009), and samtools+bcftools (Li 2011) for SNP calling. SNPs
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with minor allele frequency (MAF) of less than 5% and more than
20% missing data were removed. The resulting dataset of 8,899 SNPs
were imputed using the LD-kNNi method (Money et al. 2015) in
Tassel version 5.2.41 (Bradbury et al. 2007) using 30 nearest neigh-
bors. Imputation accuracy was calculated within Tassel by randomly
masking known genotypes of 20–50% alleles in the input file before
imputation and comparing with allelic predictions of masked geno-
types. Forced-imputation was not carried out if the missing genotype
of a locus could not be resolved.

Phenotyping and statistical analysis
The UMN_C3 IWG genets were phenotyped in 2017 and 2018 in St.
Paul, MN and in 2018 in Crookston, MN. The panel was evaluated for
multiple agronomic traits, of which we focus our GWAS analysis on
seven yield-related traits: 1) grain yield, 2) thousand kernel weight
(TKW), 3) seed length, 4) seed width, 5) number of spikelets per spike,
6) spike weight, 7) and spike length. These traits were measured by
harvesting 10 mature spikes per plant and drying them at 32� for 72 h.
Spikes were first measured for weight, length, and spikelet count fol-
lowed by mechanical threshing to obtain 10-spike yield. All remaining
spikes from each genet were also harvested, dried, threshed usingWin-
tersteiger LD 350 (Wintersteiger Inc, Salt Lake City, USA), and com-
bined with 10-spike yield to obtain total plant yield. Approximately
100-300 de-hulled seeds from each genet were scanned using Marvin
seed analyzer (GTA Sensorik GmbH, Germany) to obtain seed length
and width. Imaged seeds were weighed to obtain TKW.

Trait datawerepassed throughamixedmodel equation tocorrect for
environmental variability (i.e., the trial effect) and obtain the best linear
unbiased estimation (BLUE) of each genet using theMIXED procedure
in SAS (v.9.3.1; Sallam et al. 2015). The fixed effect estimate obtained
for a particular environment was removed from the trait value for each
genet in that environment to obtain adjusted BLUE values and used in
association analysis. Broad-sense heritability (H) of the traits were
calculated on a genet mean basis using the formula:

H ¼ s2
g

.�
s2
g þ s2

e

�
h
�

where:
sg
2 is the genetic variance,

se
2 is the error variance that includes the genotype · environment

effect and residuals, and
h is the number of years.

Linkage disequilibrium & population structure
Linkage disequilibrium (LD) among the genome-wide markers was
calculated using Tassel version 5.2.41 with sliding window size of
1000 markers. Obtained r2 values were plotted against both physical
and genetic distances with a LOESS curve fitted to display LD decay. LD
decay distance was estimated using the method of Hill andWeir (1988)
and assessed at the conventionally accepted r2 value of 0.2 (Vos et al.
2017). Genetic distances between the SNPs were assigned from highly
similar SNP sequences aligned with the sequences reported in the IWG
consensus map (Kantarski et al. 2017). The command magicblast in
ncbi-magicblast-1.3.0 was used after converting the consensus se-
quences into a local database using makeblastdb (Boratyn et al.
2018). BLAST output was parsed to retain alignments with e-value of
1E-10 with 90% sequence similarity and minimum alignment length of
25 base pairs.

The same 8,899 SNPs were used in STRUCTURE (Pritchard et al.
2000) with subgroups K = 1 to 10 used to determine the optimal
number of population subgroups. Using the admixture model with

STRUCTURE, K = 1 through 10 were tested with 100,000 reps with
the first 25,000 declared as burn-ins with 10 replicates for each value of
K. The outputted K statistics were analyzed using Structure Harvester
(Earl and vonHoldt 2012) to determine the optimal K number. Results
from Structure Harvester suggested K= 2 as the most likely scenario for
UMN_C3, yet moderately strong signal was also observed at K = 6.
Therefore, a network-distance based clustering of the genotypes was
carried out in NetStruct to confirm the number of sub-populations
(Greenbaum et al. 2016). Threshold values of 0.01 to 0.20 were tested
at increments of 0.05 using the spectral analysis algorithm (Csardi and
Nepusz 2006). Strength of association distribution analysis was carried
out on optimal community values and plotted over principal compo-
nent (PC) values calculated using the function prcomp in R.

Association analysis & genomic selection
The program Genome Association and Prediction Integrated Tool
(GAPIT; Lipka et al. 2012) was used for association analysis. In GAPIT,
the uncompressed mixed linear model (MLM) was used with the Q
matrix obtained from STRUCTURE at K = 2 as covariates. PC values
were not used as covariates as model optimization with up to 10 PC
values showed no improvement. Significant QTL were declared at P,
0.001 because Bonferroni corrected p-values were found to be restric-
tively conservative. For all significant markers, the percentage of
explained phenotypic variation (R2), major and minor allele frequen-
cies, and allelic effects are reported.

SNP markers significantly associated with the traits were used as
fixed effects in genomic selection models to study how they affected
predictive abilities of each trait. This was carried out in rrBLUP
(Endelman 2011) using fourfold cross validation where 75% of the
UMN_C3 panel was used as the training population and the remaining
25% as the validation set. Four scenarios were evaluated: 1) no markers
declared as fixed effects, 2) top 10 loci for each trait (SNPs with the best
10 R2 values) as fixed effects for the specific trait, 3) all significant
markers for each trait as fixed effect for that specific trait, and 4) all
significant SNPs detected for all traits as fixed effects for each trait. Each
scenario was run for 100 replications and correlations between GEBVs
of the masked validation set and the training population were averaged.

Data availability
All supplementalmaterials areavailableatFigshare includingphenotype
(File S1) and genotype data (File S2). Sequences of entire UMN_C3
population have been uploaded to NCBI’s sequence read archive under
BioProject PRJNA518132. Other data and germplasm associated with
the UMN_C3 intermediate wheatgrass population are available upon
request. Supplemental material available at FigShare: https://doi.org/
10.25387/g3.7701509.

RESULTS

SNP discovery, population structure, &
linkage disequilibrium
Reference-based readalignment followedbySNPcalling led todiscovery
of 3,291,243 SNPs in the UMN_C3 breeding population of which
1,651,365 remained after discarding those with MAF lower than 5%.
Removal of SNPswith proportion ofmissing alleles. 20% reduced this
number to 8,899 with an average of 424 SNPs per chromosome (Table
S1). Imputation of missing alleles using LD-kNNi method in Tassel
version 5.2.41 using 30 nearest SNPs lowered the overall missing allele
proportion from 20 to 1.8% with an imputation accuracy of 94.6%.

Estimation of population structure was first done with STRUC-
TURE, which implements a Bayesian clusteringmethod. Log likelihood
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valueswere analyzedusing theEvannomethod inStructureHarvester to
determine an optimal K value. ThemaximumDKwas observed at K = 2
with a second moderately high DK value at K = 6 (Table S2). Member-
ship (genets assigned) proportions in the two clusters when K = 2 are
72% and 28% (Figure 1A). Because of a very narrow origin of current
IWG breeding germplasm, higher values of K are not expected. There-
fore, an additional method of population clustering based on network
analysis was implemented in NetStruct. Evaluation of threshold values
from 0.010 to 0.024 resulted in division of UMN_C3 into two clusters
(communities, in NetStruct terminology) whereas values of $ 0.030
split the genets into$ 368 clusters, which is erroneous. Hence, for the
purpose of this study, K = 2 was determined as the best estimation of
population structuring for UMN_C3. Strength of association distribu-
tion analysis inNetStruct of the two clusters showed a difference of only
7.59E-06, establishing that the proposed two clusters are very closely
related with each other (Figure 1B). Distribution of the first 25 eigen-
values is shown in Figure 1C, from which the amount of genetic var-
iation explained by the first two PC axes were calculated at 2.3% and
1.6%, respectively.

Half decaydistance in theUMN_C3population at arbitrarynominal
level of r2 = 0.20 was found to be 4.38 cM, according to Hill and Weir
(1988) method (Figure 2). In terms of physical distance, this distance
was 0.7 mega base pairs (Mbp).

Phenotypic data variation & heritability
Environment StP17 – the first year of UMN_C3 – had the largest mean
values for spike and seed related traits whereas StP18 had higher total
grain yield (Table 1, Figure 3). Overall, the highest single plant yields
observed were 70.5 g, 148.5 g, and 96.0 g in StP17, StP18, and Crk18

respectively. While no single genet was the best overall in all three
environments for plant yield, nine out of top 25 highest-yielding genets
were shared in at least two environments. Average seed weight, mea-
sured in terms of thousand kernel weight (TKW), were 14.7 g, 13.0 g,
and 10.9 g in StP17, StP18, and Crk18 respectively. The longest as well
as shortest seeds were observed in StP17 at 7.8 mm and 4.5 mm, re-
spectively. StP18 had the widest seeds at 2.2 mm, relative to that of
1.9 mm and 2.0 mm in StP17 and Crk18, respectively.

In all environments, strong positive correlations were observed
among yield component traits such as spike weight, spike length,
numberof spikelets,TKW, andgrain yield.Thehighest trait correlations
were observed between seed lengths in StP18 and Crk18 with the
coefficient of correlation, r = 0.79 followed by TKW and seed width
in Crk18 (r = 0.76) and TKW in StP18 and TKW in Crk18 (r = 0.73)
(Figure 4). Correlations between seed length and width in StP17 and
Crk18 were significant (r = 0.45 and 0.34, respectively) but was poorly
correlated in the second year trial in St Paul (r = 0.1). Few negative yet
significant correlations were also present between several trait pairs
within and across the environments. The lowest correlations observed
in the dataset were between no. of spikelets and TKW in Crk18 (r =
-0.26). In all environments, low correlations were observed between no.
of spikelets and TKW (r = -0.26 to 0.13), and seed length and seed
width (r = -0.02 to 0.45). Broad-sense heritability estimates were me-
dium to large with the highest values observed for yield (0.68), TKW
(0.69), and seed length (0.73) (Figure 3).

Significant SNP markers & favorable alleles
Fitting the MLM in GAPIT using the Qmatrix obtained from STRUC-
TURE led to detection of 154 loci in all 21 chromosomes that were

Figure 1 Population structure inferred by STRUCTURE and NetStruct. For both methods, K = 2 are plotted, along with the first 25 eigenvalues.
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significantly associated with the 7 traits (Figure 5, Table S3). The largest
number of QTL were detected for TKW with 53 total in all chromo-
somes except Chromosome 1. The fewest QTL (3) were discovered for
spike weight in Chromosomes 4, 6, and 13 with the percent of pheno-
typic variance explained (R2) values of 2.6–4.1%. The highest R2 values
in the dataset were observed for seed width (10.8%) which was associ-
ated with 30 loci in 16 chromosomes. Forty-five QTL were detected for
seed length in 16 chromosomes with R2 values of 2.3–4.9%. Eleven and
17 QTL were located in 9 and 13 chromosomes for traits spike length
and number of spikelets, respectively. For grain yield, 12 small effect
QTL ranging in R2 values from 2.5–3.8% were detected in eight chro-
mosomes. Most QTL (15) were found in Chromosome 13 and the
fewest (2) were found in Chromosome 12. The number of QTL de-
tected was strongly correlated with number of SNPs per chromosome
(r = 0.54) but was not correlated with chromosome lengths (r = -0.07).

Nineteen QTL were shared among the traits and are summarized in
Table 2. Twelve QTL were common between TKW and seed length; two
between spikeweight and yield, andTKWandyield; andone eachbetween
TKWand seed width, TKWand spike length, and number of spikelets per
spike and yield. Forty QTL were detected in at least two of the three
environments. Of these, five were detected in all three environments: four
for seed length and one for TKW. Of the QTL observed in only two out of
three environments, 17 were for TKW, 15 for seed length, two for seed
width, and one each for grain yield, number of spikelets, and spike length.

In this study, favorable alleles are defined as those that are significantly
associated with the QTL and have positive allelic effect estimates. Of the
1,078 significant alleles (154 loci · 7 traits), 55% had major alleles as
favorable and 45% had minor alleles as favorable (Table S4). Only six of
the 154 significant loci had allmajor alleles as favorable for all seven traits,
and only five loci had only minor alleles that were favorable for all traits.
Between the two allele groups, i.e., group of favorable major alleles vs.
group of favorable minor alleles, no significant differences were observed
in allelic effect estimates or R2 values (t-test p-value . 0.1). The highest
proportion of favorable alleles at QTL for each trait was observed for
TKW and seed length (27% each) whereas spike weight had the least
(0.3%), likely a function of number of QTL detected for these traits.

Genomic prediction using significant markers
Using significant SNP markers from GWAS as fixed effects in genomic
selection models improved the predictive ability of all traits except seed

width (Figure 6). Relative to the predictive abilities obtained when no
SNPs were used as fixed effects, increases of 2–14%were observedwhen
using significant SNPs as fixed effects. Of the four scenarios that were
implemented, no single scenario was the best overall for all traits. Pro-
viding SNPs as fixed effects made the prediction models performworse
in a few cases, and appeared to be dependent on the trait as well as the
no. of SNPs used as fixed effects. The most interesting as well as con-
trasting observations were for no. of spikelets: using SNPs only signif-
icant for the trait increased predictive ability by 14% (the best increase
%) whereas using SNPs significant for all traits resulted in 10.2% re-
duction in predictive ability, the highest reduction in predictive ability.

DISCUSSION
Annual crops such as wheat, barley, maize, and sorghum have benefit-
ted from long selection histories with domestication commencing

Figure 2 Linkage disequilibrium (r2) plotted against the genetic distance (cM) in UMN_C3 population. Blue line is fitted to display the distribution.

n Table 1 Distribution of phenotypic values from StP17, StP18,
and Crk18 in the UMN_C3 IWG breeding population

Trait Environment range mean 6 SD

Seed Length (mm) StP17 4.5 - 7.8 6.2 6 0.5
StP18 4.7 - 7.1 5.8 6 0.4
Crk18 4.8 - 7.5 6.0 6 0.4

Seed Width (mm) StP17 1.0 - 1.9 1.6 6 0.1
StP18 1.4 - 2.2 1.7 6 0.1
Crk18 1.4 - 2.0 1.7 6 0.1

TKW (g) StP17 1.4 - 14.7 9.3 6 1.5
StP18 2.4 - 13.0 7.6 6 1.3
Crk18 3.7 - 10.9 6.8 6 1.1

Yield (g) StP17 0.1 - 70.5 23.1 6 14.6
StP18 1.7 - 148.5 57.7 6 23.9
Crk18 0.6 - 96.0 24.4 6 14.6

Spike Weight (g) StP17 0.3 - 2.6 1.5 6 0.4
StP18 0.0 - 1.9 1.0 6 0.2
Crk18 0.3 - 1.1 0.7 6 0.1

Spike Length (cm) StP17 12.6 - 44.0 29.9 6 4.1
StP18 15.2 - 36.4 24.0 6 2.9
Crk18 14.6 - 31.7 23.8 6 2.6

No. of Spikelets StP17 8.0 - 28.0 21.9 6 2.7
StP18 12.0 - 89.3 21.1 6 5.3
Crk18 12.7 - 89.7 20.7 6 4.9
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approximately 10,000 years ago (Dillon et al. 2007; Meyer et al. 2012).
Because of the impact these crops have made for several thousand years
on human lives, they are widely cultivated and are ingrained into many
cultures and countries. On the other hand, novel crops such as IWG
with very short domestication histories have many traits that need to be
improved simultaneously in order to establish themselves as successful
crops. Improving domestication-related traits and several other agro-
nomic traits by uncovering genomic loci controlling the traits and
accumulating favorable alleles in a breeding germplasm is necessary
to expedite the domestication timeline of these new crops.

The University of Minnesota started breeding and improving IWG
as a grain crop in August 2011. We have recently completed the third
cycle of selection (UMN_C3) and initiated the fourth cycle in August
2018. TheUMN_C3population discussed in this studywas phenotyped
at twoMN locations: St Paul and Crookston over two years, 2017-2018.
Multiple trait pairs exhibited strong correlations within and across the
environments, especially seed length (the correlation coefficient ‘r’
ranged 0.56-0.79), spike length (0.39-0.57) and grain yield (0.33-
0.44). We also observed weak to moderately strong and significant
negative correlation between trait pairs, yet these negative associations

Figure 3 Boxplots of phenotypic data collected on UMN_C3 in St Paul in 2017 and 2018, and in Crookston, MN in 2018. For each trait, its broad
sense heritability (H) is displayed on top right of each plot.

Figure 4 Heat-map of coefficient of correlations
among the traits collected for UMN_C3 in StP17,
StP18, and Crk18. Lower triangle contains the r values
and the symbols �, ��, and ��� in the upper triangle de-
note significance at p values of 0.05, 0.01, and 0.001,
respectively. SL: seed length; SW: seed width; Y: grain
yield; TKW: thousand kernel weight; SpL: spike length;
NS: no. of spikelets per spike; SpW: spike weight.

2434 | P. Bajgain, X. Zhang, and J. A. Anderson



were mostly among traits in different environments, and thus may not
havemeaningful implications. Of the few within-environment negative
correlations, the most notable ones were no. of spikelets with TKW and
no. of spikelets with seed length in both locations for the year 2018; for
St Paul 2017, these correlations were barely positive. Negative correla-
tion between no. of spikelets and TKW are not uncommon in wheat
(Deng et al. 2017; Philipp et al. 2018), but the negative relationship
between no. of spikelets and seed length is concerning because we desire
high values for both traits.

Population structure can increase discovery rates of false SNP-trait
associations if unaccounted for (Lander and Schork 1994; Yu et al.
2005). We therefore investigated the level of population structure pre-
sent in UMN_C3 population prior to running GWAS analysis. In their
study, Zhang et al. (2017) reported high probabilities for K = 2 and 3 in
the UMN_C1 population. Our analysis also determined K = 2 as the
most probable solution followed by K = 6 but K = 3 was non-existent.
This could be due to UMN_C3 1) being genetically different from
UMN_C1, and 2) not adhering to assumptions made by the pro-
gram STRUCTURE. STRUCTURE assumes that all K groups are

equidistantly located and tends to lose efficiency when grouping indi-
viduals into smaller clusters of related populations (Kalinowski 2011).
As the first three principal component values explained only 5.4% of
the total genetic variation (, 14% from the first 10 axes), a low level of
differentiation among the UMN_C3 genets can be expected. This is not
surprising since the origin of UMN IWG breeding germplasm can be
traced back to just 66 half-sib families (Zhang et al. 2016). A second
program (NetStruct) that implements network-based clustering was
used to group the UMN_C3 genets also suggested K = 2. Because of
these results, the Qmatrix obtained from STRUCTUREwith K = 2 was
used as a covariate in GWAS despite the low level of population
structure.

Decay of LD in UMN_C3 was at 0.7 Mbp or 4.38 cMwhen r2 = 0.2.
The LD decay in UMN_C1 was estimated to be 5 cM when r2 = 0.2
(Zhang et al. 2016) and 2 cM when r2 = 0.16 (Zhang et al. 2017).
Compared to both studies by Zhang et al. our population has more
SNPmarkers and used the IWG v2.1 reference genome to call SNPs. As
ourmarker set offers a higher quality and better genomic resolution, we
are confident that our estimation of LD is realistic. Despite the

Figure 5 QTL associated with seven agronomic traits in UMN_C3 IWG breeding population. Blue colored loci indicate QTL detected in this
study. Green colored loci indicate QTL detected by Zhang et al. (2017) and this study that are located within 5 Mbp of each other. SL: seed length;
SA: seed area; SWt: seed weight; SW: seed width; Y: grain yield; TKW: thousand kernel weight; SpL: spike length; NS: no. of spikelets per spike;
SpW: spike weight.
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differences in LD values, all studies confirm a rapid decline in LD
within a short physical distance. This is typical of outcrossing plant
species as they tend to have high rates of effective recombination
(Wright et al. 2008). Decay of LD within short distances is considered
to offer more precise mapping of causative genetic variants (Gaut and
Long 2003). Accurate QTL mapping is helpful in candidate gene dis-
covery and in identifying tightly linked diagnostic markers that can be
used in marker-assisted selection.

GWAS of seven yield component traits in the UMN_C3 IWG
breeding population led to detection of 154 genetic loci associated with
the traits. Nineteen QTL were shared among multiple traits. On one
hand, thediscovery of commonQTL isnot only an indicationof a robust
QTLmapping approach, but it also indicates that multiple traits can be
improved simultaneously. On the other hand, obtaining same QTL for
multiple traits or more shared QTL among several traits is also difficult
due to several limitations such as genetic differentiation in a population,
environmental effects, and residual error. In our analysis, nearly all
significant loci explained small proportions of the observed phenotypic
distribution, except for seed weight, where few loci had R2 values. 5%
with the highest being 11%. IWG has small seeds relative to wheat: the
median seed width and seed weight of IWG are 53% and 74% less
(Zhang et al. 2017). Hence, detection of loci with large effects is vital,
especially for seed size and weight, to increase trait values and attain
larger seeds and higher yield of IWG. Overall, the most significant loci
had small R2 values. This suggests that selection of genotypes based on
per se phenotypic performance to obtain superior progeny might be an
arduous task. This is because several rounds of phenotypic selection in
multiple environments are needed to increase the frequencies of favor-
able alleles and fix them in the breeding population. In fact, we studied
how the frequencies of favorable alleles of the 154 significant loci de-
tected in UMN_C3 had changed compared to UMN_C1. We found
99 common loci (out of 154) between UMN_C1 and UMN_C3 of
which 70 (71%) had higher allele frequencies in UMN_C3 relative to
that in UMN_C1 (Table S5). However, this increase in favorable allele
frequencies was not significant (t-test P value of 0.06 at a = 0.05).
Nonetheless, nearly three-fourths of the significant loci detected in
UMN_C3 population have higher favorable allele frequencies com-
pared to UMN_C1, suggestive of strong selective pressure directing
the advancement of several agronomic traits. We expect this trend to
continue in our future IWG breeding populations as we emphasize the
improvement of yield and yield-component traits.

In an attempt to compare QTL detected by Zhang et al. (2017) and
this study, sequences of significant SNP markers from their study were
aligned with sequences of significant SNPmarkers from our study. This
produced zero matches; hence an alternative approach was used
wherein sequences from their study were BLAST-searched against
the IWG v2.1 genome to obtain SNP positions. Position of SNPs were
extracted and investigated if they fell within 5 Mbp up or downstream
of SNP markers significant in this study. This led to detection of
24 QTL in 13 chromosomes from the study of Zhang et al. (2017)
within 5 Mbp of 19 QTL in our study (Figure 5, Table S6). Eight of
24 QTL were less than 1.5 Mbp away from our significant loci, and
could be the same QTL. Additionally, 74% of similar QTL between the
two studies were associated with yield component traits such as seed
length, width, area, and TKW. Other similar QTL were mapped for
different traits, e.g., four QTL found by Zhang et al. (2017) for seed
width were mapped for no. of spikelets in our study, and one QTL each
for seed length and TKW detected by Zhang et al. (2017) were associ-
ated with spike length in this study.

Complex traits such as yield are usually controlled by many genetic
factors with small effects (Quarrie et al. 2006; Bernardo 2008). Thisn
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reduces the efficacy of marker-assisted selection because individual
QTL effects are small, poorly estimated, and may change based on
genetic background and environment. Likewise, increasing genetic gain
for a complex trait over time from phenotypic selection only can be
challenging because of the time and effort required to accumulate
multiple small effect loci. This problem is compounded in the case of
perennial species like IWG where phenotyping methods and manage-
ment practices are labor and resource intensive due to a long life cycle
of the plant. In this scenario, genomic selection (GS) can be a sound
supplementary selection approach to improve multiple traits because it
analyzes the effect of genome-wide loci on many traits instead of fo-
cusing on a few genes controlling a specific trait (Jannink et al. 2010).
GS is able to report the overall genetic variance by evaluating the effects
of all genome-widemarkers on a given population and thus, themarker
effects can be combined to predict the breeding performance of an
individual (Meuwissen et al. 2001). Its applicability in obtaining a
genome-wide summary of loci involved with polygenic traits instead
of focusing on a few traits controlled by few large-effect markers has
practical implications for improving IWG. For IWG and other novel
crops that are in the early stages of domestication from their wild states,
it is also important to improve several agronomic traits together. These
traits include domestication-related traits such as non-shatter, free
threshing, seed fertility as well as important agronomic traits such as
yield, lodging, height, disease resistance, and seed quality traits. Use of
GS can significantly improve these traits by relying on only a fraction of
resources that would otherwise be needed with phenotypic selection
alone (Zhang et al. 2016).

In our IWG breeding program, phenotypic data from year 1 are
used to train GS models. The best model is then used to predict the
performance of several thousand breeding genets from which the
best ones are selected and intercrossed to obtain progeny for the next
breeding cycle. Using SNPmarkers significantly associated with our
traits increased trait predictions made in GS models by up to 14%.
This was expected as it is known in both theory (Bernardo 2014) and
from empirical data in different crop species that prediction accu-
racy increases when major genes and QTL are fitted as fixed effects
in GS models (Spindel et al. 2015; Sarinelli et al. 2019). Therefore,

routine application of GWAS and using significant loci as fixed
effects will remain an indispensable strategy for improvement of
UMN IWG germplasm. As a follow-up to this study, we plan to use
SNP markers linked with traits in previous IWG QTL mapping
studies to determine if they further improve GS predictions. We
are also investigating the use of haplotype blocks, after the incor-
poration of dominance and epistatic effects in GS models, to in-
crease predictive abilities. If proven successful, the new models will
be implemented regularly in our GS-based breeding to improve
IWG.

CONCLUSIONS
In this study, we presented and discussed the results from GWAS of
seven yield component traits in intermediate wheatgrass, a new
perennial grain crop undergoing domestication. Observed strong
correlations among yield component traits imply that improvement
of correlated traits can be expectedwhen selection pressure is applied
on other traits. The UMN IWG breeding program implements
genomic selection for trait improvement, which has increased the
frequencies of most favorable alleles associated with agronomic
traits, as observed in themost recent selection cycle. Using significant
markers detected by GWAS in genomic selection models improved
trait predictive abilities. Considering that the perenniality of IWG
makes phenotyping more challenging and resource intensive, dis-
covery of key QTL enables breeders and geneticists to make steady
improvement of important agronomic traits and establish IWG as a
successful crop with a positive impact on agricultural sustainability
and food security. We expect these results to be applicable and
contributive in domestication and improvement efforts of other
novel annual and perennial plant species.
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Figure 6 Effect on predictive abilities of traits when using significant SNPs as fixed effects in genomic selection models. Best 10 SNPs for each
trait are the ones with highest amount of percentage of phenotypic variance explained (R2). Error bars represent the standard deviation of
predictive ability values obtained from each model.
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