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Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms
to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty
acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria,
while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and
hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their
contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may
also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence
shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune
responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular
mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity
in cell stress and discuss its implication for immune activation and suppression.
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1. Introduction

The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid
cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to
generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates,
fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs exclusively in the
matrix of the mitochondria, which are surrounded by two lipid bilayers and impermeable
to polar solutes. The mitochondrial membrane separates energy-producing reactions from
energy-consuming ones and retains the TCA cycle intermediates, which are small, highly
polar, and electrophilic organic carboxylic acids, inside mitochondria. The intermediates of
the TCA cycle take several roles as metabolites in metabolisms, such as insulin secretion and
fatty acid synthesis (FAS) within mitochondria. In addition, they can be transported out
of mitochondria through various shuttle mechanisms to participate in various biological
processes. Of note, increasing evidence suggests that the TCA cycle intermediates play
crucial roles in regulating cellular immunity. In cell stress conditions, the mitochondrial
membrane may be disrupted and release the TCA cycle intermediates into the cytosol,
thereby impacting the cellular immunity (Figure 1).

Mitochondria are multifunctional organelles. First, they are known as the power-
houses of the cell. Mitochondria are the organelles staging the most efficient metabolic
pathways, including the TCA cycle and oxidative phosphorylation supplying the entire
cell with energy in form of adenosine triphosphate (ATP) [1]. In addition, mitochondria
are critical in many other processes, such as detoxification, iron-sulfur cluster biogenesis,
intracellular calcium homeostasis. Importantly, mitochondria are the central regulators of
intracellular innate immune responses to pathogens [2–7]. In line with this, they provide
stress mediators initiating cell death and autophagy, present adaptor molecules required
for the transduction of cellular innate immune signals [2,3], and release mitochondrial
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components (e.g., mitochondrial DNA, mitochondrial RNA, cytochrome c, reactive oxy-
gen species (ROS)) into the cytosol as danger signals [4] (Figure 1). Mitochondrial DNA
and RNA may activate intracellular sensors sensing pathogenic DNA and RNA (e.g., the
retinoic-acid-inducible gene (RIG)-I-like proteins, protein kinase R (PKR), the stimulator
of interferon genes (STING), mitochondrial antiviral signaling protein (MAVS), cyclic
guanine monophosphate (GMP)—adenosine monophosphate (AMP) synthase [cGAS]
and interferon-γ-inducible protein 16 (IFI16)) to detect intracellular pathogens [2,3,8–13].
Studies have found that mitochondrial DNA leaking from dysfunctioning or disrupted
mitochondria directly activates STING providing a direct potential link between mitochon-
drial disease and inflammatory response [3,14,15]. A more recent study showed that, under
pathologic conditions, mitochondrial RNA is released from dysfunctioning mitochondria,
in turn, triggering immune activation [13]. Under conditions of cell stress, mitochondria
release cytochrome c and ROS inducing apoptosis and cell and tissue destruction [4]. In
addition, TCA cycle intermediates may also leak from mitochondria upon cell stress and
regulate cellular immune and stress responses (Figure 1).
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In the last ten years, it has been increasingly recognized that cellular metabolism
controls immune cell functions, and it became evident that some metabolic pathways
activate, and others suppress immune responses. Innovative systems biology tools have
revolutionized metabolic research and are currently providing us with an overwhelming
amount of data and new insights, which need to be put together to form a coherent
whole. In this review, we present findings from studies focusing on the role of TCA cycle
intermediates in cellular immunity and provide a comprehensive systematic overview of
the immunologic features of each TCA cycle intermediate (Figure 2).
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2. Acetyl-CoA

Acetyl-CoA is a molecule produced in the breakdown of carbohydrates, proteins,
and fatty acids. It feeds into the TCA cycle by combining with oxaloacetate to citrate.
Acetyl-CoA is, strictly speaking, not an intermediate of the TCA cycle, Nonetheless, the
intramitochondrial levels of acetyl-CoA are essential for sustaining TCA cycle activity.
Furthermore, acetyl-CoA is a precursor for fatty acids, steroids, and certain amino acids,
such as glutamate, proline, and arginine [16] and has the important function of providing
an acetyl group for histone acetylation in the nucleus. Elevated histone acetylation was
found to upregulate the expression of glycolytic enzymes, which are related to immune
activation [17]. Of note, acetyl-CoA is generated in multiple compartments, including
cytosol. Therefore, it is difficult to estimate to what extent the mitochondrial portion of
acetyl-CoA contributes to the expression of glycolytic enzymes. Particularly, the role of
mitochondrial acetyl-CoA leaking from mitochondria during cellular stress in cellular
immunity has remained elusive [18]. Interestingly, the cytosolic and nucleic levels of
acetyl-CoA can increase, when citrate is transported from mitochondria into the cytosol
by the dicarboxylate antiporter solute carrier family 25 (SLC25A1; mitochondrial citrate
carrier, CIC) and converted into oxaloacetate and acetyl-CoA by ATP citrate lyase (ACLY).
ACLY-derived cytosolic and nucleic acetyl-CoA, in turn, may drive histone acetylation
affecting cellular functions [19–21]. The acetylation of lysine residues on histone H3 is
associated with the expression of interleukin (IL)-6 in virus-infected [22] and paraquat (PQ)-
treated [23] macrophages, the secretion of matrix metalloproteinase (MMP)-1 and MMP-3
in Mycobacterium tuberculosis–infected macrophages [24] as well as the elevated promoter
activity for IL-12p40 [25]. Nevertheless, it is still unclear how histone acetylation regulates
specific genes during macrophage activation. Therefore, this research area deserves further
investigations in the future [26]. Acetylation can also regulate the function of proteins
outside of histone modifications [27]. Specifically, acetylation of the cytoskeletal protein
α-tubulin, by the tubulin acetyltransferase MEC-17, was shown to regulate IL-10 induction
in lipopolysaccharide (LPS)-activated pro-inflammatory macrophages [27]. As such, acety-
lation can serve as an important signal to govern both pro- and anti-inflammatory cytokine
production in macrophages.
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3. TCA Cycle Intermediates
3.1. Citrate

Citrate is formed in the TCA cycle by the condensation of oxaloacetate and acetyl-CoA,
which is catalyzed by citrate synthase. Of note, the cellular levels of citrate are increased
in pro-inflammatory macrophages [28–30]. Mitochondrial citrate can inhibit pyruvate
dehydrogenase (PDH) and succinate dehydrogenase (SDH) at high concentrations [30].
PDH converts pyruvate to acetyl-CoA and CO2, whereas SDH oxidizes succinate to fu-
marate in the TCA cycle. Thereby, PDH and SDH catalyze two crucial steps of the TCA
cycle, of which the first is the initiation of the TCA cycle and the second the generation of
FADH2. Overall, citrate was found to exert inhibitory effects on the TCA cycle promoting
ATP-consuming pathways [30–32].

In pro-inflammatory macrophages, mitochondrial citrate may be transported to the
cytosol by SLC25A1 and converted to acetyl-CoA by ACLY [33,34]. SLC25A1 is up-
regulated in pro-inflammatory macrophages in a nuclear factor κ-light-chain-enhancer
of activated B cells (NF-κB) or signal transducer and transcription (STAT)-dependent
manner [29,30,33–35]. Conversely, the inhibition of SLC25A1 leads to the reduction of in-
flammatory mediators [34]. In line with this, the export and breakdown of mitochondrial cit-
rate have been linked to the production of several important pro-inflammatory mediators in
macrophages, such as nitric oxide (NO), ROS, and prostaglandin E2 (PGE2) [29,30,33,35,36].
The decrease in PGE2 production may be due to a decreased availability of citrate as
adding exogenous acetate rescues the effect of SLC25A1 inhibition on PGE2 production,
suggesting that the cytosolic citrate is an important signal molecule in inflammation [30].
Studies have demonstrated that the upregulation of the ACLY gene precedes SLC25A1
activation in both resting and pro-inflammatory macrophages, although SLC25A1 might
be essential for providing the substrate for ACLY activity [33,35]. It is also interesting to
note that SLC25A1 mutations that inactivate the citrate export are associated with severe
mitochondrial dysfunction [29,37].

3.2. cis-Aconitate

cis-Aconitate is a TCA cycle intermediate, which is formed during the reversible
transformation of citrate to isocitrate by the action of the enzyme aconitase (also known
as aconitate hydratase). In this process, cis-aconitate normally does not dissociate from
the active site of aconitase. Thus, not much is known about the cellular functions of
cis-aconitate. Interestingly, it was recently reported that mitochondrial aconitase is asso-
ciated with neurodegenerative disorders [38]. Congruently, an earlier study showed that
lymphocytic mitochondrial aconitase activity is reduced in Alzheimer’s disease and mild
cognitive impairment, implicating its significance in cellular homeostasis and immune cell
functions [39]. In recent years, cis-aconitate has attracted a lot of attention because it was
identified as the precursor of itaconate, which is formed from cis-aconitate through the
decarboxylation catalyzed by the immune-responsive gene 1 (IRG1). Itaconate is upreg-
ulated upon immune activation, e.g., in response to LPS activation in macrophages, and
has strong immunosuppressive properties. As the native itaconate is cell-impermeable,
researchers often used structurally modified itaconate derivates with increased intracellular
penetrance (e.g., dimethyl itaconate (DMI) and 4-octylitaconate) to study the intracellu-
lar functions of itaconate. So far, studies have shown that: (1) native and derivatized
itaconate inhibits SDH, a component of both the TCA cycle and the Complex II of the
electron transport chain (ETC) [40–42], consequently impairing immune activation (e.g.,
the hypoxia-induced factor (HIF)-1α-IL-1β axis) [41] and viral replication [42,43]; (2) acti-
vates the anti-inflammatory nuclear factor erythroid 2-related factor 2 (NRF2; also known
as NFE2L2) pathway via alkylation of the Kelch-like ECH-associated protein 1 (KEAP1)
protein [44,45]; and (3) regulates the translation of IκBζ and the subsequent activation of
the cyclic AMP-dependent transcription factor (ATF3) albeit without affecting the primary
transcriptional responses [46]. Collectively, previous studies have highlighted the immuno-
suppressive properties of itaconate and suggested that itaconate is an integral part of a
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negative-feedback loop in toll-like receptor (TLR)-mediated immune cell activation [44].
Of note, the cellular response to itaconate may differ from cell type to cell type and may
also depend on the type of stimulation, as studies showed that endogenous itaconate
does not induce NRF2 activation in neurons upon viral infection [42]. So far, most of the
analysis on the immunosuppressive effect of itaconate has been performed in LPS-activated
macrophages, and we do not know whether itaconate has the same impact on immune
signaling pathways in other cell types and/or with different stimuli. Furthermore, it is to
note that the most studied itaconate derivative is DMI, which is more electrophilic than
the native form of itaconate. It is still unclear whether the native itaconate acts in the same
way as its more electrophilic derivatives and deserves further investigations in the future.

3.3. Isocitrate

As mentioned above, isocitrate is formed in the TCA cycle by the isomerization
of citrate catalyzed by aconitase. Studies have demonstrated an increase in citrate and a
decrease in isocitrate in LPS-activated pro-inflammatory macrophages [28,33]. Furthermore,
pro-inflammatory macrophages downregulate isocitrate dehydrogenase (IDH), resulting
in an increased isocitrate:α-ketoglutarate ratio. Pro-inflammatory dendritic cells (DCs)
and macrophages show increased glycolytic flux and a break in the TCA cycle, where
pyruvate derived from glucose feeds into the TCA cycle but cannot continue beyond
citrate/isocitrate. [30,47,48]. Generally, the cytosolic isoenzyme IDH1 is suppressed in
cells activated by pro-inflammatory stimuli [30,49]. In glucose-deprived conditions, IDH1
mRNA expression is increased in pro-inflammatory macrophages [30,50]. This may explain
why the production of NO and ROS is decreased in glucose-deprived cells. So far, the
immunological roles of cytosolic and mitochondrial iso-citrate remain elusive and deserve
future investigations.

3.4. α-Ketoglutarate

α-Ketoglutarate is formed in the TCA cycle by oxidative decarboxylation of iso-citrate cat-
alyzed by IDH. α-Ketoglutarate is involved in various metabolic pathways [51–55]. In humans,
IDH exists in three isoforms: IDH1, -2, and -3. IDH1 acts in the cytoplasm and, thus, outside
the context of TCA, while IDH2 and -3, as part of the TCA cycle, are found within the mito-
chondrial matrix [56]. α-Ketoglutarate can also be generated from glutamine and glutamate
by deamination to feed into the TCA cycle [57,58], whereas α-ketoglutarate can conversely
serve as a precursor of glutamine, which is a nutritionally semi-essential amino acid [59].
Previous studies have identified immunosuppressive roles for α-ketoglutarate. Similarly,
L-2-hydroxyglutarate, a derivative of α-ketoglutarate, was also shown to be immunosup-
pressive [60,61]. In this context, it is worth noting that mutations in IDH1 are associated
with chronic inflammation [62,63]. IL-4-induced anti-inflammatory macrophages have
been shown to accumulate the metabolite α-ketoglutarate [64]. It was also found that
α-ketoglutarate suppresses the activation of pro-inflammatory macrophages (e.g., IL-1β
expression) and supports endotoxin tolerance after activation [26,65]. α-Ketoglutarate regu-
lates the pro-inflammatory NF-κB signaling by stimulating prolyl hydroxylase (PHD; a fam-
ily of α-ketoglutarate-dependent dioxygenases (α-KGDD)). PHD1 inactivates IKK-β kinase
via hydroxylation of Pro191, which, in turn, phosphorylates IκB-α, activating NF-κB [59,66].
α-Ketoglutarate inhibits stabilization of HIF-1α, a transcription factor inducing expression of
immune-related genes (e.g., pro-inflammatory cytokines [67], glycolytic enzymes, and glucose
transporters [68–71]) by donating an electron to HIF-specific PHD for prolyl hydroxylation
leading to the degradation of HIF-1α [28,55,64,68,72–76]. In line with this, reduced levels of α-
ketoglutarate were found to abolish PHD activity [16,55,75,77,78]. Besides,α-ketoglutarate is an
important co-factor for the α-KGDD family of Jumonji-C-domain-containing histone demethy-
lases (JMJDs) and the ten-eleven translocation (TET) proteins, which are respectively involved
in histone and DNA demethylation [26,59,65,79–85]. Of note, histone demethylation is also
associated with HIF-1α degradation [84,86]. α-Ketoglutarate facilitates macrophage polar-
ization also via induction of fatty acid oxidation [74,87]. In addition, α-ketoglutarate pro-
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duced by glutaminolysis regulates polarization of macrophages toward anti-inflammatory
phenotypes, e. g., via JMJD3-mediated epigenetic changes [26,59,65,84]. Furthermore,
glutamine anaplerosis (replenishing of TCA cycle intermediates from glutamate) repre-
sents an important metabolic module governing the polarization of macrophages towards
an anti-inflammatory phenotype, e.g., in response to IL-4 [26,47,85,88]. Like most of the
TCA cycle intermediates, α-ketoglutarate is transported from the mitochondrial matrix
to the cytoplasm and vice versa. It crosses the outer mitochondrial membrane through
the voltage-dependent anion channel (VDAC), and the inner mitochondrial membrane
through the α-ketoglutarate/malate antiporter [59,89]. Obviously, α-ketoglutarate leak-
ing from dysfunctioning mitochondria may exert similar anti-inflammatory functions as
mitochondrial α-ketoglutarate transported into the cytosol.

3.5. Succinyl-CoA

Succinyl-CoA is formed by the decarboxylation of α-ketoglutarate catalyzed by α-
ketoglutarate dehydrogenase (α-KGDH), a rate-limiting metabolic enzyme in the flux of the
TCA cycle [78,90]. α-KGDH is responsive and sensitive to the levels of ROS impairing its
function [78,91]. Of note, the increased α-KGDH activity in LPS-activated macrophages has
been shown to limit the production of anti-inflammatory cytokine IL-10 [65,78]. An increase
of cytosolic calcium leading to rapid mitochondrial acidification promotes α-KGDH activity,
boosting NADH production and oxidative metabolism [78,92,93]. Succinyl-CoA accumula-
tion can result in lysine succinylation of cellular proteins [28,94,95]. This post-translational
modification (PTM) induces a 100-Da change in mass and masks the positive charge of
the lysine side chain, likely resulting in a significant conformational change in the target
protein [96]. While succinylation is largely considered to occur spontaneously, desuccinyla-
tion is at least partly enzymatic, e.g., via mitochondrial sirtuin 5 (SIRT5) [97]. LPS induces
succinylation, which impacts macrophage function. LPS-induced hyper-succinylation of
lysine 311 on pyruvate kinase M2 (PKM2), a key glycolytic enzyme interacting with HIF-1α
and regulating aerobic glycolysis in macrophages, inhibits its pyruvate kinase activity by
promoting its tetramer-to-dimer transition and induces IL-1β secretion [64,96,98,99]. LPS
decreases the expression of the desuccinylase SIRT5 [28,84]. SIRT5 desucinylates various
metabolic enzymes, including carbamoyl phosphate synthase 1 [84,100], SDH, PDH [84,96],
acyl-CoA oxidase 1 [84,101], 3-hydroxy-3-methylglutaryl-CoA synthase 2 [84,102]. SIRT5
also desuccinylates PKM2 to prevent its entry into the nucleus and the formation of a
HIF-1α/PKM2 complex [98]. Of note, the importance of this mechanism was highlighted
by elevated levels of IL-1β in SIRT5-deficient mice examined in a colitis model [84,98].
Dysregulated succinate metabolism can also result in the accumulation of succinyl-CoA
and lysine succinylation, a recently identified PTM [26,28,96]. Succinylation of certain
proteins is found to drive immunosuppression in pro-inflammatory macrophages. Thus,
the inflammatory effects of succinylation may be context-dependent and inducing various
immunologic responses [28,64,103].

3.6. Succinate

Succinate is formed in the TCA cycle via the hydrolytic release of CoA catalyzed
by succinyl-CoA synthetase. Alternatively, succinate is generated through the gamma-
aminobutyric acid (GABA) shunt (a bypass of the TCA cycle, in which glutamine is
used for the synthesis of glutamate, GABA, succinic semialdehyde, and eventually suc-
cinate) [28,68]. Succinate can be transported from the mitochondria to the cytosol by the
dicarboxylic acid transporter. Succinate has been identified as an important metabolite
in both host and microbial processes. Succinate accumulates in certain pathophysio-
logical situations, particularly in areas of inflammation and metabolic stress [104,105].
Several studies have indicated its role of succinate in various cellular processes, such as
epigenetic regulation, tumorigenesis, signal transduction, inflammation, and paracrine
modulation [34,94,106,107] and have identified succinate as a metabolic signal governing
local stress, tissue damage, and immunologic danger [28,108–111].
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Succinate has emerged as a key player in macrophage activation [26,28,109,112]. Suc-
cinate is a highly accumulated metabolite in macrophages in response to LPS stimu-
lation, largely depending on glutamine anaplerosis and immunometabolic reprogram-
ming [26,28,105,112]. LPS-treated macrophages undergo a metabolic switch from oxidative
phosphorylation to glycolysis, lowering the activity of the TCA cycle [113]. Of note, acti-
vated immune cells display the so-called immunologic “Warburg effect”, a term originating
from cancer biology. This term describes the phenomenon that immune activation is linked
to glycolysis, as cancer cells favor glycolytic metabolism [114,115], implying that immune
activation requires and promotes glycolysis in a bidirectional relationship. The metabolic
switch is important for the survival of immune cells at sites of inflammation, where oxygen
levels are low. In this process, HIF-1α enables the cells to adapt to a low oxygen environ-
ment as a key oxygen sensor by regulating cellular responses [105,116,117]. Succinate may
be accumulated following LPS treatment through SDH inhibition and post-translationally
modify cellular proteins, e.g., glycolytic enzymes, including malate dehydrogenase and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [28,88,117,118]. Notably, a high
succinate/α-ketoglutarate ratio was linked to the pro-inflammatory phenotype, whereas a
low ratio was associated with macrophage polarization towards an anti-inflammatory phe-
notype [65,84]. As PHD dehydroxylation converts oxygen and α-ketoglutarate to succinate
and CO2, high levels of succinate can slow PHDs through product inhibition [105,119]. Im-
portantly, the balance between succinate and α-ketoglutarate levels intracellularly regulate
members of α-KGDDs involved in epigenome remodeling and innate immune mem-
ory [26,59,65,120]. Like PHDs, α-KGDDs undergo competitive inhibition by succinate, and
so the ratio of α-ketoglutarate to succinate can often be a key determinant of their enzy-
matic activity [26,59]. LPS-induced succinate can enhance the pro-inflammatory activity
in macrophages by promoting the expression of the key pro-inflammatory cytokine IL-
1β [28,113,117,121–123]. In effect, succinate behaves as a danger signal or alarmin to sustain
the production of IL-1β by promoting the binding of HIF-1α to a hypoxia-response element
(HRE) in its promoter [26,28,84,110,113,117,123–125]. HIF-1α down-regulates oxidative
phosphorylation by inducing PDH kinase 1 (PDK1) and 3 (PDK3), both of which in turn
also inactivate PHD, allowing for further stabilization of HIF-1α [88,126–129]. It has been
demonstrated that pharmacologic inhibition of SDH or RNA interference of subunit B of
SDH, induces HIF-1α stabilization in a ROS-dependent manner [34,130]. More recently, suc-
cinate oxidation in LPS-activated macrophages was shown to inhibit PHD activity indirectly
via mitochondrial ROS resulting in HIF-1α stabilization and IL-1β production [26,112].
This effect is blocked by α-ketoglutarate, the substrate for PHD that generates succinate
as a by-product in HIF-1α hydroxylation [28,131]. Succinate also undergoes oxidation by
SDH to drive mitochondrial ROS generation from the Complex I [26,28,112]. Consequently,
mitochondrial ROS production increases, subsequently stabilizing HIF-1α, the driver of
additional pro-inflammatory responses in macrophages [28,64,112,132].

In DCs, succinate triggers intracellular calcium mobilization, induces migratory re-
sponses, and acts in synergy with TLR ligands to induce the production of pro-inflammatory
cytokines [84,111]. Indeed, IL-1β expression is enhanced in murine bone marrow-derived
DCs treated with succinate and LPS simultaneously [111,117]. Succinate was found to act
in synergy with the TLR3 ligand poly(I:C) and the TLR7 ligand imiquimod, increasing
TNF-α production [34,133]. Succinate also increases the capacity of DCs to present antigens
to T cells and induce adaptive immune responses, which may further exacerbate inflamma-
tion [117,134]. When DCs are primed with succinate and antigen simultaneously, antigen-
specific T cell activation is elevated, as measured by increased tumor necrosis factor (TNF)-α
and interferon (IFN)-γ production from these cells [117,135]. Interestingly, HIF-1α-deficient
DCs show impaired ability to activate T cells [136], suggesting that this transcription factor
is important for T cell polarization and activation [34]. In the adaptive compartment,
HIF-1α activation favors the differentiation of T lymphocytes into pro-inflammatory Th17
cells and attenuates regulatory T (Treg) cell development [34,137]. An increase in succinate
caused by a loss of Complex III was also shown in Tregs to inhibit TET activity, which is



Life 2021, 11, 69 8 of 19

necessary to maintain immune regulatory gene expression and suppressive function [60,84].
Succinate can induce the activation of hematopoietic stem cells, and regulate their prolifera-
tion, migration, and apoptosis in vitro, along with increasing the secretion of inflammatory
cytokines, such as IL-6 and TNF-α [94,138,139]. Succinate also accumulates in hypoxia
during ischemia-reperfusion injury, where its accumulation and oxidation control ROS pro-
duction and contributed to the severity of tissue injury [84,110,140,141]. Similarly, succinate
is also associated with inflammatory diseases [64,142]. Elevated amounts of circulating
succinate occur in some physiological conditions, such as endurance exercise [109,143] and
in certain pathologies, including inflammatory bowel disease [144–153], sepsis [28,60,154],
hypertension, ischemic heart disease [109,155] type 2 diabetes mellitus [109,156,157] and
obesity [109,156,158]. Numerous studies have identified tissue-specific and systemic ef-
fects of succinate as a pro-inflammatory mediator [105,106,111,157]. During inflammation,
IL-37 restores cellular metabolism by reducing succinate, inhibiting mammalian target of
rapamycin (mTOR), and activating AMP-activated protein kinase (AMPK) [159]. The role
of succinate as a signaling molecule in inflammation and disease has been discussed in
more detail elsewhere [28,34,160].

As succinate is not membrane-penetrant, researchers generated a succinate derivative
which is cell-permeable. Using diethyl succinate, they increased the intracellular levels of
succinate [64]. However, diethyl succinate appears to be immunosuppressive similar to
DMI and dimethyl fumarate (DMF), suppressing LPS-induced pro-inflammatory cytokine
secretion, gene and marker expression (such as IL-1β, IL-6, TNF-α, NO, CD40, CD86) in
bone marrow-derived macrophages [64]. Another cell-permeable derivate of 4C organic
compound, which was used to study the intracellular function of succinate was dimethyl
malonate (DMM). DMM is an inhibitor for SDH, which increases intracellular levels of
succinate in macrophages [64,112]. Here again, DMM showed a dose-dependent inhibition
of inflammatory mediators IL-6, TNF-α, and NO. This may suggest a role for intracellular
succinate to inhibit inflammatory responses, as SDH activity is described to be altered
in pro-inflammatory macrophages, thus leading to succinate accumulation. We note
that derivatized TCA cycle intermediates generally exhibit strong immunosuppressive
features. The derivatization of TCA cycle intermediates may drastically increase the
electrophilicity of the molecule, and the native and derivative may act via different chemical
reactions [46,161,162]. Overall, studies have shown that endogenous succinate promotes
immune activation. Obviously, succinate leaking from dysfunctioning mitochondria may
exert similar pro-inflammatory functions as mitochondrial succinate transported into
the cytosol.

3.7. Fumarate

Fumarate is formed in the TCA cycle by the SDH-catalyzed dehydrogenation of suc-
cinate [104,117,161,163]. Activation of innate immune cells, such as macrophages and
monocytes, with pro-inflammatory stimuli (e.g., LPS, IFN-γ) leads to remodeling of the
TCA cycle and intracellular accumulation of fumarate [28,41,124,164–166]. LPS-activated
macrophages show a substantial increase in flux through the induction of aspartate-
arginosuccinate shunt, which fuels and maintains the TCA cycle flux [47,165]. Furthermore,
being connected to the TCA cycle at fumarate, the induced aspartate-arginosuccinate
shunt causes the accumulation of fumarate in activated macrophages [165]. Interest-
ingly, the inhibition of the aspartate-arginosuccinate shunt leads to the downregulation
of the pro-inflammatory mediators, including NO and IL-6, along with suppression of
the ‘immunologic Warburg effect’ in activated macrophages [165]. Therefore, replenishing
fumarate seems to be important for metabolic reprogramming of macrophages during
inflammation [165]. The elevated cytokine response in these cells is linked to an increase in
the amount of fumarate sufficient to drive the response by activating HIF-1α [33,167]. The
accumulation of fumarate by inhibiting fumarate hydratase (FH; also known as fumarase)
with FH inhibitor 1 (FHIN1) impairs cell death and reduces the formation of gasdermin
D, the executioner of pyroptosis [164]. The in vivo-compatible FHIN2 elevates FH levels
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in vivo, while reducing IL-1β, indicating that fumarate inhibits pyroptosis in vivo [164].
Loss of function of FH in cancers increases fumarate levels leading to elevated accumu-
lation of NRF2 [168,169]. Fumarate can attenuate autoimmune diseases, in part, through
modulation of DC maturation and antigen-presenting capacity [170–173]. In general, fu-
marate is considered anti-inflammatory. Like other TCA cycle metabolites, fumarate is a
cell-impermeable polar molecule. Therefore, researchers developed fumarate derivatives
with increased intracellular penetrance to study immunological features of fumarate. Of
note, the stable derivative of fumarate (DMF, trade name: Tecfidera®), is known to be a
strong immunosuppressive. DMF is a leading oral therapy for multiple sclerosis. DMF is
more electrophilic than fumarate and other structurally similar metabolites, such as DMI,
and itaconate [46]. Therefore, whether the native fumarate has a similar effect in vivo and
in vitro has yet to be determined [161,162]. Whereas the precise mechanism of immunosup-
pression has remained elusive, increasing evidence indicates that the critical mechanism of
DMF is related to its high electrophilicity, which allows DMF to modify proteins by reacting
with cysteines via an electrophilic (Michael-type) addition [174,175], impacting the function
of proteins. Several groups have proposed that DMF stimulates an antioxidant response by
modifying cysteine residues in the NRF2-KEAP1 complex, which is a major electrophile
response pathway in mammals [161,168,176–180]. The transcription factor NRF2 has been
shown to alleviate inflammation by inducing heme oxygenase-1 (HO-1), which poten-
tially increases IRG1 and downregulates TNF-α expression [180–184]. An NRF2 deficiency
causes an exacerbation of inflammation in a variety of murine models, such as sepsis,
pleurisy, and emphysema [185–188], as well as autoimmune phenotypes in some murine
strains [189,190]. GAPDH has been hypothesized to play a key role in the mechanism of
action of DMF [191]. DMF has been suggested to modify the active site cysteine (Cys152
in humans) and to inactivate GAPDH. Thereby, DMF may downregulate glycolysis, ulti-
mately causing immunosuppression [191]. However, a recent study suggested that this
mechanism does not have the primary role in DMF-mediated immunosuppression [164].

Nonetheless, the exact role of intracellular fumarate during inflammation is yet to
be investigated [165]. Outside mitochondria, succinate and fumarate can inhibit certain
demethylation reactions. Accumulation of succinate and fumarate leads to the inhibition of
DNA demethylases and lysine demethylases (KDMs) via product inhibition. Accordingly,
fumarate accumulation (e.g., derived from glutaminolysis) was shown to inhibit KDM5 hi-
stone demethylases, altering histone H3 at lysine 4 (H3K4) methylation at the promoters of
pro-inflammatory cytokines, such as Tnfa and Il6 [33,85,86,161,167,192–196] and regulating
the chromatin-modifying activities of histone acetyltransferases or deacetylases by alter-
ing their post-translational lysine methylation status [194]. Fumarate induces epigenetic
changes in macrophages that are associated with trained immunity [86,193]. Interestingly,
exposing monocytes to fumarate, but not succinate or malate, for 24 h recapitulated the
trained macrophage phenotype in terms of augmented pro-inflammatory cytokine pro-
duction capacity. This was accompanied by an enrichment of H3K4me3 on the promoters
of the cytokine genes, due to a direct inhibitory effect of fumarate on the KDM5 family
of histone demethylases, which are responsible for demethylation of H3K4 [86,194,197].
This effect could partly be restored by the addition of α-ketoglutarate [194–197]. The
striking elevation of succinate and fumarate induced by the metabolic rewiring of trained
macrophages, therefore, represents a plausible mechanism underlying the integration of
immunometabolic and epigenetic programs in trained immunity [82,194]. Fumarate degra-
dation is detrimental to the host and abrogates trained immunity, promoting recurrent
infections [193].

3.8. Malate and Oxaloacetate

L-Malate is formed by the hydration of fumarate catalyzed by FH. In the last reaction
of the TCA cycle, L-malate dehydrogenase oxidizes L-malate to oxaloacetate. Not much is
known about the immunological role of intracellular L-malate and oxaloacetate, although
the activation of macrophages with LPS results in increased levels of L-malate [28,67].
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Oxaloacetate serves as a strong inhibitor of SDH, thereby limiting post-ischemic oxidation
of succinate. It would be worth examining whether the endogenously formed oxaloacetate
conveys protection through reduced SDH activity during reperfusion [198]. Future studies
are needed to determine the immunological roles of L-malate and oxaloacetate during a
mitochondrial disruption.

4. Discussion

This review has provided insights into the immunological roles of TCA cycle interme-
diates that may leak from dysfunctioning mitochondria along with other mitochondrial
danger molecules and regulate the cellular immunity. In cells with mitochondrial stress,
TCA cycle metabolites, such as citrate, itaconate, succinate, fumarate, L-malate may accu-
mulate despite decreased mitochondrial respiration and link cellular metabolism to innate
leukocyte responses [28,64,67,124,161,165,166,199]. Activation of immune cells leads to
the remodeling of the TCA cycle via a process called the “immunologic Warburg effect”.
The TCA cycle intermediates citrate, α-ketoglutarate, succinate, and fumarate regulate
inflammatory gene expression [26,33,85,86,161,167,192–196]. Innate immune cells use ROS
as a key signaling and functional molecule during inflammation. TCA cycle intermedi-
ates such as succinate, citrate, fumarate, and itaconate are thereby important regulators
of the production of ROS [167]. Acetyl-CoA, succinate, and fumarate may also regulate
the innate immune responses by post-translationally modifying proteins via acetylation,
succinylation, and succination [85,200]. Certain metabolites such as acetyl-CoA, succi-
nate, NAD+, and α-ketoglutarate can serve as co-factors for epigenetic enzymes, thus
potentiating innate immune memory [36,196]. It is important to note the balancing of
succinate, α-ketoglutarate, and fumarate levels in macrophages can alter the epigenetic
landscape of the cell, profoundly impacting macrophage polarization and innate immune
memory [26,82,161,201,202]. Overall, studies have shown that citrate and succinate have
pro-inflammatory properties, whereas itaconate, α-ketoglutarate, and fumarate are linked
more with immunosuppressive roles (Figure 3). Interestingly, most of the latter metabo-
lites are upregulated during immune activation, indicating that they balance immune
activation and suppression. The immunological roles of some TCA cycle metabolites, such
as iso-citrate, L-malate, oxaloacetate, are only partially understood and deserve further
investigation in the future (Figure 3).
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