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ABSTRACT
Introduction: Gingivitis is a prevalent complication in adolescents undergoing fixed ortho-
dontic treatments. However, changes in the supragingival microbiome associated with gingi-
vitis and the impact of Candida albicans remain elusive. Therefore, we investigated 
supragingival microbiome discrepancy and C. albicans colonization in adolescent orthodontic 
patients with gingivitis.
Methods: Dental plaques were collected from 30 gingivitis patients and 24 healthy adoles-
cents, all undergoing fixed orthodontic treatment. The supragingival microbiome composi-
tion was analyzed using 16S rRNA sequencing. C. albicans colonization was determined using 
fungal culture and real-time quantitative polymerase chain reaction.
Results: Our analysis revealed significantly heightened microbial diversity in the Gingivitis 
group. Notably, patients with gingivitis exhibited an enrichment of periodontal pathogens, 
such as Saccharibacteria (TM7) [G-1], Selenomonas, Actinomyces dentalis, and Selenomonas 
sputigena. Additionally, 33% of the gingivitis patients tested positive for C. albicans, exhibiting 
significantly elevated levels of absolute abundance, while all healthy patients tested negative. 
Significant differences in microbial composition were also noted between C. albicans-positive 
and -negative samples in the Gingivitis group.
Conclusion: Significant disparities were observed in the supragingival microbiome of ado-
lescent orthodontic patients with and without gingivitis. The presence of C. albicans in the 
supragingival plaque may alter the microbiome composition and potentially contribute to 
gingivitis pathogenesis.

KEY MESSAGES
• Adolescent patients undergoing fixed orthodontic treatment, with and without gingivitis, 

show significant differences in their marginal supragingival plaque microbiomes.
• Adolescent patients with gingivitis exhibit a significantly higher rate of Candida albicans 

colonization than healthy individuals.
• The colonization of C. albicans alters the composition of the marginal supragingival plaque 

microbiome in patients with gingivitis.
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Introduction

Marginal gingivitis is a common side effect of ortho-
dontic treatment and a major biofilm-related disease 
that affects treatment effectiveness [1]. Compared to 
adult patients, adolescents are less diligent in main-
taining oral hygiene, leading to a higher incidence of 
marginal gingivitis [2]. Orthodontics-related gingivi-
tis affects up to 56.8% of adolescents [3]. When the 
periodontal tissue is in an inflammatory state, the 
formation and activity of osteoclasts increase during 
tooth movement, which can worsen alveolar bone loss, 
posing risks to periodontal tissue and dental health [4].

Dental plaque and its byproducts that accumulate at 
the gingival margin are key factors in developing mar-
ginal gingivitis. Consequently, there is a growing focus 
on exploring changes in dental plaque associated with 
marginal gingivitis during fixed orthodontic treatment. 

Previous studies using bacterial culture techniques have 
shown a substantial increase in Gram-negative bacteria 
in the dental plaque of patients with orthodontic gingi-
vitis [5]. Recent advancements in high-throughput tech-
niques have enabled the exploration of changes in the 
gingival microbiome during orthodontic treatment [6– 
8]. Previous research on gingival inflammation during 
orthodontic treatment primarily examined subgingival 
plaque or saliva. Studies have shown that orthodontic 
treatment may increase plaque adhesion and alter the 
subgingival microbiome [9], leading to mild gingival 
inflammation [10]. It has been confirmed that microbial 
diversity in subgingival plaque typically increases in 
patients with fixed orthodontic treatment [11]. 
Specifically, Tannerella forsythia and Prevotella interme-
dia have been found to increase significantly in sub-
gingival plaque, indicating an increased risk of 

CONTACT Yansong Ma mayansong0911@126.com; Yuxing Bai byuxing@ccmu.edu.cn Department of Orthodontics, Beijing Stomatological 
Hospital, Capital Medical University, Tian Tan Xi Li #4, Dongcheng District, Beijing 100050, China

JOURNAL OF ORAL MICROBIOLOGY
2024, VOL. 16, 2366056
https://doi.org/10.1080/20002297.2024.2366056

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article 
has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20002297.2024.2366056&domain=pdf&date_stamp=2024-06-13


periodontal infection during orthodontic treatment 
[12]. In saliva samples, the microbial compositions of 
orthodontic patients differed considerably from those of 
healthy individuals, with orthodontic patients exhibiting 
higher microbial diversity [7]. While most studies have 
focused on subgingival plaque or saliva, a few have 
examined changes in supragingival marginal plaque 
during orthodontic treatment [13]. These studies 
found an increase in anaerobic bacteria; however, parti-
cipants did not exhibit typical symptoms of gingivitis 
[13]. Research on microbiome changes in orthodontic 
patients with typical gingivitis, particularly among ado-
lescents, who represent a significant portion of ortho-
dontic patients, remains limited.

In addition to bacteria, fungi are important con-
stituents of the oral microbiome and can contribute 
to the pathogenesis of various diseases [14–16]. In 
particular, Candida is closely linked to oral diseases. 
There are over 150 Candida species, with approxi-
mately 20 identified as human pathogens that can 
interact with bacteria to cause disease [17]. In the 
context of periodontal disease, research on Candida 
albicans has mainly focused on patients with period-
ontitis, and a notable positive correlation between 
C. albicans and the development of periodontal dis-
ease has been reported [18]. C. albicans has been 
found in the subgingival plaques of approximately 
29.8% of individuals with chronic periodontitis [19]. 
Furthermore, observations have indicated that 
C. albicans hyphae can infiltrate the periodontal con-
nective tissue [20], interact with subgingival bacterial 
pathogens, or induce proinflammatory cytokine pro-
duction, thereby leading to the loss of periodontal 
attachment and aggravating periodontal disease [18]. 
C. albicans can also create an anoxic microenviron-
ment in biofilms, supporting the growth of anaerobic 
bacteria [21]. For example, C. albicans biofilm can 
protect the anaerobic bacterium Porphyromonas gin-
givalis from the aerobic environment [21]. However, 
most studies have primarily investigated the presence 
of C. albicans in subgingival plaques of individuals 
diagnosed with chronic periodontitis; however, only 
a few studies have detected C. albicans in supragingi-
val plaques of adult patients with gingivitis [22]. 
Moreover, the enrichment of C. albicans in adoles-
cent patients with marginal gingivitis during ortho-
dontic treatment and its potential relationship with 
bacterial abundance require further exploration.

Therefore, we investigated whether the composition 
of the supragingival microbiome of healthy adolescent 
patients undergoing orthodontic treatment differs from 
that of patients with gingivitis through 16S rRNA 
sequencing. Additionally, we utilized fungal culture, 
rDNA internal transcribed spacer identification (ITS) 
and real-time quantitative polymerase chain reaction 
(qPCR) to investigate whether C. albicans enrichment 
occurs in gingivitis and to explore the impact of 

C. albicans aggregation on bacterial composition, 
thereby providing further evidence concerning the phy-
siological and ecological significance of the supragingi-
val plaque microbiome in the development of 
orthodontic gingivitis. The null hypotheses for this 
research were as follows: (1) There is no statistically 
significant difference observed in the supragingival 
microbial composition between orthodontic patients 
with gingivitis and healthy individuals; (2) C. albicans 
is not enriched in adolescents with gingivitis; and (3) 
C. albicans enrichment does not affect the supragingival 
plaque microbiome composition.

Materials and methods

Recruitment of patients

This study obtained ethical approval from the Ethics 
Committee of the Beijing Stomatological Hospital. All 
participants included in this study obtained the consent 
of the patients and their parents and signed informed 
consent for the study. Adolescents aged 11–18 years 
undergoing fixed orthodontic treatment were enrolled 
from Beijing Stomatological Hospital, involving 30 
patients with gingivitis (the Gingivitis group) and 24 
patients without gingivitis as the control group (the 
Periodontal healthy group). In the Gingivitis group, par-
ticipants had gingivitis in both anterior teeth and pre-
molars with an average gingival index (GI) ≥ 1, 
attachment loss ≤1 mm, and DMFS index < 10 [23,24]. 
The inclusion criteria for the Periodontal healthy group 
were periodontal health, GI < 0.5, PD ≤3 mm, DMFS 
index < 10, and no periodontal attachment loss.

Dental plaque collection

Participants were instructed to abstain from oral 
hygiene activities for at least 12 h before sample col-
lection and to avoid eating or drinking for 2 h prior 
to sampling. Using a periodontal curette, supragingi-
val plaque along the gingival margin of the anterior 
teeth and premolars was collected.

The plaque samples were then placed into 1 mL of 
sterilized TE buffer and transported to the laboratory on 
ice. The collected plaque was divided into two parts. One 
aliquot underwent bacterial 16S rRNA sequencing ana-
lysis and quantification of C. albicans, while the other 
aliquot was preserved in 1× TE buffer (containing 20% 
glycerol) for subsequent Candida culture identification 
and ITS sequencing analysis. All samples were stored at 
−80°C for future use.

Genomic DNA extraction, illumina MiSeq 
sequencing, and processing

Genomic DNA was extracted from 54 samples using 
the FastDNA Spin Kit (MP Biomedicals, USA) 
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following the manufacturer’s instructions. The quality 
and concentration of DNA samples were assessed 
using the NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, USA). The V1-V3 region 
of 16S rRNA fragments was amplified with primers 
27F and 533 R, which were 5’ -AGAGTTTGAT 
CCTGGCTCAG-3’ and 5’- TTACCGCGGCTGCT 
GGCAC-3’ respectively. The PCR protocol comprised 
an initial denaturation at 95°C for 3 min, followed by 
27 cycles of denaturation at 95°C for 30 s, 55°C for 30 
s, and 72°C for 45 s, and a final extension step at 72°C 
for 10 min. The amplicons were paired-end 
sequenced using the Illumina MiSeq platform with 
PE300. The raw sequencing reads were deposited in 
the NCBI Sequence Read Archive database under the 
accession number SRP483771.

After demultiplexing, we used FLASH (v1.2.7) to 
merge the obtained sequences [25] and Fastp (v0.19.6) 
for quality filtering [26]. The parameters were set as 
follows: (1) Trim low-quality bases from the end of 
reads with a minimum quality threshold of 20; use 
sliding window trimming with a 50 bp window; dis-
card reads under 50 bp in length or containing 
N bases. (2) Pairwise reads with overlapping PE 
reads were merged into a sequence, and the minimum 
overlap length was 10 bp. (3) The maximum mismatch 
ratio in the overlap region of the splicing sequence was 
0.2. (4) Samples were identified by barcode and primer 
sequences at both ends, allowing zero mismatches for 
barcodes and up to two for primers. Using the 
DADA2 [27] plug-in within the Qiime2 pipeline, 
sequences were denoised under the following condi-
tions [28]: discard reads with a length less than or 
equal to zero; remove sequences with a total abun-
dance below ten across all samples or less than two in 
any single sample. The MaxEE was set at two, and the 
truncQ at zero. Post-denoising, amplicon sequence 
variants were identified and assigned taxonomic clas-
sifications using the Qiime2 naïve Bayes consensus 
taxonomic classifier and the Human Oral 
Microbiome Database (HOMD) (v15.2) [29].

Culture, identification, and quantification of 
C. albicans

Dental plaque samples and C. albicans (SC5314) used 
to establish standard curves were inoculated onto 
CHROMagar selective culture medium (Becton 
Dickinson & Co., USA) and incubated at 37°C for 
72 h [30]. C. albicans-positive colonies, which appear 
as green colonies on CHROMagar Candida-selective 
medium [31], were then collected using a sterile 
inoculation ring and transferred to 2 mL sterile cen-
trifuge tubes for subsequent DNA extraction and 
analysis of the rDNA ITS sequences [31].

The total genomic DNA was extracted using 
Epicenter MasterPure DNA extraction kits (Lucigen 

Corporation, USA), following the manufacturer’s 
instructions. The total volume of the PCR amplifica-
tion mixture was 50 μL, including enzyme-free water 
(17 μL), 2 × Taq PCR Mastermix (25 μL) (KT201, 
Tiangen Biotechnologies, China), template DNA (4  
μL), and ITS primers (2 μL). The amplification of the 
extracted DNA was performed using primers ITS4 
and ITS5, which were 5’ - TCCTCCGCTTA 
TTGATATGC − 3’ and 5’ - GGAAGTAAAAGT 
CGTAACAAGG − 3’ respectively. The sample dena-
turation was conducted at 95°C for 5 min, followed 
by 35 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C 
for 60 s, and a final extension step at 72°C for 10  
min [32].

The amplified products were sequenced by the 
Beijing Genomics Institution to identify fungal 
strains. The PCR products were initially detected on 
a 1.0% agarose gel using 3 μL of the PCR products 
and subsequently purified following the standard 
operating procedure for magnetic bead purification. 
This process leverages the principle that magnetic 
beads can absorb or release charged substances – 
DNA is adsorbed in a high-salt, low-pH solution, 
facilitating DNA separation and purification. The 
purified PCR products were sequenced using an 
ABI 3730 sequencer (Applied Biosystems, Inc, 
USA). BioEdit and Cexpress software were used for 
sequence assembly and correction. The obtained 
sequences were then subjected to comparative analy-
sis against homologous sequences available using the 
BLAST software in the GenBank database. Strains 
showing high sequence similarity were selected for 
further study. The raw sequencing reads have been 
deposited in the NCBI GenBank database under the 
accession numbers PP563750-PP563769.

To quantify the abundance of C. albicans in the 
samples, we performed a real-time quantitative poly-
merase chain reaction. We extracted and purified the 
total genomic DNA from the C. albicans standard strain 
and another aliquot of the supragingival plaque, as 
described in section 2.3. We used C. albicans- 
specific primers CALB1 (5’ - TTTATCAACT 
TGTCACACCAGA − 3’) and CALB2 (5’ - ATCCCGC 
CTTACCACTACCG − 3’) for the qPCR reactions, 
which were conducted on a Bio-Rad CFX Connect 
(BioRad, Hercules, CA, USA). The protocol 
included denaturation at 95°C for 3 min, followed 
by 35 cycles of 95°C for 30 s, 60°C for 30 s, and 
72°C for 30 s. We determined the quantification of 
C. albicans in each sample by converting DNA 
concentrations to colony-forming units (CFU/mL) 
using a standard curve.

Statistical analysis

Four diversity indices – ACE, Chao1, Simpson, and 
Shannon – were selected to evaluate the alpha 
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diversity in this study. Beta diversity was analyzed 
through principal coordinate analysis (PCoA) using 
the Bray-Curtis distance matrix, and the ADONIS 
test was applied to assess statistical distinctions. 
Both alpha and beta diversity analyses were per-
formed on the Majorbio Cloud Platform. The 
Wilcoxon rank-sum test was used to assess differ-
ences in taxonomic composition between groups, 
whereas the Kruskal-Wallis test was used to compare 
the absolute abundance of C. albicans across different 
groups. A two-tailed p value of < 0.05 was considered 
statistically significant.

Results

Significant differences in the marginal 
supragingival plaque microbiome between the 
gingivitis and periodontal healthy groups

This study compared the differences in supragingival 
microbiota between adolescents undergoing fixed 
orthodontic treatment with typical gingivitis and 
those with periodontally healthy status (Table 1). All 
patients in the Gingivitis group met the diagnostic 
criteria for moderate gingivitis, as indicated by GI 
values ranging from 1.1 to 1.9 [23]. Sequencing ana-
lysis yielded 4,335,107 raw reads from the 54 supra-
gingival plaque samples. Subsequent quality filtration 
yielded 4,083,635 optimized sequences, with an 

average length of 482 base pairs. Denoising the opti-
mized sequences using the DADA2 plug-in in the 
Qiime2 pipeline yielded 1,148,723 sequences. 
Finally, 12 phyla, 29 classes, 48 orders, 79 families, 
144 genera, and 482 species were detected through 
high-throughput sequencing. The alpha diversity of 
the supragingival microbiome of the two groups was 
analyzed to evaluate differences in species richness 
and diversity (Figure 1a). The Shannon index was 
significantly higher in the Gingivitis group than in 
the Periodontal healthy group (p < 0.05), indicating 
a significantly higher diversity of the periodontal 
microbiome in the Gingivitis group. This result cor-
responded with the previous findings, showing that 
inflamed periodontal tissue is associated with 
increased microbial diversity and a more complex 
microbiome community structure [10]. The PCoA 
of the supragingival microbiome composition indi-
cated that the beta diversity of the Gingivitis and 
Periodontal healthy groups was significantly different 
from each other (p < 0.05) (Figure 1b).

We further explored the differences in bacterial 
abundance in the supragingival microbiome between 
the two groups by identifying the core microbiota 
with a relative abundance of more than 1.0% at the 
genus level. The results showed that the core genus 
compositions of the two groups were similar. As 
shown in Figure 2a, the ten dominant genera included 
Leptotrichia, Streptococcus, Saccharibacteria (TM7) 

Figure 1. Comparison of alpha and beta diversities of microbial communities between the Gingivitis group and Periodontal 
healthy group. (a) Four indices, ACE, Chao1, Simpson, and Shannon, were selected to compare the alpha diversity (*p < 0.05). (b) 
Principal Coordinate Analysis (PCoA) was used to analyze beta diversity, and the ADONIS test was applied to evaluate statistical 
distinctions.

Table 1. Mean (standard deviation) of basic information and clinical indicators.
Grouping information Age Course of treatment (month) GI DMFS

Gingivitis (n = 30) 14.17 (1.60) 9.83 (1.62) 1.15 (0.12) 2.57 (1.10)
Periodontal healthy (n = 24) 14.58 (1.52) 9.75 (1.72) 0.26 (0.11) 2.67 (1.01)
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[G-1], Actinomyces, Selenomonas, Capnocytophaga, 
Prevotella, Corynebacterium, Veillonella, and 
Fusobacterium. The Gingivitis group exhibited a high 
relative abundance of Saccharibacteria (TM7) [G-1], 
Selenomonas, and Prevotella; however, 
Capnocytophaga, Neisseria, Lautropia, and Rothia 
exhibited significant enrichment in the Periodontal 

healthy group (p < 0.05) (Figure 2b). Several TM7 spe-
cies like Saccharibacteria (TM7) [G-1] bacterium HMT 
346 and Saccharibacteria (TM7) [G-5] bacterium HMT 
356; bacteria of the Streptococcus genus, such as 
Streptococcus oralis subsp._tigurinus_clade_071, and 
Streptococcus anginosus; as well as bacteria of other 
genera, such as Actinomyces dentalis and 

Figure 2. Species composition analysis between Gingivitis group and Periodontal healthy group. (a) Microbial composition at 
the genus level between the Gingivitis group and Periodontal healthy group. (b) The genera with significant differences 
between the Gingivitis group and the Periodontal healthy group (taking the top 1–15 bacteria ranged by relative abundance). 
(c) The species with significant differences between the Gingivitis group and the Periodontal healthy group (taking the top 1–25 
bacteria ranged by relative abundance). (d) Periodontal pathogens with low relative abundance but significant differences 
between the Gingivitis group and Periodontal healthy group (*p < 0.05, *p < 0.01, **p < 0.001).
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Selenomonas sputigena, also exhibited significant 
enrichment in the Gingivitis group at the species 
level (p < 0.05) (Figure 2c). Furthermore, dominant 
bacteria found in gingivitis patients reported by pre-
vious studies, such as P. intermedia and Fusobacterium 
nucleatum, and bacteria typically detected in chronic 
periodontitis, such as T. forsythia and Treponema den-
ticola, were also enriched in the Gingivitis group 
(Figure 2d). However, Capnocytophaga granulosa, 
Lautropia mirabilis, Streptococcus sanguinis, 
Actinomyces sp. HMT_169, Capnocytophaga sputigena, 
Cardiobacterium hominis, Actinomyces massiliensis, 
Neisseria elongata, Rothia aeria, and Corynebacterium 
durum were significantly enriched in the Periodontal 
healthy group (p < 0.05) (Figure 2c).

The gingivitis group exhibits a high C. albicans 
colonization rate and load

C. albicans colonization was initially identified by 
inoculating the plaque sample on CHROMagar 
Candida-selective culture medium, and positive colo-
nies were confirmed through ITS sequencing. No 
C. albicans-positive colonies emerged on 
CHROMagar Candida-selective medium inoculated 
with samples from the Periodontal healthy group; 
however, ten out of the 30 samples from the 
Gingivitis group yielded green colonies. ITS sequen-
cing results confirmed that all ten Candida-positive 
samples in the Gingivitis group were C. albicans, 
indicating a colonization rate of up to 33% in the 
Gingivitis group (Figure 3a). The detection rate of 
C. albicans was higher in the Gingivitis group than in 
the Periodontal healthy group, suggesting that 
C. albicans colonization is more likely in patients 
with gingivitis than in healthy patients. Based on 
the detection rates of C. albicans, we classified the 
Gingivitis group into two subgroups: Gingivitis- 
C. albicans positive (G-CaP, n = 10) and Gingivitis- 

C. albicans negative (G-CaN, n = 20). As shown in 
Figure 3b, the abundance of C. albicans in the G-CaP 
group was significantly higher than that in the 
G-CaN group and Periodontal healthy groups (p  
< 0.01).

C. albicans influences the supragingival 
microbiome composition in patients with 
gingivitis

To understand the effect of C. albicans on the supra-
gingival microbiome of gingivitis plaque, we further 
performed the taxonomic analysis between the 
G-CaP (n = 10) and G-CaN (n = 20) groups. No sta-
tistical differences were observed in alpha diversity 
between the two subgroups (p > 0.05) (Figure 4a); 
however, the PCoA of the supragingival microbiome 
composition showed that the beta diversity of the two 
groups was significantly different from each other (p  
< 0.05), indicating that the microbial community 
composition of the G-CaP group was significantly 
different from that of G-CaN samples (Figure 4b). 
Further investigation of the differences in bacterial 
abundance in the supragingival microbiome of the 
G-CaP and G-CaN groups indicated that the core 
genera of the two groups were similar; however, the 
G-CaP group exhibited a greater abundance of 
Leptotrichia, Selenomonas, and Prevotella than the 
G-CaN group (Figure 5a). Furthermore, the differ-
ence in taxonomic composition showed that 
Campylobacter was more abundant in the G-CaP 
group, whereas Saccharibacteria (TM7) [G-5] and 
Treponema were more abundant in the G-CaN 
group (p < 0.05) (Figure 5b).

Species-level bacteria related to periodontal dis-
eases, such as S. noxia, Campylobacter gracilis, 
Actinomyces sp._HMT_448, Campylobacter concisus, 
Prevotella salivae, Actinomyces oris, and Veillonella 
atypica, were enriched in the G-CaP group (p <  

Figure 3. (a) the difference of Candida albicans detection rate between Gingivitis group and Periodontal healthy group. CaP: 
C. albicans-positive; CaN: C. albicans-negative. (b) The CFU counts of C. albicans in G-CaP, G-CaN, and Periodontal healthy groups 
(NS: no significance, *p < 0.05, *p < 0.01, **p < 0.001). 
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0.05) (Figure 5c). However, the abundance of TM7 
species HMT-356, Gemella morbillorum, Leptotrichia 
sp._HMT_225, and L. mirabilis were significantly 
increased in the G-CaN group (p < 0.05). 
Additionally, although their abundance was relatively 
low, some periodontal pathogens are more com-
monly detected in subgingival plaque. For example, 
F. nucleatum subsp. nucleatum and Aggregatibacter 
actinomycetemcomitans were only detected in the 
G-CaP group (Figure 5d).

Discussion

Gingivitis is a common complication of orthodontic 
treatment that affects the periodontal tissue. In order 
to clarify the role of the oral microbiome in the 
pathogenesis of adolescent gingivitis, we investigated 
the disparities in the oral microbiome between ado-
lescent orthodontic patients with and without gingi-
vitis, as well as the impact of C. albicans for the first 
time. Our results showed significant differences in the 
supragingival microbiome between adolescents with 
gingivitis and those with a healthy status. 
Furthermore, all three invalid hypotheses were 
rejected.

During orthodontic treatment, the accumulation 
of dental plaque near the gingival margin and direct 
stimulation by orthodontic appliances can lead to 
gingivitis. Dental plaque and its byproducts at the 
gingival margin are pivotal in developing marginal 
gingivitis. Fixed orthodontic appliances, such as 
brackets and bands, complicate oral hygiene and 
aggravate plaque buildup [33]. Additionally, the 
metal components in these appliances, such as nickel 

alloys, can be toxic to oral bacteria and may prompt 
gingival overgrowth by increasing epithelial cell pro-
liferation due to continuous low-dose nickel release 
[34]. Furthermore, nickel ions exert toxic effects on 
oral bacteria, contrasting with other metal like iron, 
which are essential for the metabolism of bacteria 
such as P. intermedia [35,36]. Therefore, beyond pro-
moting plaque accumulation, orthodontic appliances 
may also disturb the ecological balance of the supra-
gingival microbiome. Furthermore, orthodontic 
forces can elevate matrix metalloproteinase 8 levels, 
potentially contributing to gingival hyperplasia in 
orthodontic patients [37]. Additionally, during cer-
tain movements like intrusion or tipping, plaque can 
migrate into subgingival areas, intensifying period-
ontal inflammation [12]. Therefore, given that dental 
plaque is the primary factor in developing marginal 
gingivitis, gingivitis associated with orthodontic treat-
ment exhibits distinct characteristics compared to 
gingivitis without orthodontic intervention. This spe-
cificity is also confirmed by the differences in micro-
organisms found in orthodontic versus non- 
orthodontic gingivitis. Research has shown significant 
variations in the periodontal pathogens present in 
subgingival plaque between patients with fixed ortho-
dontic appliances and those without. Notably, the 
presence of T. forsythia, T. denticola, and 
P. nigrescens is markedly elevated in orthodontic 
patients, suggesting that changes associated with 
fixed orthodontic appliances may influence the pre-
valence of these periodontal pathogens in subgingival 
plaques [38]. Another study revealed an 85% detec-
tion rate of A. actinomycetemcomitans in the subgin-
gival plaque of adolescents undergoing orthodontic 

Figure 4. Comparison of alpha and beta diversities of microbial communities between the G-CaP and G-CaN group. (a) Four 
indices, ACE, Chao1, Simpson, and Shannon, were selected to compare the alpha diversity (*p < 0.05). (b) Principal Coordinate 
Analysis (PCoA) was used to analyze beta diversity, and the ADONIS test was applied to evaluate statistical distinctions. 
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treatment, which significantly exceeded the 15% in 
adolescents without such treatment. Additionally, 
these patients exhibited a heightened gingival bleed-
ing index [39]. Moreover, in adolescents undergoing 
orthodontic treatment, factors such as poor oral 
hygiene, and hormonal changes contribute to 

a more pronounced response to dental plaque and 
an increased risk of periodontal hyperplasia. Studies 
indicate that adolescents with gingivitis are more 
prone to gingival bleeding and may experience 
attachment loss in adulthood compared to period-
ontal healthy adolescents [40].

Figure 5. Species composition analysis between G-CaP and G-CaN group. (a) Microbial composition at the genus level between 
the G-CaP and G-CaN group. (b) The genera with significant differences between the G-CaP and G-CaN group (taking the top 1– 
15 bacteria ranged by relative abundance). (c) The species with significant differences between the G-CaP and G-CaN group 
(taking the top 1–25 bacteria ranged by relative abundance). (d) Periodontal pathogens with low relative abundance but 
significant differences between the G-CaP and G-CaN group (*p < 0.05, *p < 0.01, **p < 0.001). 
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High-throughput sequencing suggested that 
patients with gingivitis exhibited significantly greater 
alpha diversity in their oral microbiome than healthy 
individuals, along with distinct clustering character-
istics. These findings correspond to previous studies 
showing that periodontitis patients have significantly 
higher microbial diversity than healthy individuals 
[10,41]. In this study, we found that TM7 species 
HMT-346 and 356 were enriched in patients with 
gingivitis, consistent with previous studies [42,43]. 
Saccharibacteria (TM7) is commonly found in 
human oral, skin, and gut microbiomes [44,45] and 
is typically dominant in inflammatory environments, 
particularly in periodontal-related diseases, such as 
periodontitis [46] and gingivitis [13]. Although 
Saccharibacteria (TM7) is generally considered 
a potentially pathogenic bacterium that could initiate 
or aggravate periodontitis and is categorized as 
a pathogenic red complex [47], some studies suggest 
it may have a protective effect by attenuating the 
pathogenicity of other bacteria [33]. Therefore, the 
precise role of Saccharibacteria (TM7) in gingivitis 
pathogenesis is yet to be elucidated. We found that 
Selenomonas, specifically S. sputigena, was enriched 
in patients with gingivitis [48]. The increased abun-
dance of S. sputigena in dental plaque is closely asso-
ciated with periodontal disease. S. sputigena adheres 
to gingival keratinocytes and induces the expression 
and secretion of cytokines and chemokines related to 
inflammation and leukocyte recruitment. Interaction 
between S. sputigena and the host may lead to bac-
teria-induced inflammation and tissue destruction, 
resulting in the progression of gingivitis [48]. 
Patients with chronic periodontitis exhibit signifi-
cantly higher detection rates of A. dentalis than 
those of A. naeslundii or A. oris [49]. Our study 
findings support this observation, showing that 
A. dentalis is more abundant in the Gingivitis 
group, suggesting its potential role in altering dental 
plaque composition between healthy and periodontal 
disease states [49]. Additionally, we observed a high 
accumulation of S. anginosus and S. oralis subsp. 
_tigurinus_clade_071 in patients with gingivitis, con-
sistent with previous research [1,50]. However, 
further studies are required to elucidate their role in 
gingivitis pathogenesis.

In adolescent patients undergoing orthodontic 
treatment, elevated hormone levels can impact the 
oral microbiome and exacerbate gingival hyperplasia, 
leading to increased gingival sulcus depth. There is 
increasing evidence that periodontal tissue response 
is regulated by hormones such as androgen, estrogen, 
and progesterone. Several factors influence the inci-
dence and severity of gingivitis in adolescents, includ-
ing dental plaque biofilm, dental caries, oral 
respiration, and tooth crowding. Notably, steroid 

hormone levels are a remarkable modifier of plaque- 
induced gingivitis in adolescents [51]. Endocrine 
changes enhance the response of gingival tissue to 
local irritants like plaque. Despite this, dental plaque 
remains the primary cause of gingivitis in adoles-
cents, and eliminating local plaque stimulation is 
crucial for treatment [51]. It has been reported that 
maintaining oral hygiene is more critical for gingival 
health than the increase in steroid hormone levels 
among adolescents [52]. Moreover, reducing gingivi-
tis in adolescents involves removing dental plaque 
clinically and reducing pathogen abundance rather 
than regulating hormones. Our study confirmed sig-
nificant differences in the marginal supragingival pla-
que microbiomes between adolescent patients with 
and without gingivitis undergoing fixed orthodontic 
treatment. These results indicate that while hormone 
levels affect periodontal tissue, the microbiomes of 
the Gingivitis and Periodontal healthy groups signifi-
cantly differ. This study enrolled adolescents aged 
11–18 undergoing fixed orthodontic treatment. The 
average age of the Gingivitis group (14.17 ± 1.60) was 
similar to that of the Periodontal healthy group 
(14.58 ± 1.52), suggesting comparable hormone levels, 
which could similarly impact the oral microbiome. 
However, as hormone levels vary with age, gender, 
and individual differences, the average age serves only 
as a preliminary reference, and represents a limitation 
of this study.

Currently, research on the relationship between 
hormones and gingivitis in adolescents mostly 
focuses on the correlation between hormones and 
clinical symptoms of gingivitis, with few studies 
examining the relationship between hormones and 
oral microbiomes. Previous longitudinal studies 
have compared pre-adolescent and adolescent ortho-
dontic treatments to assess the impact of hormone 
levels on clinical and microbiological parameters. 
These studies reported a statistically significant 
increase in gingival inflammation and abundance of 
P. intermedia compared to baseline values, which 
may be associated with increased systemic hormone 
levels [53]. The results of another study indicated that 
the abundance of C. rectus was positively correlated 
with estradiol levels [54]. Additionally, estradiol levels 
in saliva were associated with the abundance of 
C. gingivalis, Peptostreptococcus micros, T. denticola, 
and T. forsythia [55]. Among these bacteria, 
P. intermedia, T. denticola and T. forsythia were rela-
tively abundant in the Gingivitis group compared to 
the Periodontal healthy group, although their relative 
abundances were low. For the core genera and species 
with high abundance in this study, there is no exist-
ing literature on the hormonal effects on these micro-
organisms. Conversely, another study suggested that 
changes in pubertal hormones do not promote the 
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colonization of periodontitis pathogens [56]. 
Therefore, the relationship between hormones and 
periodontal pathogens warrants further investigation.

As the most detected fungus in the oral cavity [57], 
C. albicans can aggregate within subgingival biofilms 
of periodontitis patients, exhibiting a significantly 
positive correlation with periodontal disease and 
playing a role in the initiation and progression of 
periodontitis [18,58]. Previous studies have primarily 
focused on subgingival plaque in adults, while 
C. albicans colonization rates in the supragingival 
plaque of adolescents with gingivitis undergoing 
orthodontic treatment have not been extensively 
investigated. Our results suggest that a high 
C. albicans colonization occurs in the supragingival 
plaque of adolescent patients with gingivitis. 
Moreover, C. albicans enrichment influences the 
microbial composition of gingival plaques.

Co-aggregation of C. albicans and A. oris has been 
previously reported. These exhibit growth synergism 
and can form a strong dual-species biofilm, thereby 
increasing the total biofilm biomass [59,60]. In addi-
tion, although the relative abundance was low, we 
detected F. nucleatum and A. actinomycetemcomitans 
only in the G-CaP group. F. nucleatum can aggregate 
with C. albicans by binding to mannose receptors on the 
surface of C. albicans [18,61]. A. actinomycetem- 
comitans and C. albicans exhibit symbiosis and 
increased virulence, which aggravates periodontal tissue 
destruction [62]. Furthermore, the invasion of 
C. albicans hyphae has been detected in the gingival 
connective tissue of patients with periodontal disease, 
which is also related to the enrichment of 
A. actinomycetemcomitans [63,64]. Other bacteria 
enriched in the G-CaP group in this study, such as 
C. concisus, C. gracilis, S. noxia, and V. atypica, are 
presumed to be involved in the occurrence and devel-
opment of periodontal disease. For example, C. gracilis 
is enriched in the plaque of patients with refractory 
periodontitis [65]. C. concisus, which belongs to the 
green complex, is primarily associated with the early 
formation of subgingival biofilms linked to early-onset 
periodontitis [66]. S. noxia can exist within supragingi-
val or subgingival biofilms [67] and may contribute to 
the transition of periodontal tissues from a healthy to 
a diseased state [68]. V. atypica possesses a multivalent 
hemagglutinin that promotes adhesion to P. gingivalis 
and oral buccal cells [69], making it more likely to be 
enriched in refractory periodontitis [65]. However, 
further investigation is needed to understand the inter-
actions between the bacteria and C. albicans.

This study confirmed that the occurrence of 
gingivitis during orthodontic treatment in adoles-
cents impacts the microbial ecology of the oral 
microbiome, leading to changes in both the bac-
terial microbiota and C. albicans. By monitoring 

changes in biomarkers reflecting periodontal sta-
tus, it is expected to be utilized for diagnosing and 
predicting gingivitis in orthodontic patients, 
enabling the implementation of preventive mea-
sures. However, one of the limitations of this 
study was the relatively small sample size, which 
should be increased in future research. 
Additionally, the interactions between C. albicans 
and various periodontal pathogens warrant further 
investigation to elucidate their mechanisms in the 
onset and progression of gingivitis. Moreover, this 
study is cross-sectional. Future research should 
involve designing a cohort study to explore the 
relationship between hormonal changes, clinical 
symptoms, and changes in bacterial and fungal 
abundance. This could provide a foundation for 
reducing the incidence of gingivitis among adoles-
cent orthodontic patients.

Conclusions

The study identified significant differences in both 
microbial diversity and composition within the 
supragingival microbiome between adolescent ortho-
dontic patients with gingivitis and those in a healthy 
state. Additionally, we observed that C. albicans was 
more prevalent in patients with gingivitis, impacting 
the microbiome composition of supragingival plaque 
in adolescent patients undergoing orthodontic treat-
ment. This suggests a potential role for C. albicans in 
the pathogenesis of gingivitis.
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