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Objective: This study aims to explore the causal relationships between 1400 serum metabolites 
(SMs) and five autoimmune diseases (Myasthenia gravis [MG], Multiple sclerosis [MS], Systemic 
lupus erythematosus [SLE], Type 1 diabetes mellitus [T1DM], and Ulcerative colitis [UC]) 
through Mendelian randomization analysis. 
Method: Data on MG, MS, SLE, T1DM, and UC were obtained from the IEU OpenGWAS Project 
database, while information on 1400 SMs was extracted from GWAS summary statistics provided 
by Chen et al. Causal relationships were assessed using the inverse variance weighted (IVW), MR- 
Egger, Weighted Median (WME), and Simple median (SME) methods. The robustness of instru-
mental variables was verified through computation of the F-statistic. Heterogeneity was evaluated 
using Cochran’s Q test and the leave-one-out (LOO) method. Horizontal pleiotropy was assessed 
using MR-Egger regression and MR-PRESSO. 
Result: Following correction of the IVW P values using the False Discovery Rate (FDR) method, it 
was found that increased levels of 5-methyluridine (ribothymidine) (OR = 1.191, 95%CI 
1.086–1.307, FDR-P = 0.000) and 2′-deoxyuridine (OR = 1.337, 95%CI 1.127–1.586, FDR-P =
0.001) were found to be correlated with a higher risk of MS. Conversely, the ratio of S-adeno-
sylhomocysteine (SAH) to 5-methyluridine (ribothymidine) (OR = 0.771, 95%CI 0.649–0.916, 
FDR-P = 0.007) was linked to a decreased risk of MS. Levels of 1,2-dilinoleoyl-GPE (18:2/18:2) 
(OR = 0.877, 95%CI 0.791–0.974, FDR-P = 0.003) appear to be a protective factor for T1DM. No 
notable correlations between SMs and MG, SLE, or UC. The study detected no heterogeneity or 
horizontal pleiotropy. 
Conclusion: Levels of 5-methyluridine (ribothymidine), 2′-deoxyuridine, and the ratio of S-ade-
nosylhomocysteine (SAH) to 5-methyluridine (ribothymidine) can serve as predictors for MS. 
Similarly, 1,2-dilinoleoyl-GPE (18:2/18:2) levels can be used to predict T1DM. However, no 
significant causal relationships were found between SMs and MG, SLE, or UC. This observation 
holds significant clinical implications for crafting tailored preventive and therapeutic approaches 
for ADs.   
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1. Introduction 

Autoimmune disease (AD) represents a category of chronic inflammatory conditions where the immune system becomes dysre-
gulated and autoantigens react, resulting in tissue or system damage. The frequency and occurrence of ADs, such as MG, MS, SLE, 
T1DM, and UC, have been on the rise recently [1]. ADs encompass both organ-specific and systemic conditions. The organ-specific ADs 
target pathological damage or dysfunction in particular organs, such as T1DM. Systemic ADs like SLE, on the other hand, result in 
pathological damage across multiple organs and tissues throughout the body [2]. Currently, some treatment methods for ADs exhibit 
broad functionality and lack disease specificity, resulting in noticeable side effects [3]. The development of ADs is closely linked to 
immune system dysfunction and abnormal cytokine expression [4]. Clinical research has demonstrated that the mechanisms under-
lying ADs are associated with abnormal alterations in SMs. Patients with T1DM exhibited higher levels of serum hypoxanthine and 
uridine compared to healthy individuals [5], and lipid metabolism disorders were also observed in T1DM [6]. In MS, changes in SMs 
can trigger an immune response [7]. Ouyang et al. [8] discovered that serum amino acid levels were reduced in SLE patients. 
Blackmore et al. [9] observed that, compared to the control group, MG patients exhibited up-regulated ketone bodies and short-chain 
fatty acids, while bile acid metabolites were down-regulated. Additionally, the abundance of metabolites has been identified as a 
potential indicator for UC pathology [10]. Yet, observational researches frequently face challenges from unknown confounding 
variables and backward causation, which currently obscure the causal link between SMs and the five ADs (MG, MS, SLE, T1DM, and 
UC). 

Mendelian randomization (MR) employs single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) under the 
assumption that genetic variations influencing risk factors are randomly allocated at conception, thereby minimizing the influence of 
reverse causality. This approach offers a more accurate estimation of disease risk [11]. 

MR can be viewed as a quasi-natural experiment akin to a randomized clinical trial (RCT). Compared to traditional RCT designs, the 
primary advantage of MR is that SNPs, used as risk factor tools, are randomly assigned, which helps to avoid the impact of potential 
confounding factors or reverse causality [12]. Additionally, the development of genetic variation is independent of social environment, 
lifestyle, and other traits, theoretically eliminating the impact of confounding factors [13]. 

This study utilized a genome-wide association study (GWAS) to collect data, employing MR analysis to explore causal relationships 
between SMs and five ADs (MG, MS, SLE, T1DM, and UC). This approach aims to provide genetic evidence supporting their association, 
offering a theoretical foundation and potential clinical value. The results may guide risk prediction and treatment development for 
these ADs. The study protocol is depicted in Fig. 1. 

Fig. 1. Protocol of the study procedure.  
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2. Material and methods 

2.1. Data sources 

For estimating the effects of SNPs related with SMs, we utilized GWAS summary statistics from Chen et al. (GCST90199621- 
GCST902010202), encompassing a total of 1400 SMs [14]. Outcome data for the five ADs (MG, MS, SLE, T1DM, and UC) were sourced 
from the IEU OpenGWAS Project website (gwas.mrcieu.ac.uk). Since this study utilizes publicly accessible data, no further ethical 
approval or consent was required. The study population’s genetic ancestry is of European descent to mitigate potential confounding 
factors related to race. Supplementary Table 1 provides a detailed overview of the GWAS data sources utilized in this research. 

2.2. IV selection 

IVs were selected following the hub hypothesis of MR (Fig. 2), with stringent controls as outlined below: Firstly, Genome-wide 
Significance: SNP loci linked with MG, MS, SLE, T1DM, and UC were screened using a significance threshold of P < 5 × 10^-8 to 
test hypothesis (1). Secondly, Linkage Disequilibrium (LD) Adjustment: Parameters were tuned (r^2 = 0.001 and kb = 10,000) to 
minimize LD effects. SNPs exhibiting strong LD (LD parameter r^2 ≥ 0.001) were excluded to fulfill hypothesis (2). Thirdly, Phenotypic 
and Confounding Factor Screening: Phenotypes related to IVs were manually screened using a phenotypic correlation database. SNPs 
associated with outcomes or confounding factors (P < 5 × 10^-8) were omitted. Abnormal SNPs were identified and removed using the 
MR-PRESSO test to meet hypothesis (3). Fourthly, Alignment of Effect Alleles: Data extraction ensured that exposure and outcome 
effect values aligned with the same effect allele. Fifthly, F-statistics were calculated to assess the correlation hypothesis and determine 
the explanatory power of IVs for exposure variables. An F-statistics value > 10 indicates lower likelihood of violating the correlation 
hypothesis and introducing weak IV bias. This systematic approach aims to establish robust causal relationships between SMs and the 
five ADs using MR analysis, ensuring rigorous selection and validation of IVs. 

2.3. Statistical analysis 

2.3.1. MR analysis 
In this study, MR analysis was implemented using the following methods: IVW method served as the primary method to estimate 

causal effects. Cochran’s Q test assessed heterogeneity among IVs influencing the five ADs. In cases where P < 0.05, indicating sig-
nificant heterogeneity, the IVW random-effects model was applied for causal inference. Conversely, if the absence of significant 
heterogeneity (P ≥ 0.05), the IVW fixed-effects model was utilized [15]. MR-Egger Regression, WME, and SME methods: These 
supplementary MR methods were employed to further estimate causal effects [16]. A significance level of P < 0.05 was employed to 
establish a causal relationship between exposure (SMs) and outcomes (MG, MS, SLE, T1DM, and UC) [17]. This comprehensive 
approach ensures rigorous evaluation of these relationships, incorporating various MR techniques to enhance reliability and validity of 
findings. 

2.3.2. Sensitivity analysis 
MR-Egger regression and MR-PRESSO methods were employed to evaluate horizontal pleiotropy, which evaluates whether IVs 

affect outcomes through pathways other than the exposure of interest. A regression intercept P value > 0.05 indicates no evidence of 
such pleiotropy [18]. The LOO method was utilized to examine the impact of individual SNPs on the causal relationship. Each SNP was 
sequentially removed, and the combined effect estimate of the remaining SNPs was recalculated to assess the influence of each SNP on 

Fig. 2. Hypothesis of MR analysis.  
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the overall MR analysis results [19]. These sensitivity analyses aim to ensure the robustness of the MR findings by detecting and 
addressing potential biases such as horizontal pleiotropy and the influence of individual SNPs. 

2.3.3. Statistical software 
Statistical analyses utilized the “TwoSampleMR” and “MRPRESSO” software packages. FDR correction was applied to adjust the P 

values derived from the IVW method, addressing multiple testing concerns. 

3. Results 

3.1. IV selection 

IVs in this study were selected based on stringent criteria. Specifically, the F-statistic corresponding to each SNP was required to be 
greater than 10, ensuring exclusion of weak IVs from the MR analysis. This criterion aimed to bolster the reliability and validity of the 
MR findings (Fig. 3A–E, Supplementary Table 2). This rigorous selection process aimed to ensure that only IVs with strong explanatory 
power for exposure variables were included in the analysis, thereby minimizing potential biases and strengthening the causal inference 
between SMs and ADs. 

Fig. 3. Forest plot of the MR findings for the five ADs. (A) MG; (B) MS; (C) SLE; (D) T1DM; (E) UC.  
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3.2. MR analysis 

In the four models examined, multiple SMs exhibited significant causal relationships with the five ADs. Specifically, 25 SMs were 
found to be significantly correlated with MG, 28 with MS, 25 with SLE, 30 with T1DM, and 30 with UC (Fig. 4A–E, Supplementary 
Table 3). The significant associations between these identified SMs and ADs are detailed in Supplementary Fig. 1. This analysis 
highlights the diverse metabolic factors potentially influencing ADs pathogenesis, providing valuable insights into their underlying 
mechanisms. 

Following FDR correction for significant causality results, it was determined that SMs were not associated with the onset of MS, 
SLE, and UC. However, specific findings indicated significant causal relationships for certain SMs: Higher levels of 5-methyluridine 
(ribothymidine) (OR = 1.191, 95 % CI 1.086–1.307, FDR-P = 0.000) and 2′-deoxyuridine (OR = 1.337, 95%CI 1.127–1.586, FDR- 

Fig. 4. Forest plot of MR estimates of the causal impacts of serum metabolites on the five ADs 
(A) MG; 
(B) MS; 
(C) SLE; 
(D) T1DM; 
(E) UC. 
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P = 0.001) were correlated with elevated MS susceptibility, while a higher ratio of S-adenosylhomocysteine (SAH) to 5-methyluridine 
(ribothymidine) (OR = 0.771, 95 % CI 0.649–0.916, FDR-P = 0.005) was related with decreased MS risk. Elevated levels of 1,2-dili-
noleoyl-GPE (18:2/18:2) (OR = 0.877, 95 % CI 0.791–0.974, FDR-P = 0.003) were connected to reduced T1DM risk (Fig. 5A–D, 
Supplementary Table 3). Scatter plots illustrated consistent directions across all four models (Fig. 6A–D). These findings underscore the 
connections between specific SMs and ADs, highlighting their potential roles in disease pathogenesis. 

3.3. Sensitivity analysis 

The findings of Cochran’s Q test and MR-Egger intercept indicated P values above 0.05, suggesting no evidence of potential 
horizontal pleiotropy or heterogeneity across the analyses. Similarly, MR-PRESSO yielded consistent findings (Supplementary 
Table 4). Funnel plots indicated minimal likelihood of influential factors affecting causality (Fig. 7A–D). Additionally, LOO analysis 
demonstrated that the overall findings were not motivated by any single SNP, as no individual SNP had a substantial impact on the 
outcomes (Fig. 8A–D). These sensitivity analyses affirm the strength of the MR findings, reinforcing the validity of the observed causal 
links between SMs and ADs. 

4. Discussion 

ADs arise from an intricate interaction of genetic, epigenetic, immune, and environmental factors, with genetic susceptibility 
playing a pivotal role. This study identified that levels of 5-methyluridine (ribothymidine), 2′-deoxyuridine, and the S-adenosylho-
mocysteine (SAH) to 5-methyluridine (ribothymidine) ratio can serve as predictors for MS. Additionally, levels of 1,2-dilinoleoyl-GPE 
(18:2/18:2) were identified as predictors for T1DM. However, no significant causal relationships between SMs and MG, SLE, and UC 
were observed. Uridine, to which 5-methyluridine (ribothymidine) and 2′-deoxyuridine belong, plays a critical role in biosynthesis, 
glycogen deposition, protein and lipid glycosylation, as well as in maintaining body temperature and circadian rhythm, and is closely 
associated with various metabolic diseases [20]. Uridine exerts influences on blood glucose homeostasis, islet cell function, and fat 
metabolism through various indirect mechanisms. For instance, postprandial bile release triggered by eating can facilitate uridine 

Fig. 4. (continued). 
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Fig. 5. Forest plot of the results of single SNP MR analysis 
(A) 5-methyluridine (ribothymidine) levels; 
(B) 2′-deoxyuridine levels; 
(C) S-adenosylhomocysteine (SAH) to 5-methyluridine (ribothymidine) ratio; 
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excretion, thereby reducing plasma uridine levels and enhancing insulin sensitivity [21]. Additionally, studies by Faizan Ahmad et al. 
have highlighted the anti-angiogenic properties of 2′-deoxyuridine [22]. S-adenosylhomocysteine (SAH) serves as a metabolic inter-
mediate in the synthesis of cysteine and adenosine. The relationship between increased cysteine levels and the pathogenesis of MS 
remains incompletely understood. Cysteine may contribute to MS through direct or indirect mechanisms, including structural and 
functional damage to vascular endothelial cells and genotoxic effects. It enhances lipid peroxidation, stimulates proliferation and 
migration of vascular smooth muscle cells (VSMCs), alters platelet function, affects the coagulation system, and facilitates vascular 
calcification. Recent research suggests that cysteine may also act as an inflammatory stimulus, triggering inflammatory responses [23]. 
Cysteine plays a significant role in activating the immunological system and inducing the expression of inflammatory factors. It induces 
the expression of chemokines and chemokine receptors in human vascular cells and monocytes, such as IL-10β, IL-6, IL-8, IL-12, IL-18, 
IL-1 receptor antagonist, C-reactive protein, adhesion molecules, and matrix metalloproteinases (MMPs) [24]. Chronic inflammation 
mediated by cellular immunity is critically involved in the development and progression of MS and its complications [25]. However, 
the specific relationship between levels of 5-methyluridine (ribothymidine) and 2′-deoxyuridine and MS remains unexplored. Inter-
estingly, 1,2-dilinoleoyl-GPE (18:2/18:2) has been linked to an increased risk of Crohn’s disease [10]. While there has been no prior 
report associating 1,2-dilinoleoyl-GPE (18:2/18:2) with T1DM, its potential role in this context could represent a novel and suggestive 
discovery. 

In summary, the study suggests that elevated levels of 5-methyluridine (ribothymidine) and 2′-deoxyuridine may contribute to the 
development of MS, while the ratio of S-adenosylhomocysteine (SAH) to 5-methyluridine (ribothymidine) could potentially mitigate 
MS progression. These findings propose these metabolites as potential auxiliary diagnostic markers for MS and as tools to assess 
prognosis. Similarly, levels of 1,2-dilinoleoyl-GPE (18:2/18:2) may alleviate the onset, progression, and prognosis of T1DM. This 
suggests promising avenues for utilizing these metabolites in clinical settings to better understand and manage MS and T1DM. 

This study boasts multiple advantages. Firstly, it leverages a substantial sample size, thereby minimizing the influence of extra-
neous variables on the findings. Secondly, by employing MR analysis, the study circumvents potential biases inherent in observational 

(D) 1,2-dilinoleoyl-GPE (18:2/18:2) levels; 
The black dot indicates ADs associated with elevated standard deviations (SD) in serum metabolites. The red dot represents the causal estimation of 
all combinations of SNPs using various MR methods. The horizontal line segment denotes the 95 % confidence interval (CI). Visualizations include 
the influence of the IVW causal estimate and the disproportionate impact on the overall estimate (red horizontal line) due to the exclusion of a single 
variant (black horizontal line). 

Fig. 6. Scatter plots of the analysis of SNPs 
(A) 5-methyluridine (ribothymidine) levels; 
(B) 2′-deoxyuridine levels; 
(C) S-adenosylhomocysteine (SAH) to 5-methyluridine (ribothymidine) ratio; 
(D) 1,2-dilinoleoyl-GPE (18:2/18:2) levels; 
The light blue line represents the IVW approach, while the blue line denotes the MR-Egger method. The green line corresponds to the WME method, 
and the light green line represents the SME method. 
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research, ensuring high scientific rigor and reliability. Thirdly, it represents the first comprehensive exploration of the genetic-level 
relationships between 1400 SMs and five ADs. While previous research by Yu et al. [26] explored similar relationships, our study 
significantly expands upon this work by applying a stringent significance threshold (5e-08), thereby enhancing result robustness. 
Furthermore, sensitivity analyses were conducted to mitigate biases, allowing for unique insights and mechanisms distinct from prior 
research. Fourthly, unlike previous MR analyses focusing on single exposure factors, our study examines the complex landscape of SMs, 
presenting substantial analytical challenges and workload. 

Despite its strengths, this study also faces several limitations. Firstly, the study cohort comprises individuals exclusively from 
Europe, potentially restricting the applicability of findings to other geographical and ethnic groups. Secondly, utilizing data from the 
IEU OpenGWAS Project restricts the ability to investigate potential nonlinear relationships or stratification effects related to age, 
health status, or gender. Thirdly, some SMs showing causal relationships with the five ADs lack known functional structures, hindering 
further detailed analysis and research. Fourthly, despite leveraging the largest available GWAS dataset on SMs, future research should 
consider expanding the sample size further to achieve a more precise assessment of the genetic impact of SMs. These limitations 
highlight areas where future studies could focus to enhance the applicability and depth of understanding regarding the role of SMs in 
ADs. 

5. Conclusion 

This study represents the initial identification of genetic-level associations between 1400 SMs and five ADs. Genetically predicted 
SMs showed associations with MS and T1DM. Specifically, elevated levels of 5-methyluridine (ribothymidine) and 2′-deoxyuridine, as 
well as the ratio of S-adenosylhomocysteine (SAH) to 5-methyluridine (ribothymidine), were identified as potential predictors of MS 
risk. Conversely, 1,2-dilinoleoyl-GPE (18:2/18:2) levels were identified as a potential predictor of T1DM risk. However, no significant 
correlations were found between SMs and MG, SLE, or UC. 

Ethics approval and consent to participate 

Not applicable. 

Fig. 7. Funnel plots of sensitivity analysis 
(A) 5-methyluridine (ribothymidine) levels; 
(B) 2′-deoxyuridine levels; 
(C) S-adenosylhomocysteine (SAH) to 5-methyluridine (ribothymidine) ratio; 
(D) 1,2-dilinoleoyl-GPE (18:2/18:2) levels; 
The WME method is depicted by the purple triangle, the SME method by the green diamond, the MR-Egger method by the red square, and the IVW 
method by the grey circle. 
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Fig. 8. Forest plots depicting LOO sensitivity analysis 
(A) 5-methyluridine (ribothymidine) levels; 
(B) 2′-deoxyuridine levels; 
(C) S-adenosylhomocysteine (SAH) to 5-methyluridine (ribothymidine) ratio; 
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