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Abstract: Yearly population growth will lead to a significant increase in agricultural production
in the coming years. Twenty-first century agricultural producers will be facing the challenge of
achieving food security and efficiency. This must be achieved while ensuring sustainable agricultural
systems and overcoming the problems posed by climate change, depletion of water resources, and
the potential for increased erosion and loss of productivity due to extreme weather conditions.
Those environmental consequences will directly affect the price setting process. In view of the
price oscillations and the lack of transparent information for buyers, a multi-agent system (MAS)
is presented in this article. It supports the making of decisions in the purchase of sustainable
agricultural products. The proposed MAS consists of a system that supports decision-making when
choosing a supplier on the basis of certain preference-based parameters aimed at measuring the
sustainability of a supplier and a deep Q-learning agent for agricultural future market price forecast.
Therefore, different agri-environmental indicators (AEIs) have been considered, as well as the use
of edge computing technologies to reduce costs of data transfer to the cloud. The presented MAS
combines price setting optimizations and user preferences in regards to accessing, filtering, and
integrating information. The agents filter and fuse information relevant to a user according to
supplier attributes and a dynamic environment. The results presented in this paper allow a user to
choose the supplier that best suits their preferences as well as to gain insight on agricultural future
markets price oscillations through a deep Q-learning agent.

Keywords: multi-agent systems; decision support systems; sustainable agriculture; deep Q-learning;
IoT; edge computing

1. Introduction

Environmental factors such as the consequences of climate change [1] directly affect
producers in the agricultural price setting process [2]. Agricultural trade is expected to
grow at roughly half the rate of the past ten years [3]. Nevertheless, for most commodities,
the share of total production that is being traded on global markets will remain relatively
constant. Technology will also be more important in guaranteeing global food security,
due to natural resource constraints in many countries [3]. In this regard, the concept of
bioeconomy is gaining importance within the European Union objectives for the 2030
Agenda and its Sustainable Development Goals, and new indicators to measure the per-
formance of bioeconomy sectors are emerging [4]. Globalization and the possibility of
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exporting and importing, as well as competing on a larger market, have led to a paradigm
in which agricultural products are a financial indicator of the economy and take part in
the prices of future markets. Agricultural commodity prices also tend to correlate with
trends on energy markets, with oil prices experiencing unusual rises and falls in recent
years [5]. Although agricultural inputs, production, storage, and transportation have
long been influenced by energy prices, the rapid growth of the biofuels sector has created
new types of relationships between agricultural and energy markets [5]. Moreover, in
periods of financial crises, the volatility of the agricultural market has been very high [6,7].
Those fluctuations on commodity futures markets [8] contribute to the agricultural price
oscillations for the farmers. However, not all agricultural products are affected by the
same factors, the agricultural market is very diverse in terms of product attributes and
particularities which are subject to external factors. For instance, corn futures prices may
be determined by certain factors (such as location, transportation costs, contamination,
warehouses, weather conditions, etc.) in comparison to wheat prices, that are less sensitive
to weather. The changes in climate are something that has been more accentuated in recent
years due to the greenhouse effect [9]. Analysis of greenhouse emissions as well as limited
resource expenditures or energy consumption is becoming more widespread in precision
agriculture (PA) [10] and smart agriculture (SA) [11].

PA is a term that has been coined in recent years. It refers to the concept of using new
technologies to increase the yield and profitability of crops while reducing the resources
needed for cultivation [12,13]. Thanks to technological advances, farms in developed and
developing countries can benefit from the application of low-cost technologies. In this
regard, the Internet of Things (IoT) and, more specifically, the Industrial Internet of Things
(IIoT), is presented as a key enabling technology for implementing and monitoring resource
management solutions in various scenarios in Industry 4.0, including smart agriculture
environments [11]. The monitoring of all these values can be carried out with sensors, using
new paradigms such as edge computing which enable monitoring while reducing the cost
of data analysis in the cloud [14,15] increase the efficiency of agricultural processes [16].
The application of multi-agent systems to monitor agricultural processes is common, es-
pecially to achieve the efficient use of land in terms of investment and production [17],
to manage resources [18], to increase the efficiency of irrigation systems [19,20], to opti-
mize energy use [21], or predict the prices of agricultural products [22]. Moreover, in the
field of selecting suppliers, Valluri and Croson [23] conducted a research towards best
supply selection through a game theory approach with agents, in a scenario where reward
and punishment were complicated by incomplete information. Over the last years, the
number of processes oriented to sustainability objectives [24] and to developed tools [25]
is growing. For instance, it has become more popular to integrate environmental, eco-
nomic, and social attributes when selecting a supplier and sourcing process [26–28]. There
are many differences in price setting in terms of requirements and the most important
attributes for which each model can be built. Most models rely on historical data; however,
others focus on the buyer, in which there are sales quotas, decision history polynomials,
probabilities, and regressions of the potential prices that might be accepted [29]. In the
literature, other approaches have been found, such as agent-based modeling with rein-
forcement learning conditioned by inventory [30,31]. When product pricing strategies are
connected to estimations of price allocation and real-time reporting is taken into account,
the relationship between data and price allocation parameters can be modeled dynamically,
as demonstrated in the multi-agent supply chain [32]. In the context of a market, goods
are exchanged and there are two main players. One of the basic rules in a price system
is that goods can be exchanged according to the relative prices of the goods in question.
Twenty years ago, Wellman and Wurman [33] already developed the first market-based
multi-agent paradigm at a theoretical level.

The above examples demonstrate that multi-agent systems are applied in cases where a
single agent is not capable of carrying out all the processes, as several agents and objectives
interact in real-time [34]. Although currently there are different MAS focused on price
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forecast [35] or choice of suppliers [26–28], to this day, there is still no MAS in which a
buyer can have information on the sustainability of a supplier or a product by monitoring
the greenhouse emissions involved in production, the use of pesticides or the consumption
of natural resources and having access to information on prices on the futures market.
Considering that these needs cannot be fulfilled with a single agent, a MAS has been
built [36]. The proposed system consists of MAS that helps choose a supplier through
decision-making based on certain attributes. These attributes measure the sustainability
of a supplier and also have prices of agricultural futures markets. The different attributes
that have been considered are agri-environmental indicators (AEIs) [37]. These parameters
consist of water consumption, greenhouse emissions, energy consumption, as well as the
use of edge computing technologies that represent an improvement in terms of data transfer
costs to the cloud. More concisely, the MAS consists of a preference-based multi-objective
optimization problem that is open to real implementation, and therefore each user can fix
the desired threshold and input requirements. Although not all products are comparable
at the world level, the developed MAS is intended to give an indication of the most recent
price developments. Futures markets are an important source of price information for
farmers, but only a small percentage of farmers directly trade futures. The availability
of high-frequency (intraday) data can help market participants make quicker decisions
compared to low-frequency data, such as daily or monthly data. Having high-frequency
data allows to better forecast the stock prices [38] so that farmers can sell according to
trends in agricultural futures market real prices without having to wait to learn of the
effects of selling products.

The rest of this paper is structured as follows. Section 2 consists of a revision of the state
of the art of technologies involved in the system. Section 2.1 introduces the edge computing
technologies as they play a significant role in monitoring and cost reduction in agriculture
and identifying the most important trends in the application of those paradigms in smart
farming scenarios. Then, in Section 2.2, state-of-the-art MAS are described, specifically
those designated for agriculture scenarios, and finally, in Section 2.3 the deep Q-learning
concept is introduced. Section 3 describes the MAS architecture and the data that have
been used to conduct the experiment. Section 4 describes the experiments that have been
conducted and the results. Finally, Section 5 discusses the solution, implementation fields,
conclusions, and future work.

2. Related Work

This section reviews the state-of-the-art of the three main topics that are directly
related to the case study: the edge computing paradigm, the MAS, and the deep Q-learning
algorithm. First, the state-of-the-art of edge computing (EC) paradigm is presented. EC
is a paradigm that enables reducing data transmission costs to the cloud, and in this case
when conducting the analysis of consumption and greenhouse emissions. Second, the
MAS and the multi-objective optimization processes are described to contextualize the
conducted experiment in which different agents interact to identify the best supplier and
price according to a given preference, and finally an introduction to Deep Q-learning which
is the technique used for forecasting the agricultural future market prices.

2.1. Edge Computing

The increasing demand for food in terms of quality and quantity has increased the
need for industrialization and intensification in the agricultural field [39]. Internet of things
(IoT) is a very promising technology that offers many innovative solutions to modernize
the agricultural sector [40]. IoT can be used in combination with other technologies such as
cloud computing, big data, AI, or distributed ledger technologies (e.g., blockchain) to imple-
ment solutions that improve the traceability and productivity of industrial processes [41].
However, when trying to transmit data to the cloud, several challenges arise regarding
the privacy of the data, power consumption, or costs associated with the use of cloud
services [15]. In this regard, service providers charge fees according to the amount of data
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that is transferred, stored, and processed in the cloud [42]. By using EC technologies, it is
possible to reduce the traffic between the IoT layer and the cloud [14]. EC allows for the
execution of machine learning models at the edge of the network, reducing the response
time and providing a certain level of service even if the communication with the cloud is
interrupted. This is commonplace in scenarios where Internet connectivity is limited (for
example, rural agricultural environments) [15]. The EC paradigm has been also used in
different studies in which results show that including the costs of edge and non-edge data
transfer has an impact on the efficiency [16].

2.2. Multi-Agent Systems

Preference-based multi-objective optimization has had an increasing interest in re-
search and academia in the last years [43]. Agents can be defined as intelligent entities with
social skills (communication, collaboration, interaction, negotiation, intelligence, coordina-
tion, competence) that encapsulate a functionality to solve a problem [34,44]. When two
or more agents are able to work together in order to solve a common problem, they form
a MAS [34]. MAS are systems that integrate a set of agents that interact, communicate,
and coordinate to achieve the established objectives [45]. MAS are designed to meet a
set of objectives according to a set of rules and standards. The different designs of MAS
have different nomenclatures depending on the methodology, nevertheless, they tend to
include social, communicative, interactive, and normative aspects [46]. Each of these is
described below.

1. Social aspects refer to the description of the set of roles, groups (role associations), and
the relationship between them. Regarding the existing relationships between roles and
groups (recursively), some authors have defined a set of social structures that allow to
model the interactions between members. Among the main structures, the following
stand out: hierarchies, coalitions, teams, congregations, societies, federations, markets,
matrices, and composite organizations. Some studies have simply defined possible
relationships between members [46] such as dependency, hierarchy, use, etc.

2. The communication aspects refer to the means that makes the exchange of information
possible. That is, a knowledge representation language (usually represented by an
ontology) and a communication language. The communication sequence between
two agents is called illocution [47], communication act [46], or link [48].

3. Interaction aspects refer to how roles collaborate to achieve common goals. There
might be objectives that cannot be achieved individually, and that require the combi-
nation of several agents for achievement, and it is necessary to describe an interaction
structure that allows to articulate or regulate the achievement of individual sub-
objectives that in turn make the achievement of higher-level objectives possible [46].

4. Normative aspects: note that this is one of the main pillars of organizational MAS [49].
Norms (or institutional patterns make it possible to establish a relationship of trust
between the members of an organization, as they limit the free will of individual
agents [50].

In addition to the concepts that have just been presented (role, organization, norms,
and social structures), organizational MAS routinely include another key concept: Envi-
ronment. Agent theory traditionally conceives the agent as an entity that plans its actions
on the basis of its perception of the environment. However, the increasing complexity
of the environment itself in the context of open systems (dynamic, heterogeneous, and
unpredictable) can not only make the MAS unpredictable, but also difficult to interact
with [34,44].

Moreover, it is important to understand the effect of ubiquitous automated agents
on the performance of economic systems. With a special emphasis on being able to
achieve, at the computational level, the capacity for some agents to reason about the
reasoning of other agents and of humans who would also be at stake. Moreover, these
agents will adopt a game theory vision [51], where each agent will act according to the
behaviour of the other agent (in the best and most rational manner for both agents). Game
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theory consists of a mathematical theory that studies interactions among self-interested
agents [52]. The traditional game theory was revised and applied in biology by the authors
of [53], in which the authors determined the concept of Evolutionary Stable Strategies
(ESS). In these strategies, there were not only two players in a complete information
situation and that was a condition of Nash’s equilibrium [54]. Therefore, it would lead to
equilibrium situations that are part of the traditional economy. The quality of an AI design
is determined through the degree to which the agent’s actions achieve specific objectives,
subject to observed perceptions. If we express objectives in terms of preference over results
and perceive both perception and action within the framework of decision-making under
uncertainties, then the position of the AI agent is fully in line with the standard economic
paradigm of rational choice. Consequently, the task of the AI developers is to build rational
agents, or agents that are as rational as possible, given the limits of their computational
resources [55]. At the multi-agent level, a developer cannot directly program the behaviour
of AI, but instead determines the rules and incentives that will regulate the interactions
between AI. The authors of [56] propose a multi-agent system to simulate group decision-
making processes, where agents are designed with emotional properties and reason using
incomplete information.

In real-world scenarios, there are multiple applications and situations within a given
market, different agents have to make decisions with incomplete information. Methods
such as the game theory for portfolio optimization can be used in these cases, regardless
of the product in question [57]. The application of computing techniques for the optimal
product or supplier portfolio, from the application of machine learning algorithms [58],
to genetic algorithms for product optimization [59], neural networks [60], deep neural
networks [61], and reinforcement learning [62].

Multi-Objective Optimization Problem

A multi-objective optimization problem can be defined as the following Equation (1),
where f (x) is the k-dimensional objective vector.

Max f (x) = ( f1(x), f2(x), . . . fk(x)) (1)

The multi-attribute utility function is used to represent the preferences of a user over
packages of goods, under conditions of certainty about the results of any potential choice.
Van Calker et al. [63] presented a model of the sustainability multi-attribute function for
evaluating sustainability in different farming systems.

Preferences can be characterized by utility functions, where the information regarding
preference is implicitly involved in the function, enabling the ranking of solutions. Utility
functions assign different weights to given attributes. The utility function for the buyer
agent in this case would be the following, in which product A (which could be Corn sold at
X price and Greenhouse contamination of Y points), is preferred over product B only if the
expectation of the function U is higher under A than under B, as shown in Equation (2).

EA[u(x1, . . . , xn)] > EB[u(x1, . . . , xn)] (2)

2.3. Deep Q-Learning Algorithm

Reinforcement learning (RL) consists in an agent interacting with the environment,
learning an optimal policy, by trial and error, for sequential decision-making problems [64].
The standard RL consists of an agent interacting with an environment, which can be
modeled as a Markov decision process (MDP).

The Q-learning algorithm [65] is one of the best-known, model-free techniques in
RL and has numerous evolutions and variants [66]. Q-learning, is a model-free off-policy
RL method, which consists of agents whose objective is to reach the state-action-value of
a function Q = (s, a) by interacting in a given environment. As the agent explores the
environment, Q returns an increasingly accurate approximation of the expected value of
an action a, given a state s of the expected value of an action a, given a state s. That is, the
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function Q is progressively updated. Q-learning [67] can be defined as a way for agents
to learn how to act optimally in controlled markovian domains, which means the future
depends only on the current state and action, but not on the past. It is formulated as an
MDP which can be defined by the 5-tuple (s, a, p, r, γ), where s is the state, a is the action, p
is the transition probability, r is the reward function, and γ is the discount factor.

Deep learning (DL) has accelerated progress in RL, with the use of deep learning
algorithms within RL defining the field of deep reinforcement learning (DRL) [66]. DL
allows RL to be extended to previously intractable decision-making problems, i.e., environ-
ments with a high number of dimensional states and action spaces. As a neural network
is a universal functional approximation, it can be used as a substitute for the Q-table. In
the learning process, DL optimizes the weights, θ, to minimize the error estimated by
the loss function. The error or loss is measured as the difference between the predicted
result and the actual result. The deep Q-network (DQN) was first introduced by [68] and
then [69] introduced additional techniques, such as DQL. The base algorithm for DQN is
value-based RL, which is a method that approximates an action value (i.e., a Q-value) in
each state. An algorithm based on Q-learning that approximates the Q-function using DNN
is the basis of DQN [69]. To prevent DNN from learning only through the experience of a
specific situation, experience replay has been introduced to sample a general experience
batch from memory [69]. In reinforcement learning, the temporal difference (TD) target
function is always unknown. Before an agent takes an action, the Q-value can be defined
as Q(s, a), and after the action is taken the new state is R(s, a) + γmaxa′Q(s′, a′), so the
temporal difference is defined in Equation (3).

T(a, s) = R(s, a) + γ×maxa′Q(s′, a′)−Qt−1(s, a) (3)

The value function is approximated by a neural network Q(s, a; θ) with a parameter, θ
where the parameter is learned by minimizing the TD loss. Thus, the loss function turns
out to be

Loss = Q∗(st, at)−Q(st, at) (4)

The key idea of DQN is to learn an approximation of the optimal value function Q,
which conforms to the Bellman optimality equation [70]. In the DQN algorithm, the Q
corresponds to the function that represents the expected rewards for a given action in a
given state. DQN refines the policy with respect to action values by the max operator [71].
One way to minimize the loss function is by the gradient descent method [72]. In this
method, the policy Q(s, a) is updated on the basis of the current reward and the maximum
value of the expected future rewards. In the DQN, the learn function can be described as in
Algorithm 1, where ε is the learning rate and π is the optimal policy.

Algorithm 1: Algorithm adapted from the work in [71].
Result: Q
initialization; Q : X× A→ R
while Q has not converged do

Start in states s ∈ X
while s is not terminal do

calculate π according to Q and exploration strategy
a← π(s)
r ← R(s, a)
s′ ← T(s, a)
Q(s′, a)← (1− α)×Q(s, a) + α× (r + γ×maxa′Q(s′, a′))
s← s′

end
end
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3. Case Study

This section describes the MAS that has been designed and how it has been conducted.
This section has two main parts: first, the architecture of the MAS is defined in Section 3.1,
and second, the different types of data used to perform the experiment are described in
Section 3.2.

3.1. Architecture

The architecture that has been designed for this case study is represented in Figure 1.
A MAS architecture has been used as a MAS can be defined as a collection of, possibly
heterogeneous, computational entities, having their own problem-solving capabilities and
which are able to interact in order to reach an overall goal. In the case of this investigation,
each agent has a role [73]. As shown in Figure 1, there are three agents that communicate
to provide the best option according to user preferences; it is a closely collaborating agent
system in which every agent has its own specialized capabilities and knowledge, and no
single agent has full knowledge of the world. The main functions include agricultural fu-
tures market information retrieval, deep Q-learning for lowest price setting, and preference
based weight system for users’ preferences. The architecture designed for the MAS has
been implemented with SPADE library [74].

Figure 1. Proposed multi-agent system.

In this case, to test the MAS, one agent collects information from the period described
in Section 3.2. Then, the preference-based utility functions retrieve information from the
historical database and also the preferences of the user in terms of weights for each attribute.
In the case of this study, as the approach is preference-oriented and there are some weights
according to each attribute, the Equation is represented as in Equation (5). For the values
of the other attributes, the equivalence is shown in Equation (6).

(w2, . . . , wn)(w2, . . . , wn) (5)

(y1, w) ∼< (x1, w) : (z1, w) > (6)
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Next, the deep Q-learning agent is responsible for modeling nonlinear trends of stock
price time series, by predicting values and identifying the lowest prices.

3.2. Data

The data that have been chosen for testing the MAS can be modified and adapted to
other products or markets. To implement the case study, information has been taken from
a specific time-period, but as mentioned above the presented architecture is adaptable to
any market. For the development of the model, two main datasets have been used; on
the one hand real data from agricultural futures market and on the other hand a synthetic
dataset for potential suppliers. The synthetic dataset has been built with different agri-
environmental indicators (AEIs) [37] as main attributes for each supplier. AEIs track the
integration of environmental concerns in the common agricultural policy (CAP) at EU,
national and regional levels. The different attributes that have been considered are in
Table 1 as follows:

Table 1. Supplier attributes.

Attribute Description Measure Units

Energy consumption Energy consumed kWh
Greenhouse N2O is produced mostly from excess nitrogen in soils; one way to

suppress emissions of this gas is to apply fertilizer judiciously:
adding just enough, at the right place and time, to meet crop
demands, but avoiding excess amounts. This can reduce fertilizer
costs for producers and reduce the amount of nitrogen lost
through excess fertilizer application

N2O

Water consumption Amount of water consumed per year for the irrigation of crops mL/ha
Edge Computing Techniques Whether edge computer techniques are used to reduce the cost of

using the cloud and make their sensors communications more
robust and scalable with the cloud

Boolean (Yes/No)

In the case of the qualitative values, such as the edge computing attribute, the values
were converted into the following values [0, 1]. The other data that are considered in the
study are the data from the agricultural futures market. To evaluate the model and to see
how it works, information has been collected from the corn agricultural futures market,
which has the CZ symbol. The period for which the data has been collected is from 2017 till
2019, because the 2020 and 2021 values are very irregular due to the COVID-19 pandemic.
The attributes that are usually collected from the stock market are the ones defined in
Table 2; nevertheless, the most commonly used inputs for next-day stock price prediction
in the literature are the stock index opening or closing prices [75], and those are the values
have been gathered for the case study, as represented in Figure 2.

Table 2. Stock market price variation. Source: Stock market for the symbol CZ.

Attribute Description

Date The information regarding price variations is
considered per day

Price Stock price
Open Stock price at the opening
High Highest price within a concrete day
Low Lowest price within a concrete day
Vol. Number of stocks
Change % Variation regarding previous date
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Figure 2. CZ symbol price variation.

4. Results

The problem that the presented MAS overcomes is the difficulty of choosing a supplier
according to sustainability parameters, as well as having transparent market information.
The MAS presented helps potential buyers to identify a supplier according to their prefer-
ences in terms of sustainability as well as efficient use of resources. It also combines the
selection of the supplier according to certain preferences, as well as seeing the actual price
differences with the quotations of the products and being able to buy at the most optimal
times. The designed MAS has two main results that are presented below. The first result is
related to the supplier selection ranking, and the second one to price forecasting.

To achieve the first goal, different values have been assigned to the attributes, in terms
of user preferences. To test the model, different cases have been tested with the following
preferences as represented in Table 3.

Table 3. Case study combinations according to weights assigned [1,10] for the attributes of
each supplier.

Greenhouse Water Energy

Case 1 3 5 2
Case 2 0 8 2
Case 3 8 1 3

Then, a value between [0,10] is assigned to each supplier, where value is understood as
the total sum of the weights of different attributes, assigned according to the attribute, and
attribute importance. The outputs and the values of each of the parameters are represented
in the Figures 3–5, in which three dimensions are represented; the value according to the
different weights for each of the parameters.

cas

Figure 3. Case 1, according to the preferences described in Table 3.
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Figure 4. Case 2, according to the preferences described in Table 3.

Figure 5. Case 3, according to the preferences described in Table 3.

As can be seen from Figures 3–5, the different suppliers’ selection would vary accord-
ing to the preferences set by the user. Once the different suppliers have been ranked, the
results are sent to the Q-learning agent. The deep Q-learning agent’s goal is to maximize
the total amount of reward it receives. In this case, the agent’s goal is to buy at the lowest
price given a certain amount of money. Therefore, the user should fix an initial amount
of money, which in this case has been 20,000. To build the agent, the different parameters
have been fixed as shown in Table 4. Then, different hyperparameters have been changed
to identify the best agent performance. The set hyperparameters are shown in Table 4, and
then the other hyperparameters have been compared, as represented in Table 5.

Table 4. Fixed hyperparameters that have been used for the different case combinations in the deep
Q-learning agent.

Parameter Description Value

γ Maximizes the current reward 0.950
ε Either taking random actions or using

the trained actions
0.500

ε decay The decrease over time in the use of the
random and trained actions

0.999

Actions The actions that can be taken by the
agent, which is either selecting a
buying price or do nothing

2

Replay memory size Agent’s experiences at each time step
in a data set

1000

The Q-learning agent has one hidden layer with 256 neurons and the activation
function is the rectified linear unit (ReLU) [76]. In the learning process, DL optimizes the
weights, θ, to minimize the error estimated by the loss function. Therefore, the error or loss
are measured as the difference between the predicted result and the actual result. The loss
function for the different cases which are described in Table 5, is represented in Figure 6.
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Table 5. Parameters used for each case comparison related to the different cases.

Case Number Window Size Batch Size

1 8 32
2 10 32
3 20 32
4 8 64
5 10 64
6 20 64

As can be seen in Figure 6, cases 3 and 4 are the ones achieving the best results in all
Figure 6a–c, while, for instance, case 1 has the worst results in Figure 6a but then has better
results in Figure 6b. Moreover, in Figures 7 and 8, all the marked values are placed in the
real price variation line.

(a) 600 iterations (b) 1200 iterations

(c) 2400 iterations

Figure 6. Loss function comparison on cases from Table 5 with different iterations.
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(a) 600 iterations (b) 1200 iterations

(c) 2400 iterations

Figure 7. Lowest price identification with different iterations on the basis of the parameters described in Table 5 for
each case.

(a) Case 1 (b) Case 3

(c) Case 4

Figure 8. Table 5 for three selected cases

To view the comparisons of cases 1, 3, and 4 in more detail, the results are represented
in Figure 7, where all the different cases are compared and represented according to the
number of iterations in Figure 7a–c. Has been collected the different cases that were
performing better according to the loss functions of Figure 6.

The conclusion that can be drawn from Figures 6 and 7 is that the best options can be
chosen by basing the decision-making on hyperparameters, either case 1, 2, or 3, so this
case’s comparisons have been compared in Figure 8. As can be seen in Figure 8a, case 1
presents good results either in case of 1200 iterations and 2400. Therefore, the option that
included in the MAS is the one with the above-mentioned hyperparameters. Thus, the
buyer is at last presented with a potential list of suppliers and the lowest market prices at a
given moment, which allows them to identify the most suitable suppliers for them as well
as the best times to buy the products and also to identify the trends in specific products.
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5. Discussion

The use of new technologies as well as the reduction of natural resource consumption
or the generation of greenhouse effect impacts is becoming a more important element
when choosing a supplier [77]. In the agricultural market, wholesalers purchase and store
products in a well-controlled environment in the harvest season, and then recover selected
quantities to sell in the market. The amount that is purchased in the harvest season, as
well as the amount that is recovered in each selling period, have a strong impact on a
wholesaler’s profit [78]. The proposed MAS allow to buy agricultural products sustainably
thanks to the use of technologies such as edge computing, which reduces agricultural
costs and help to make efficient use of resources [16] such as water [20,79] or energy
optimization [21], as well as monitoring harmful emissions. According to the work in [78],
an optimal selling policy can increase the expected profit. Therefore, being able to combine
and obtain real-time price information allows adjusting purchase prices in anticipation
of the problem of making strategic sales decisions [80]. In the current case, a paradigm
in which each stakeholder (i.e., direct FMCG chains, wholesalers, etc.) acts individually
is proposed. For a further evaluation of the model, a pool of suppliers will be contacted
in order to include location as another interesting factor when determining prices and
creating a reality between the requirements of potential buyers and suppliers.
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