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Abstract: Remote sensing technologies have been widely applied in urban environments’ monitoring,
synthesis and modeling. Incorporating spatial information in perceptually coherent regions,
superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which
is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have
adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms
can significantly improve computational efficiency owing to the greatly reduced number of image
primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly
used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation
algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local
competition mechanism to construct energy terms and label pixels. The local competition mechanism
leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to
the diversity of image content and scene layout. Consequently, SSLC could achieve consistent
performance in different image regions. In addition, the Probability Density Function (PDF),
which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced
to describe the color distribution of superpixels as a more sophisticated and accurate measure.
To reduce computational complexity, a boundary optimization framework is introduced to only
handle boundary pixels instead of the whole image. We conduct experiments to benchmark the
proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD)
and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall
performance, while the computation time-efficiency is still competitive.

Keywords: superpixel; remote sensing; local compete mechanism; boundary optimization; improved
fast Gauss transform; fast marching method

1. Introduction

Remote sensing technologies have been widely applied in urban environments’ monitoring,
synthesis and modeling. However, the conventionally-used pixel-wise hyperspectral image (HSI)
classification approaches [1,2] lack spatial information and thus may generate a “salt and pepper”
result [3]. Fixed-size window-based HSI classification approaches [4,5] can extract local spatial
information, but they cannot adaptively capture the structural characters of varying sizes and
shapes [6]. Therefore, fixed-size window-based approaches may corrupt the result or result in some
over-smoothing.

Superpixel [7] algorithms aim to over-segment an image into a configurable number of regions
that are expected to be coherence in appearance and conform to the local image structure. Unlike
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pixels, superpixels incorporate the spatial structures of the image and the contextual information of
pixels [8]. Compared with fixed-size square windows, superpixels have adaptive sizes and shapes for
different spatial structures [9]. Moreover, by using hundreds of regions represent an image instead
of 105 pixels, it greatly reduces the complexity of consequent image processing tasks, especially for
probabilistic, combinatorial or discriminative approaches.

With these advantages, superpixel segmentation has been introduced for remote sensing
image processing, such as HSI compression [8], remote sensing image classification [3,6,9–18], HSI
denoising [19] and target detection [20–22]. The watershed segmentation algorithm [23] is used for
superpixel generation to enhance the discriminative power of the classifier [12,13]. N-Cut (Normalized
Cut [24])-based classification is investigated to classify the Polarimetric Synthetic Aperture Radar
(PolSAR) images by Liu et al. [14]. Fan et al. [19] integrate the Entropy Rate Superpixel (ERS) [25] into
the Low-Rank Representation (LRR)-based denoising method to fully exploit both the spectral and
spatial information of HSI, which led to better denoising quality. In the papers [6,9,10], they combine
ERS and the first principal component of HSI to segment the HSI into K (number of superpixels)
perceptually coherent regions, and then present a superpixel-based sparse model to exploit the spatial
correlation between the superpixels for classification of the hyperspectral images. SLIC [26] has also
been extended to the HSI for improving the classification performance [15–18] and target detection
performance [20–22]. These studies show that the conventional superpixel algorithms or their extended
versions have the potential to improve the remote sensing image processing performance. Besides,
superpixel algorithms have also been widely adopted as a precursor to other various higher level
processing tasks such as image segmentation [27], contour detection [28], road detection [29–31],
image labeling [32], object tracking [33] and object localization [34].

An essential part of the conventional superpixel algorithms is the energy function and the
corresponding optimization scheme adapted to it. Typically, an energy function has two or more
energy terms, which describe the pixel-superpixel relationship. The frequently-used energy terms
include the appearance coherence term on color space and the compactness constraint term on metric
space. Ideally, to produce robust and consistent output, an energy term should be insensitive to the
diversity of image content and scene layout. Major existing superpixel algorithms directly calculate
energy terms in raw feature space with each term having a fixed weight regardless of heterogeneous
scene layouts. Consequently, energy terms will function inconsistently between image regions (such as
the appearance coherence term in SPixel [35], which is the Euclidean distance between the color of
a pixel and the mean color of a superpixel, generates a larger energy value in regions with high color
variance; therefore, it has a larger impact than in regions with low color variance). Meanwhile, as the
image contents and scene layouts in different images vary largely, e.g., as shown in Figure 1, it seems
impossible to seek a fixed set of optimal weight parameters for energy terms adaptable to every image.

Figure 1. Image patches (from P(1) to P(7) in image I(1)) have diverse color and density layout and the
same between I(1) and I(2).

For robustness and consistency, energy terms should be able to adapt to various image contents
and scene layouts in arbitrary image regions. With improved consistency, energy terms can be used
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to optimize the weight parameters so that the energy function will further enhance its performance.
For these purposes, a local competition superpixel segmentation algorithm is proposed that utilizes
the competition mechanism in the following two levels:

• On pixel labeling level, by utilizing the competition mechanism in maximizing the energy
function, each pixel gets a label.

• On energy term construction level, by utilizing the competition mechanism, which generates the
membership degree of pixel-superpixel from raw measurements (where those raw measurements
are derived from the original feature space, such as the lab color space in SLIC), the value of
energy terms can be obtained.

Since each competition is restricted to a small local region, the proposed algorithm is named the
Superpixel Segmentation with Local Competition (SSLC). The local competition mechanism leads to
energy terms locality and relativity. Normally, changes of the image content and scene layout are small
in nearby regions. Thus, the proposed algorithm is less sensitive to changes in image content and
scene layout and performs much better in consistency across image regions.

Color appearance is one of the most important features for most state-of-the-art superpixel
algorithms. SLIC [26] and SPixel [35] use the mean value to represent the color feature of a superpixel.
The main disadvantage of this model is its failure to describe the color distribution, and the mean color
bias can be large. To avoid these flaws, Lattice Cut [36] and Seeds [37] utilize the histogram describing
the color distribution of the superpixel. However, histograms are not smooth, and their shapes
depend on both the start points of bins and the width of bins. In order to avoid the aforementioned
flaws, The KDE-estimated PDF is introduced to describe the color distribution of superpixels. This is
a sophisticated measure that has the potential to describe the color distribution much more accurately,
especially when the color distribution is diverse.

Recently, Spixel [35] and Seeds [37] introduced a boundary optimization scheme to generate
superpixels. They show competitive efficiency and performance to the state-of-the-art ones. Nevertheless,
both of these algorithms start from regular lattice grids, which is far from the optimal solution. Hence,
the fast SLIC is adopted to generate initial partitions, which have a more coherent appearance and better
boundary adherence. As a result, they promote the final result to converge to a more optimal solution.

We evaluated our approach on the berkeley segmentation dataset (BSD) [38]. Experimental
results show that the proposed approach achieves higher boundary recall and achievable segmentation
accuracy, as well as lower under-segmentation error than state-of-the-art superpixel segmentation
algorithms. At the same time, it maintains competitive time efficiency. Therefore, the proposed
algorithm is a good alternative method for remote sensing image processing.

The rest of this paper is organized as follows. Section 2 briefly reviews the existing techniques
used for superpixel segmentation. Section 3 presents the proposed Superpixel Segmentation with Local
Competition (SSLC) algorithm, followed by the detailed implementation of the proposed algorithm in
Section 4. Experimental results are presented and analyzed in Section 5. We conclude this paper and
plan for the future work in the final section.

2. Related Works

The term “superpixel” dates back to 1980s by simply regarding it as an image over-segmentation.
While many traditional image segmentation algorithms (such as watershed [23], meanshift91 [39],
FH [40], Quick Shift (QS) [41]) still work, those “general purpose” algorithms are not flexible enough
to directly control the number of superpixels with a lack of compactness constraint. Superpixels
produced by these traditional algorithms usually have highly irregular shapes and sizes and thus are
no longer as comparable with “pixels” . Moreover, a large superpixel with a highly irregular shape
tends to overlap with multiple objects.

The concept of superpixel algorithms was first introduced by Ren and Malik [7]. They use contour
and texture cues to recursively partition a graph of all pixels in the image and globally minimize a cost
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function defined on the edges at the partition boundaries. Therefore, it produces superpixels with
similar sizes and in a more compact shape. However, the superpixel segmentation algorithm in [7] has
very high computational complexity and relatively poor boundary adherence performance.

Following that, a wide variety of superpixel algorithms has been proposed. Levinshtein et al.
introduced an alternative algorithm named TurboPixel [42]. It places initial seeds regularly onto an
image, and uses the level-set method to dilate progressively from those seeds based on local image
gradients. The algorithm yields a lattice-like structure of compact superpixels with approximately
uniform size. TurboPixel shows far better efficiency than the algorithm proposed by Ren and Malik.
A variation of TurboPixel is presented by Peng et al. [43] where they invent a structure-sensitive
over-segmentation technique, by over-segmenting images into regions with quasi-uniform density.
However, both algorithms may fail when segmenting an image in regions with high intensity
variability which leads to their results having poor performance in boundary adherence and
under-segmentation error.

Some interesting works on superpixel algorithms are presented by Moore et al [36,44,45].
Their goal is somewhat different from the aforementioned methods. They seek to compute regular
superpixels while preserving the topology. Superpixel Lattices [44] uses a greedy algorithm to
cut images along vertical and horizontal strips sequentially. Consequently, superpixels that are
produced by Superpixel Lattices preserve the inherent topology structure; whereas in Lattice Cut [36]
the problem is solved with a graph-cut algorithm. It is a more global optimization, resulting in
generating superpixels with better performance across all superpixel resolutions. Compared with
lattice approaches, TPS [45] adopts local optimal constraints and offers better boundary recall than
SP-Lattice. The major drawback of those algorithms is their performance depending on the quality of
the pre-computed boundary maps.

Another widely-known superpixel algorithm, named simple linear iterative clustering (SLIC [26]),
is proposed by Achanta et al. It is based on an iterative k-means clustering, and the similarity measure
is the Euclidean distance in a three-dimensional color space, as well as two-dimensional image metric
space. Despite its simplicity, SLIC shows superior performance and effectiveness over the existing
methods at that time. However, it has one major drawback: the k-means algorithm does not guarantee
the connection of all clusters, which is essential for superpixels. Therefore, a post-processing step is
required to reconnect superpixels that have been ripped apart, thereby bypassing the distance measure.
Based on this work, Li et al. propose Linear Spectral Clustering (LSC [46]). They first map each pixel
to a ten-dimensional feature space, then apply a weighted k-means clustering to segment an image
into a specified number of superpixles. It achieves better boundary adherence and is able to preserve
the global properties of images. Another strategy for improving the performance is introduced by
Liu et al. called Manifold SLIC [47]. Other than the conventional SLIC method that clusters pixels
in R5, they map the input image I onto a two-dimensional manifold M embedded in the combined
image and color space R5. The area elements of M reflect the density of image content. Through
computing Restricted Centroidal Voronoi Tessellation (RCVT) on M, the manifold SLIC generates
content-sensitive superpixels. Wang et al. [48] initialize cluster centers in a hexagon distribution
rather than a square distribution and incorporate the boundary term into the distance measurement
during k-means clustering. The generated superpixels by their approaches are shaped into regular
and compact hexagons.

In contrast to the graph-cut-based methods and traditional gradient-ascent-based growing
superpixels, Seeds [37] introduces a boundary optimization scheme to generate superpixels. It starts
from regular grids, then iteratively optimizes them by moving the boundaries of the superpixels.
By optimizing only the boundary pixel (or block) instead of the whole image, the computational
complexity could be significantly decreased. Inspired by the Seeds algorithm, Spixel [35] uses
a coarse-to-fine energy update strategy to optimize the boundary blocks (or pixels), which allows the
optimization to reach better energy minima.
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3. Problem Formulation via Local Competition Mechanism

3.1. Energy Function Formulation

Image segmentation can be represented by referring to the set of pixels in a superpixel:

Rk = {xi : lxi = k} (1)

where set Rk is identified by an integer label k(k ∈ L), L is a finite set of labels (L = {1, 2, · · · , K}, K is
the number of labels). I = {xi}N

i=1 (N is the number of pixels in the image) denotes the set of all pixels
in an image. lxi denotes the label of pixel xi. In superpixel segmentation, which is a case of image
segmentation, the set Rk is called superpixel Rk. According to Equation (1), when pixel xi belonging
to superpixel Rk or superpixel Rk contains pixel xi, it is equivalent to assigning label k to pixel xi, i.e.,
lxi = k. Since a pixel only belongs to a single superpixel, it is a multiple-to-one mapping. Therefore,
the set of superpixels is restricted to be disjoint; the intersection between any pair of superpixels is
always an empty set: Rk ∩ Rk′ = ∅, k 6= k′. Accordingly, the whole partition can be represented as
< = {R1, R2, · · · , RK}.

The segmentation also can be considered as a labeling problem, i.e., assigning a unique label to
each pixel. The full partitioning of an image can be represented with the set ω = {lx1 , lx2 , · · · , lxN}.
Superpixel algorithms are designed to find the best partition ω ∈ Ω, where Ω is denoted as the set of
all partitions. This can be reached by maximizing an objective function, or so-called energy function,
which is denoted as E (ω). Then, the partition that maximizes the energy function is defined as ω̂:

ω̂ = arg max
ω∈Ω

E(ω) (2)

Let us review the properties that an ideal superpixel algorithm should have: (1) a properly
connected group of pixels, which are exactly in one “semantic” region; (2) good adherence to the image
boundaries; (3) the property of being as regular as possible for features that need spatial support. Given
the above requirements, the energy function we have constructed integrates an appearance coherence
term, a shape regularization term, a smooth constraints term and a connectivity term. Mathematically,
it is formulated as:

E(ω) = λcolor ∑
xi∈I

Ecolor(xi, lxi ) + λdist ∑
xi∈I

Edist(xi, lxi )

+ λsmooth ∑
xi∈I

Esmooth(xi, lxi ) + ∑
xi∈I

Ecnct(xi, lxi )
(3)

where λcolor, λdist, λsmooth are weight parameters. By adjusting the value of these parameters,
the algorithm will produce different superpixel segmentations to meet the needs in different application
scenarios. The greater the value of λcolor, the more appearance coherence is emphasized which
usually lead to better boundary adherence. The greater the value of λdist and λsmooth, the more shape
compactness is emphasized which usually lead to the generated superpixels with more regular shapes.
The value of λcolor, λdist and λsmooth can be in the range [1, 6], [1, 6] and [1, 2] respectively. We choose
λcolor = 6, λdist = 1 and λsmooth = 1 as default parameters for the result of this paper.

3.2. Energy Terms Based on Local Competition Mechanism

In our algorithm, energy terms are not raw measurements, but a degree of pixel-superpixel
membership, which is computed by the following steps.

1. Raw measurements are directly calculated in the original feature space, such as color similarity
in the Lab color space and geodesic distances in image metric space. Given a pixel xi, only the
raw measurements between xi and each superpixel in the corresponding set Υxi are computed;
where Υxi denotes the set of superpixels to which pixel xi may belong. Υxi is a subset of < and is
restricted to a small local image region.
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2. Energy terms are calculated by utilizing the local competition mechanism. This mechanism
generates a membership degree of pixel-superpixel from raw measurements, which are computed
in Step 1. The membership degrees are the value of energy terms. The energy term such
as the appearance coherence term Ecolor (xi, lxi ) is generated from color similarity; the shape
regularization term Edist (xi, lxi ) is generated from geodesic distances.

This approach has the following advantages: (1) energy terms are membership degrees of the
pixels and their corresponding superpixels, where these membership degrees are generated by local
normalized the raw measurements in each feature space. Therefore, energy terms are irrelevant to
the measurement units of feature spaces, such as color space, metric space, etc. (2) each competition
is restricted to a small image region, generally the change of scene layout is small and features are
consistency in small region. Therefore, energy terms, which are relative values, exhibit much more
consistent performance and are less sensitive to the changes of scene layout.

3.2.1. Appearance Coherence Term: Ecolor (xi, lxi )

Papers on superpixels introduce various energy terms to encourage generating superpixels with
a perceptually-consistent appearance. The core of these terms is the manner in which they describe
the color distribution of superpixels. SLIC [26] and SPixel [35] use the mean color to represent
a superpixel’s color feature. The limitation of using the mean color is its failure to describe the color
distribution, and the bias might be large. As shown in Figure 2, the mean color of superpixel R1 equals
the color of pixels in region P1. Thus, the color energy term, such as in SLIC, which is calculated
between pixels in region P1 and superpixel R1, is smaller than the one between them and superpixel R2.
This can cause the pixels in region P1 to fall into superpixel R1. This violates the intuitive consistency
with the human vision system and produces a non-coherence over-segmentation result.

Figure 2. Disadvantage of using mean color to describe the color distribution of superpixels. Superpixel
R1 is composed of pixels whose RGB is (0,0,0) or (102,204,254), and the mean color is (51,102,127).
The RGB of pixels in superpixel R2 is (51,102,153). The RGB of pixels in region P1 is (51,102,127).
Red lines are boundaries of superpixels or regions.

To avoid these flaws, Lattice Cut [36] utilizes a histogram to describe the color distribution of
a superpixel. It quantizes the RGB values into a regular 3D-grid of 10× 10× 10 bins, forming a 1000D
histogram at each superpixel. However, the histogram has inherent drawbacks. It is not smooth and
its shape depends on the starting points of the bins (see in Figure 3) and the width of the bins.

In order to avoid the aforementioned flaws, a KDE-estimated PDF is introduced to describe the
color distribution of superpixels. It is a sophisticated measurement that has the potential to describe
color distribution much more accurately, especially when the color distribution is diverse. The color
distribution PRk (c) of superpixel Rk is described as:

PRk (c) =
∑

xi∈Rk

φc,cxi

nk
(4)
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where nk denotes the number of pixel in Rk, c is a color vector and cxi is the color vector of pixel xi.
φ is the kernel function.
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Figure 3. Effect of the start point in the histogram. (a) Start point = 0, bin width = 0.5; (b) Start point = 0.25,
bin width = 0.5.

Here, the Gaussian kernel is adopted to estimate PDF, then PRk (c) can be represented as:

PRk (c) =
∑

xi∈Rk

e
−

d2(c,cxi )

σk
2

nk
√

2πσk
(5)

where σk is the bandwidth of the Gaussian kernel. The weighted Euclidean distance between two color
vector d(c, cxi ) is defined as:

d(c, cxi ) =

√√√√ d

∑
j=1

wj(cj − cxi
j)

2 (6)

where d is the dimension of the color vector (for color image, the color vector is in Lab color
space; for hyperspectral image, the color vector is in original metric space) and wj is the weight
of corresponding dimension in the color vector (the weights can be specified according to the prior
knowledge of the data. Normally, such as for the color image, the weight of each dimension is one).
The weighted Euclidean distance will be more accurate than the normal Euclidean distance when the
effect of dimensions in color vector is different. In addition, the weighted Euclidean distance can be
reduced as the normal Euclidean distance, for the case of those weights that have the same values.

As shown in Figure 1, the color distribution varies in different parts of an image, and in different
images. This causes bandwidth requirements to vary widely in heterogeneous regions. For example,
in Figure 1, the color variation is very small throughout much of the image I(2); the PDFs of superpixels
in I(2) require a small bandwidth to distinguish the subtle color differences. In contrast, the left
half of the image I(1) shows much higher color variance. Superpixel PDF in that region requires
a larger bandwidth to diffuse the probability density in a larger neighborhood range. Thereby, they can
effectively estimate the similarity in a larger color range. Based on such requirements, the bandwidth
is defined as:

σk=

{
sk + νmin i f (sk + νmin) < νmax

νmax otherwise
(7)
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sk =

√√√√ ∑
xi∈Rk

d2(cxi , c̄k)

nk
.

where c̄k, sk are the mean color vector and standard deviation of superpixel Rk, respectively. Constant
νmin (νmin = 2 in the experiment) avoids too small bandwidth situations. This sort of limited bandwidth
results in a probability density distribution that concentrates around the observed data. On the contrary,
νmax (νmax = 16 in the experiment) prevents the situation of too large bandwidth, which can lead to
a probability density that is diffused over an excessive region and has the property of being relatively
smooth. Thus, colors that are too close to each other or too different from each other cannot be
well differentiated.

The computational complexity of directly estimating the discrete Gauss transform requires O(MN)
operations (M is the number of points and N is the number of Gaussian kernel functions). In order to
improve the computational efficiency, the Improved Fast Gauss Transform [49] (IFGT) is introduced to
estimate PDF. Then, Equation (5) can be rewritten as:

PRk (c) =
M

∑
m=1

∑
|α|≤p−1

Cm
α e

d2(c, c̄m)/
σk

2
(

√
w(c− c̄m)

σk
)

α

(8)

Cm
α =

2α

α! ∑
xi∈Sm

e
−‖cxi − c̄m‖2/

σk
2
(

√
w(cxi − c̄m)

σk
)

α

(9)

Here, an adaptive space partitioning scheme (the farthest point clustering algorithm) is introduced
to divide Rk into M (M = 10 in the experiment) clusters {Sm}M

m=1. c̄m is the mean color vector of
cluster Sm. Multi-index α = (α1, α2, · · · , αd) is a d-tuple of nonnegative integers, the length of the
multi-index α is defined as |α| = α1 + α2 + · · ·+ αd; the factorial of α! is defined as α! = α1!α2!· · ·αd!.
For any multi-index α ∈ Nd and c ∈ Rd the d-variate monomial cα is defined as cα = c1

α1 c2
α2 · · ·cd

αd .
Each of the Taylor series are truncated after p (p = 3 in the experiment) terms.

Through applying IFGT, estimating PDF only requires the computation of several multivariate
polynomials instead of accumulative Gaussian function for each pixel in a superpixel. This reduces the
computational complexity from quadratic order to linear order and makes the computational process
optimal, such that it requires the minimal memory.

Once the color PDF of the superpixel is obtained, computing the pixel-superpixel color similarity
is a straightforward task. As mentioned before, superpixels represent small regions with perceptually
coherent appearance. Therefore, the greater the color similarity of a pixel-superpixel pair, the larger
the value that should be produced by the appearance coherence term. We utilize the local competition
mechanism to construct the appearance coherence term. This mechanism is implemented as follows:
given a pixel xi, we calculate color similarities between xi and each superpixel Rn in set Υxi and then
normalize these color similarities. The normalized value is the membership degree of the pixel and its
corresponding superpixel. Accordingly, the appearance coherence term Ecolor(xi, lxi ) is defined as:

Ecolor(xi, lxi ) =


PRlxi

(cxi )

∑
Rn∈Υxi

PRn (cxi )
i f Rlxi

∈ Υxi

0 otherwise

(10)

3.2.2. Shape Regularization Term: Edist (xi, lxi )

As mentioned before, superpixels should be as regular as possible. Accordingly, a shape
regularization term is constructed to penalize large space distance.

A commonly-used space distance is the Euclidean distance. As mentioned in [43], Euclidean
distance is irrelevant to the image contents in-between. This leads to a measure that remains the
same no matter whether there is a path along which the appearance transits smoothly. Nevertheless,
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geodesic distance has no such problem. Therefore, we use the geodesic distance [50] Dg(uxi , Rk) to
measure the space distance between pixel xi and superpixel Rk:

Dg(uxi , Rk) = min
Fuxi ,ūk

1∫
0

U(Fuxi ,ūk (t))
∥∥∥Ḟuxi ,ūk (t)

∥∥∥dt (11)

where uxi is the position of pixel xi and ūk is the centroid position of superpixel Rk; Fuxi ,ūk (t) is a path
connecting the pixel xi,ūk (for t = 0 and t = 1 respectively). The gradient function U(x) is used as
the distance increment, and U(x) = G(x) + κg, where G(x) is the gradient magnitude of the image.
κg (κg = 1 in the experiment) is a constant that ensures that U(x) produces a constant distance
increment (i.e., U(x) = κg if G(x) = 0) in absolutely consistent appearance regions and, thus, retains
the minimum possible isoperimetric ratio. This ensures that the superpixels are compact and avoids
large under-segmentation. We adopt the fast marching algorithm introduced by Sethian in [51] to
compute geodesic distances for better computational efficiency.

In order to promote the generated superpixels compactness, the shape regularization term is used
to penalize large space distance. Therefore, the smaller the geodesic distances of a pixel-superpixel
pair, the larger the value should be produced by the shape regularization term. We utilize the local
competition mechanism to construct the shape regularization term. This mechanism is implemented
by the following: given a pixel xi, we calculate geodesic distances between xi and each superpixel in
set Υxi , and then, we generate the degree of pixel-superpixel membership by utilizing Equation (12) to
normalize those geodesic distances:

Edist(xi, lxi ) =


∑

Rn∈Υxi

Dg(uxi ,Rn)−Dg(uxi ,Rlxi
)

(|Υxi |−1) ∑
Rn∈Υxi

Dg(uxi ,Rn)
i f Rlxi

∈ Υxi

0 otherwise

(12)

where |·|denotes the size of a set.
Additionally, it can be observed that Dg(uxi , Rk) is a monotonically increasing function that is

large on the edges. The geodesic distance of a path across an intensity boundary is always larger than
that in the homogeneous region. Thus, it inherently promotes partitions adhering to image boundaries.

3.2.3. Smoothness Term: Esmooth (xi, lxi )

The smoothness term promotes adjacent pixels, especially for the directly connect neighbor pixels,
having the same label.

Firstly, we introduce a weighted chessboard distance. It is computed over the second-order eight
neighborhood of pixel xi (we denote it as δ8

xi
).

Ds(xi, Rk) = λ1 ∑
xj∈(δ4

xi
⋂

Rk)

V(xi, xj) + λ2 ∑
xj∈((δ8

xi−δ4
xi )
⋂

Rk)

V(xi, xj) (13)

where δ4
xi

is pixels within first-order four neighborhood of pixel xi. Constant λ1, λ2 (λ1 = 0.6, λ2 = 0.424
in the experiment) are weight parameters, which measure the impacts of directly adjacent pixels and
diagonal pixels, respectively, V(xi, xj) is an indicator variable, which is equal to one when xi and xj have
the same label, i.e.,

V(xi, xj) =

{
1 i f lxi = lxj

0 otherwise
(14)

The weighted chessboard distance facilitates the generated superpixels with smooth boundaries.
By utilizing the local competition mechanism, the larger the weighted chessboard distance of
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a pixel-superpixel pair, the larger the value that should be produced by the smoothness term. Then,
the smoothness term Esmooth(xi, lxi) is defined as:

Esmooth(xi, lxi) =


Ds(xi,Rlxi

)

∑
Rn∈Υxi

Ds(xi,Rn)
i f Rlxi

∈ Υxi

0 otherwise
(15)

3.2.4. Connectivity Term: Ecnct (xi, lxi)

It is essential for superpixels that pixels in a superpixel should be connected. Thus, a connectivity
term that forces superpixels to form connected entities is introduced. This can be done by penalizing
the label, which will break the connectivity of any superpixels. Then, the connectivity term Ecnct (xi, lxi)

is defined as:

Ecnct(xi, lxi) =

{
−∞ i f lxi break connectivity
0 otherwise

(16)

3.3. Energy Function Optimization

Given a partition ω with the label of each pixel fixed, we can rewrite the energy function
Equation (3) as:

E(ω) = λcolor ∑
xi∈I

Ecolor(xi, lxi) + λdist ∑
xi∈I

Edist(xi, lxi)

+ λsmooth ∑
xi∈I

Esmooth(xi, lxi) + ∑
xi∈I

Ecnct(xi, lxi)

= ∑
xi∈I

(λcolorEcolor(xi, lxi) + λdistEdist(xi, lxi)

+ λsmoothEsmooth(xi, lxi) + Ecnct(xi, lxi)

= ∑
xi∈I

Ep(xi, lxi)

(17)

where Ep(xi, lxi) is the energy function of pixel xi.
According to Ep(xi, lxi), the energy value of each pixel is dependent on its surrounding pixels.

Hence, it is challenging to construct an optimization algorithm that could achieve the optimal solution.
In addition, the cardinalities of ω are huge, which makes it time-consuming to exhaust all of the
possibilities for the optimal ω̂. However, superpixel segmentation is time sensitive since it is normally
used for image pre-processing. Therefore, we need to make a tradeoff between finding the optimization
solution and achieving time efficiency.

To resolve this conflict, we adopt a greedy optimization strategy similar to EM (Expectation
Maximization Algorithm) to approximate the optimal solution. Generally, a pixel can only belong to
a limited number of superpixels within a restricted local region (as mention in SLIC). Thus, we treat
superpixel segmentation as multi-superpixels (for pixel xi, multi-superpixels refer to all superpixels
in the corresponding set Υxi ) competing to obtain pixels. That is to say, for a given pixel xi, find the
superpixel Rnmax from the corresponding set Υxi that maximizing the energy function, as shown in
Equation (18). Pixel xi belongs to that superpixel Rnmax , which means it is labeled as nmax.

Rnmax = arg max
Rn∈Υxi

Ep(xi, n) (18)

Thus, we optimize the energy function of each pixel iteratively using the following two steps:

1. Given a pixel xi, find the label nmax that maximizes its energy function Ep(xi, lxi) under the current
partition ω;

2. Update ω by changing the label of xi to nmax, i.e., lxi = nmax.

The two steps repeat iteratively until no energy value changes occur.
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4. Superpixel Segmentation with Local Competition

According to the optimization strategy described in Section 3.3, a pixel cannot belong to another
superpixel when it is inside a superpixel (neighborhood pixels have the same label), because this
breaks connectivity and generates an infinitesimal energy value. Hence, only the boundary pixels of
superpixels need to be handled when optimizing the energy function. Consequently, the computational
complexity is significantly decreased. As a pixel can only belong to superpixels to which its
neighboring pixels belong, the superpixel set Υxi , to which pixel xi may belong, could be defined as

Υxi =
{

Rlxj
|xj ∈ (δ4

xi
∪ xi)

}
.

Based on the above analysis, our method includes two main steps: (1) generate initial complete
superpixel partitions; (2) iteratively optimize superpixels by utilizing local competition mechanism
and, thus, generate superpixels with a coherent appearance that adhere well to image boundaries.

4.1. Initialization

The energy function optimization strategy we adopted has an inherent shortcoming in that it may
fall into the local optimum solution. Thus, the initial state affects the final result. SPixel and Seeds start
from complete superpixel partitions, which are regular lattice grids, and then adopt an optimization
scheme to optimize the object function iteratively. Generally, the initial partition is far from the optimal
solution, which causes that the final result can easily converge to a local optimal solution.

SLIC is fast and offers flexibility in the compactness and number of the superpixels it generates [26].
Besides these advantages, we find that its energy value decreases sharply during the first few iterations
(as shown in Figure 4a), generating compact, nearly homogenous superpixels after several iterations.
From Figure 4b, it can be observed that the time cost of the main process increases approximately
linearly with each iteration. Thus, we use a specific version of SLIC (where we set the iteration number
to four for efficiency and set compactness to 20 instead of the default value 10 in order to produce
more compact and regular regions) called fast SLIC to produce initial partitions. This could reduce the
processing time while maintaining performance comparable to the default SLIC.
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(a) Algorithm convergence
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(b) Cost time

Figure 4. Energy value and cost time of simple linear iterative clustering (SLIC) under different
iterations where the specified superpixel number K = 300. (a) The overall energy value decreases with
the increase in iterations; (b) the cost time of the main process (k-means cluster and post-processing)
increases approximately linearly with each iteration.

The initial partitions generated by fast SLIC are more homogenous than lattice grids. They could
provide better PDF estimates and center positions for initial superpixels. Hence, the final result could
converge to a more optimal solution.
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4.2. Superpixel Optimization via Local Competition Mechanism

In our optimization scheme, we iterative finding the label for each boundary pixel that maximizes
its energy function, as shown in Algorithm 1.

Algorithm 1 LocalCompetitionSuperpixel

Input: ωGeneratedby f astSLIC
Output: ω

1: B = GetBoundaries(ω);
2: for all xi ∈ B do
3: Indictor[xi] = 0;
4: end for
5: while B 6= ∅ do
6: xi = PopFront(B);
7: Emax = 0;
8: Υxi = GetNeighborSuperpixelSet(xi);
9: for all Rn ∈ Υxi do

10: En
i = ComputeEnergyFunction(xi, Rn);

11: if Emax < En
i then

12: Emax = En
i ;

13: nmax = n;
14: end if
15: end for
16: if lxi 6= nmax then
17: ModifyPDF(Rnmax , xi, Add);
18: ModifyPDF(Rlxi

, xi, Remove);
19: δ4

xi
= GetNeighborPixels(xi);

20: for all xj ∈ δ4
xi

do
21: if lxj 6= nmax then
22: PushBack(B, xj);
23: Indictor[xj] = 0;
24: end if
25: end for
26: lxi = nmax;
27: Indictor[xi] = 0;
28: else
29: Indictor[xi] = Indictor[xi] + 1;
30: end if
31: if Indictor[xi] < UT then
32: PushBack(B, xi);
33: end if
34: end while

Firstly, we initial active boundary pixels set B from the initial partition, which is generated in
Section 4.1:

B =
{

xi|lxi 6= lxj , xj ∈ δ4
xi

}
For each active boundary pixel, we initialize its unchanged indicator to zero.
Then, we iteratively optimize the label for each active boundary pixel from left to right, top to

bottom based on maximizing its energy function Ep(xi, lxi ) as follows:
Given a pixel xi, let lbe f ore denote its label before optimization and la f ter denote its label after

optimization. When it is observed that lbe f ore and la f ter are identical, this means that the largest energy
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value is produced when xi is assigned to the current label. Correspondingly, we increase the unchanged
indicator of candidate xi. If the unchanged indicator is larger than a certain threshold Ut (Ut = 3 in the
experiment), we call xi a stable boundary pixel. It is reasonable to assume that the label of xi, as well
as xi’s adjacent pixel will not change next time. Hence, we remove xi from the active boundary pixels
set B for further reduction of computation.

If the label of xi changes, that is lbe f ore 6= la f ter, this means xi needing to be moved from Rlbe f ore

to Rla f ter
. Therefore, the color PDF of the two involved superpixels (the one Rlbe f ore

that xi belongs to
before optimization, as well as the one Rla f ter

that xi belongs to after optimization) needs to be updated.
The update will be done as follows: given the previously estimated PRk (c), find clusters Sm to which
cxi belongs according to the Euclidean distance, and then, update multivariate polynomials coefficient
of that cluster. Besides that, the new label changes the boundary of Rlbe f ore

and Rla f ter
. Hence, for each

neighbor pixel xj, xj ∈ δ4
xi

, we check whether the label of xj equals la f ter. We call xj the active boundary
pixel if its label is not equal to la f ter, that is lxj 6= la f ter. Then, we push xj into the active boundary
pixels set B and initialize its unchanged indicator to zero.

The iteration will continue until B is empty, that is until all boundary pixels are stable and the
energy function of the boundary pixels is maximized.

5. Experiments

The proposed superpixel algorithm SSLC is implemented in C++ and tested on a laptop with
an Intel I5-3230M (2.60 GHz) CPU and an 8GB RAM. SSLC is compared with eleven state-of-the-art
superpixel algorithms including SLIC [26], SPixel [35], Seeds [37], FH [40], QS [41], TurboPixel [42],
TPS [45], LSC [46], MSLIC [47], ERS [25], and ERGC [52] on the entire Berkeley Segmentation
Dataset [38] (BSD), which includes five hundred images with multiple ground truth contours and
segmentations. For all of the eleven state-of-the-art algorithms, the implementations are based on
publicly-available code, and we used the default parameter settings provided by the authors for
achieving as fair comparison as possible.

5.1. Quantitative Comparison

We quantitatively evaluated the quality of these superpixel algorithms mainly by using three
commonly-used evaluation metrics in image segmentation: Boundary Recall (BR), Under-segmentation
Error (UE) and Achievable Segmentation Accuracy (ASA). The comparison results are obtained by
averaging these metrics across all images and all ground truth segments in the BSD benchmark.

For the sake of clarity, our segmentation is defined as S = {R1, R2, . . . , Rns}, and the ground truth
is defined as G =

{
G1, G2, . . . , Gng

}
; ns and ng are the number of segments in each set. The boundaries

of superpixels and ground truth segments are expressed as δS and δG.
BR measures the fraction of ground truth boundaries correctly recovered by the superpixel

boundaries. A true boundary pixel is regarded to be correctly recovered if it falls within ε pixels from
at least one superpixel boundary pixel. Then, the BR is defined as:

BR(S, G) =

∑
xi∈δG

[[(min
∥∥∥uxi − uxj

∥∥∥ < ε

xj∈δS

)

|δG| (19)

The indicator function [[ checks whether the nearest pixel is within ε (ε = 2 in these experiments)
distance. A high BR value indicates that very few true edges are missed.
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UE measures the percentage of pixels that leak from the ground truth boundaries. It actually
evaluates the quality of superpixel segmentation by penalizing superpixels overlapping with multiple
objects. Formally, the UE is quantified as:

UE(S, G) =
1
N

 ng

∑
i=1

( ∑
Rj |Rj∩Gi>κ

|Rj|)− N

 (20)

κ is set to 5% of Rj to account for ambiguities in the ground truth. The smaller the under-
segmentation error, the better the precision with which the superpixels overlap with only one object.

ASA is defined as the highest achievable object segmentation accuracy when utilizing superpixels
as units. By labeling each superpixel with the ground truth segments of the largest overlapping area,
ASA is calculated as the fraction of labeled pixels that are not leaked from the ground truth boundaries.
Mathematically, ASA is computed as follows:

ASA(S, G) =

∑
k

max
i
|Rk ∩ Gi|

∑
i
|Gi|

(21)

The BR performance metric is plotted as a function of the number of superpixels in Figure 5a.
From the plots, our algorithm yields the best recall ratio across the entire range of superpixel counts.
LSC (an extended SLIC algorithm) and the proposed algorithm SSLC have an approximately equal
recall ratio with 100 superpixels. However, for a larger number of superpixels, SSLC significantly
outperforms LSC. Seeds (which also uses the boundary optimization scheme) and ERS show a slightly
poorer recall ratio than SSLC and LSC on small numbers of superpixels. However, their recall ratio
gradually approximates that of SSLC as the number of superpixels increases. Moreover, those two
algorithm are superior to LSC when the number of superpixels increases greatly. As can be seen,
the above four algorithms significantly outperform the other tested ones, especially when the numbers
of superpixels is small.

Figure 5b shows the comparison results of UE. As FH produces superpixels with highly irregular
shapes and sizes, its performance is quite poor in UE and therefore omitted in Figure 5b for clarity.
From the above graph, it can be seen that SSLC outperforms all other tested algorithms by a significant
gap. LSC and Seeds have a similar error rate across the entire range of superpixel counts. The error
rate of ERS is quite close to that of LSC when the number of superpixels is small. However, in the
case of a larger number of superpixels, it marginally underperforms LSC. The error rates of ERS
and MSLIC (an extended SLIC algorithm) remain quite close and underperform that of the above
algorithms. SPixel (which also uses the boundary optimization scheme) shows a relatively poor error
rate with a small number of superpixels. However, as the number of superpixels increases, its error
rate improves quickly. SLIC and QS show worse performance than the above algorithms. Turbopixel
and TPS show the worst performance among the tested algorithms.

According to SLIC [26], adherence to image boundaries is the most important property for
superpixel algorithms, and the standard measures for boundary adherence are UE and BR. From the
plot in Figure 5a,b, the proposed algorithm SSLC achieves the highest BR and least UE, which shows
its superior performance in boundary adherence among all tested algorithms.

Figure 5c plots the ASA performance curves for all tested algorithms (the performance of FH is
rather poor and therefore omitted in Figure 5c). As can be seen, SSLC outperforms all other tested
algorithms by a significant gap. This means that the proposed algorithm could yield a much better
achievable segmentation upper-bound.

From Figure 5, it can be observed that the proposed algorithm significantly outperforms our initial
partitions. For example, when the number of superpixels is 100, the proposed algorithm improves the
BR from 0.67 to 0.82, and reduces the UE from 0.17 to 0.12, as well as improves the ASA from 0.91 to
0.94. This shows that the proposed local competition mechanism significantly boosts performance on
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the initial partition. Nevertheless, the proposed algorithm is not restricted to using the initial partition,
which is generated by fast SLIC. It can also start from any other complete partition, such as LSC. As can
be seen in Figure 5, the performance of LSC-initialized SSLC also outperform LSC. The impact of initial
partition will be discussed in Section 5.3.

Another important aspect of superpixel algorithms is computational efficiency. Since superpixels
are often used as a preprocessing step, the processing time is an important factor, such that it does
not slow down the image processing pipeline. In the experiment, we calculated the average running
time for all tested algorithms, and the results are shown in Figure 5d. TPS requires about 26 seconds to
over-segment an image, which is much higher than that of the other algorithms. Thereby, TPS is not
plotted due to its particularly slow speed. From the curves, it can be observed that SLIC and FH run
fastest among all of the tested algorithms. The runtime performance of LSC marginally underperforms
that of the above two algorithms and is independent of the number of superpixels. The proposed
algorithm slightly outperforms LSC with 100 superpixels, but it increases approximately linearly with
respect to the number of superpixels. This can be explained as the more superpixels there are, the more
boundary pixels will be generated, leading to more boundary optimization iterations. The runtime
performance of MSLIC is similar to ours and slightly outperforms that of SPixel. The remaining
algorithms show a significant gap in computational efficiency.
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Figure 5. Performance vs. number of superpixels on the Berkeley Segmentation Dataset (BSD)
benchmark. Higher Boundary Recall (BR) and Achievable Segmentation Accuracy (ASA) values
indicate a better performance in superpixel alignment; lower Under-segmentation error (UE) values
represent less error in the superpixel result. (a) Boundary recall; (b) Under-segmentation error;
(c) Achievable segmentation accuracy; (d) Time.
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5.2. Qualitative Comparison

For qualitative evaluation, Figures 6 and 7 show superpixels obtained by all tested superpixel
algorithms in the two images where the number of superpixels is 300. It can be seen that those two
images have a significant difference in image content and scene layout.

Figure 6 is superpixels generated from an image with low color variation. We can see that color
and texture differences are small between the snake and the background. Moreover, the contours
of the snake are blurred. This leads to superpixels algorithms that are based on gradient, such as
TurboPixel and ERGC, missing most of the contours of the snake. TPS, which is based on boundary
maps, also shows poor performance in boundary recovery. SLIC, MSLIC and LSC are based on iterative
k-means clustering. They show better performance in capturing the contours of the snake, but still miss
partial contours obviously. SPixel and Seeds also utilize the boundary optimization scheme. However,
their energy terms are insensitive to small differences, leading those two algorithms to produce a poor
boundary adherence result. Visually, superpixels obtained by the proposed algorithm snap to the
contours of the snake very well and only miss several boundary pixels. This is mainly because
our energy terms are relative membership degrees, which are generated by the local competition
mechanism. Therefore, the proposed algorithm could differentiate these small differences and produces
superpixels that snap well to the contours of the snake.

Figure 6. Superpixel segmentations from an image with low variance in color. The first, third and fifth
rows are superpixels generated by various methods. The second, fourth and sixth rows zoom in on the
regions of interest as defined by the white boxes to facilitate close visual inspection.
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For the sake of completeness, Figure 7 shows superpixel segmentations using an image with
heterogeneous scene layouts. The superpixels, generated by TurboPixel and TPS, have a regular shape
and size. However, they show poor performance in boundary adherence, which causes that the mean
image not to be able to distinguish the contours of the women. The superpixels obtained by FH adhere
well to image boundaries in most cases. However, their shape and size are very irregular, leading
to relatively poor segmentation performance. As can be seen in Figure 7c, FH segments hair and
leaves in one region incorrectly. The clustering-based methods, SLIC, MSLIC and LSC, can obtain the
contours of the people, whereas they show poor boundary adherence in regions that contain prominent
boundaries (such as the palm leaves region in Figure 7e,f,i). Superpixel boundaries of SPixel and
Seeds react to prominent boundaries better. However, in regions with high color variation, those two
algorithms show poor performance (such as the skirt regions in Figure 7h,j). Intuitively, the proposed
algorithm achieves the most perceptually satisfactory segmentation results. It extracts the most details
precisely, such as skirt, T-shirt sling, hair and green leaves, etc. This is because of that the proposed
energy function and energy terms locality and relativity. As a result, our algorithm is less sensitive to
the changes of content and scene layout.

Figure 7. Superpixels obtained by all tested superpixel algorithms in an example image with
heterogeneous contents and scene layouts. The top and third rows are the results of various superpixel
algorithms, and the second and bottom rows are region mean images corresponding to the superpixel
segmentations in the top and third rows.
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Overall, the proposed algorithm shows excellent performance in both sample images despite the
color, intensity variation and layout changing greatly. This demonstrates that the proposed algorithm,
which is based on the local competition mechanism, could achieve consistent performance over diverse
image contents and scene layouts.

5.3. Discussion of Initial Partitioning

The influence of different initial superpixel partitions are shown in Figure 8. From Figure 8a, it can
be observed that the performance of LSC-initialized SSLC yields the best overall performance especially
on small numbers of superpixels. And it also can be seen that the proposed algorithm starting from
fast SLIC is much better than from regular lattice under any weight configurations. This indicates that
the better initial partitioning could improve the performance of the proposed Algorithm.
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Figure 8. Performance and efficiency comparison of our method under different initial partitioning.
(a) Boundary recall; (b) Under-segmentation error; (c) Achievable segmentation accuracy; (d) Efficiency.

From Figure 8, it can be seen that when λcolor is relatively small, the initial partition yields larger
influence on the final performance. However, the larger the value of λcolor, the smaller the influence that
the initial partition yields. When we set the weight of energy terms as λcolor = 6, λdist = 1, λsmooth = 1,
the influence of different initial partitions have almost no difference especially on large numbers of
superpixels. Even though we use a regular lattice grid as the initial partition, the recall rates are 81%
and 94% with 100 and 500 superpixels, respectively. The recall rates with the same superpixel counts
are 82% and 93% by LSC. Therefore, the performance of regular lattice initialized SSLC still compares
favorably to state-of-the-art superpixel algorithms. This indicates that the proposed algorithm is not
restricted to a specified initial superpixel partition.
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Judging the results on the three standard metrics from Figure 8a–c, it can be observed that the BR,
UE and ASA performances show almost no difference between the default SLIC and the fast SLIC.
This is because after k-means clusters four-times in SLIC, each superpixel is nearly coherence and has
little difference with the results of default SLIC, satisfying our algorithms’s requirement for initial
segmentation conditions. From Figure 8d, it can be observed that the proposed algorithm costs more
time if we use default SLIC as the initial partitioning rather than fast SLIC. As initial partitions based
on fast SLIC could improve efficiency yet still maintain performance, therefore the fast SLIC is a good
alternative method for initial superpixel partitions.

5.4. Energy Terms Analysis

The proposed algorithm use four energy terms, among which the appearance coherence term and
the shape regularization term play the major role, to construct the energy function. Other than most
state-of-the-art superpixel algorithms, we adopt more sophisticated measure to construct these two
major energy terms. We adopt KDE-estimated PDF instead of mean value and histogram to construct
the appearance coherence term, and adopt geodesic distance instead of Euclidean distance to construct
the shape regularization term.

From Figure 9, it can be observed that when setting equal weights for all the energy terms.
Histogram-based SSLC yields better performance than mean color-based SSLC. This is because of that
histogram describe the color distribution of superpixels more sophisticated than mean color. Compared
with Euclidean distance, geodesic distance not only promotes the generated superpixels compactness,
but also promotes superpixels adhering to image boundaries. Therefore, Euclidean distance-based
SSLC significantly underperforms SSLC in BR. The proposed algorithm adopts sophisticated measure
to construct both the appearance coherence term and the shape regularization term, and thus yields
the best performance.
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Figure 9. Performance comparisons of the proposed algorithm with different energy terms. (a) Boundary
recall; (b) Under-segmentation error; (c) Achievable segmentation accuracy.
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5.5. Parameter Analysis

The proposed algorithm uses three parameters λcolor, λdist, λsmooth to control the relative
significance of appearance coherence and shape regularity. Figure 10 show the performance of
the proposed algorithm under difference parameter configurations. From Figure 10a, it can be seen
that relatively larger λcolor results in generated superpixels with better BR. If we only use a shape
regularization term, it produces superpixels with the worst BR performance. However, if we only
use a color appearance term, it performs the best. From Figure 10b,c, the configuration that only use
a appearance coherence term show worse UE and ASA than most of other parameter configurations.
This is because of that without compactness constraint, such algorithms produce superpixels with
irregular shapes and sizes. The size of a superpixel may be very large in regions absence of boundary
cues, and if it overlap more than one object, it will lead to the UE and ASA greatly reduced. In fact,
there is a trade-off among different energy terms. Figure 11 visualizes the effect of different weight
configurations on the resulting superpixels. It can be observed that relatively larger λcolor results in
more irregular shapes, but shows better boundary adherence.
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Figure 10. Performance comparison of the proposed algorithm under different parameter configurations.
(a) Boundary recall; (b) Under-segmentation Error; (c) Achievable segmentation accuracy.

For some applications, boundary adherence is the most important property for superpixels;
whereas for some other applications, more regular shapes may be preferable, such as in [29,30]. Hence,
for most of superpixel algorithms, such as [26,35,37], etc., the ability to control this tradeoff is their
important property. From Figures 10 and 11, it can be seen that the proposed algorithm also control
this tradeoff well.



Sensors 2017, 17, 1364 21 of 27

Figure 11. Typical visual results show the impact of different energy terms in the energy
function. (a) is a shape regularization term only (λcolor = 0, λdist = 1, λsmooth = 0); (b) is
different terms with equal weights (λcolor = 1, λdist = 1, λsmooth = 1); (c) weights of different
energy terms are (λcolor = 5, λdist = 2, λsmooth = 1); (d) weights of different energy
terms are (λcolor = 3, λdist = 1, λsmooth = 1); (e) weights of different energy terms
are (λcolor = 6, λdist = 1, λsmooth = 1); and (f) is a color appearance term only
(λcolor = 1, λdist = 0, λsmooth = 0).

5.6. Evaluation on Remote Sensing Images

Three HSIs are utilized to conduct experiments to evaluate the performance of SSLC on remote
sensing images. The first two images are Indian Pines and Salinas, which were gathered by the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor. Those two images mainly consist
of large-sized homogeneous regions. The Indian Pines image has 220 bands of size 145× 145 pixels,
and the Salinas image has 224 bands of size 512× 217 pixels. The other image PaviaU was acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS) sensor, which consists of more detailed
structures. The PaviaU image has 103 spectral bands, and the size is 610× 340 pixels.

The HSIs have too many bands; thereby, it is time costly to over-segment the original HSIs into
superpixels. It also is not able to excavate spatial information in HSIs if just one band is selected for
superpixel segmentation. Therefore, in the papers [3,6,9–11,19], they applied the Principal Component
Analysis (PCA) algorithm on the original HSIs to reduce the computational cost. Since the first Principal
Component (PC) contains the major information of the HSIs, they denote it as a fundamental image.
Similar to those methods, we also utilize the first PC to generate the base image. Then, the standard
SLIC, SSLC, ERS, Seeds, MSLIC, ERGC, TurboPixel, LSC and QS were performed separately on the
base images. The quantitative comparison results are shown in Figure 12.



Sensors 2017, 17, 1364 22 of 27

0 500 1000 1500 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of superpixels per image

B
o

u
n

d
a

ry
 R

e
c
a

ll

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(a)

0 500 1000 1500 2000
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Num. of superpixels per image

U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(b)

0 500 1000 1500 2000
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Num. of superpixels per image

A
c
h

ie
v
a

b
le

 s
e

g
m

e
n

ta
ti
o

n
 a

c
c
u

ra
c
y

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(c)

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of superpixels per image

B
o

u
n

d
a

ry
 R

e
c
a

ll

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(d)

0 200 400 600 800 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Num. of superpixels per image

U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(e)

0 200 400 600 800 1000
0.75

0.8

0.85

0.9

0.95

Num. of superpixels per image

A
c
h

ie
v
a

b
le

 s
e

g
m

e
n

ta
ti
o

n
 a

c
c
u

ra
c
y

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(f)

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of superpixels per image

B
o

u
n

d
a

ry
 R

e
c
a

ll

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(g)

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of superpixels per image

U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(h)

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Num. of superpixels per image

A
c
h

ie
v
a

b
le

 s
e

g
m

e
n

ta
ti
o

n
 a

c
c
u

ra
c
y

 

 

SSLC
SLIC
ERS
Seeds
MSLIC
ERGC
TurboPixel
LSC
QuickShift

(i)

Figure 12. Performance comparison of the proposed algorithm and the other tested ones on remote
sensing images. (a) PaviaU BR; (b) PaviaU UE; (c) PaviaU ASA; (d) Salinas BR; (e) Salinas UE; (f) Salinas
ASA; (g) Indian Pines BR; (h) Indian Pines UE; (i) Indian Pines ASA.

From Figure 12, it can be seen that in scene PaviaU, the BR curves generated by Seeds and the
proposed algorithm cross each other, and the latter has a larger maximum value than the former. LSC
outperform those two algorithms when the number of superpixels is small. In the case of a larger
number of superpixels, the recall ratio of LSC is quite close to that of the proposed algorithm. However,
LSC shows worse performance on UE and ASA than the proposed algorithm. In scene Salinas,
the proposed algorithm achieves the best BR, UE and ASA in most case. In the scene Indian Pines,
the proposed algorithm outperforms other tested superpixel algorithms on BR with a significant
gap on small numbers of superpixels. The proposed algorithm also achieves or approaches the best
performance on UE and ASA. By analysis the experiment results, it can be seen that the proposed
algorithm yields the best overall performance on HSIs.

To further evaluate the performance of those testing methods for segmenting HSIs into superpixels,
some results of representative superpixels are shown in Figures 13–15. By comparing the superpixels
of the three images, it can be visually observed that the superpixels that are generated by the proposed
algorithm yield the best results especially in the white box regions.
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Figure 13. The first and third rows are superpixel segmentations of the Reflective Optics System
Imaging Spectrometer (ROSIS) image PaviaU provided by: (a) Superpixel Segmentation with Local
Competition (SSLC); (b) SLIC; (c) Entropy Rate Superpixel (ERS); (d) Seeds; (e) MSLC; (f) ERGC;
(g) Linear Spectral Clustering (LSC); and (h) Quick Shift (QS). The second and fourth rows zoom in on
the regions of interest as defined by the white boxes to facilitate close visual inspection.
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Figure 14. The first and third rows are superpixel segmentations of AVIRIS image Indian Pines
provided by (a) SSLC; (b) SLIC; (c) ERS; (d) Seeds; (e) MSLC; (f) ERGC; (g) LSC; and (h) QS. The second
and fourth rows zoom in on the regions of interest as defined by the white boxes to facilitate close
visual inspection.

Figure 15. The first row is superpixel segmentations of AVIRIS image Salinas provided by (a) SSLC;
(b) SLIC; (c) ERS; (d) Seeds; (e) MSLC; (f) ERGC; (g) LSC; and (h) QS. The second row zooms in on the
regions of interest as defined by the white boxes to facilitate close visual inspection.
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6. Conclusions

A local competition-based superpixel segmentation algorithm is proposed in this paper.
It produces perceptually coherent superpixels with linear time. The most critical idea in SSLC is
using a local competition mechanism to construct energy terms and label pixels. Energy terms are
membership degrees and therefore relative. This makes the proposed algorithm less sensitive to
the changes of image content and scene layout, and it performs consistently across image regions.
Additionally, a KDE-estimated PDF is introduced to describe the color distribution of superpixels.
This description model achieves a more sophisticated and accurate energy formulation than most
state-of-the-art methods. Moreover, a boundary optimization scheme is introduced to deal with and
only with the boundary pixels. This scheme significantly decreases the computational complexity.

Experimental results show that the proposed algorithm outperforms state-of-the-art ones with
respect to boundary recall and under-segmentation error, which shows its superior performance
in covering the perceptually coherent region with an adaptive shape and structure. In most case,
the proposed algorithm achieves the highest achievable segmentation accuracy, which means it could
yield a much better achievable segmentation upper-bound. Therefore, it can be considered a good
alternative to other existing state-of-the-art superpixel algorithms for remote sensing image processing
and many other fields.

Our future work is to design a new energy function and an optimization scheme that can produce
superpixels while preserving the topology (since topology is critical for some applications). Another
aspect is to improve the efficiency of our algorithm for real-time applications.
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