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Abstract: Non-traumatic intracerebral hemorrhage (ICH) is one of the most devastating
and disabling forms of stroke; however, there are no effective pharmacological therapies
available following the insult. Angiogenesis appears as a key step to overcoming the
damage and promoting functional recovery. In this context, endothelial progenitor cells
(EPCs) mobilization improves oxidative stress and promotes neovascularization, which
has been linked to beneficial outcomes following both ischemic and hemorrhagic stroke.
The TNF-like weak inducer of apoptosis (TWEAK), binding to its receptor Fn14, has been
suggested as an inducer of EPCs differentiation, viability and migration to the injury
site in a model of myocardial infarction. Here, we have performed a proof-of-concept
preclinical study in a rat model of ICH where we report that a 50 µg/kg dose of rat
recombinant TWEAK (rTWEAK) promotes blood progenitor cells mobilization, mainly
EPCs. As soon as 72 h post-injury, brain neovascularization, and, importantly, long-term
hematoma reduction and improved functional recovery is reported. In contrast, a higher
dose of 150 µg/kg blocked those beneficial outcomes. Therefore, a low dose of rTWEAK
treatment promotes neovascularization and reduces brain damage in a rat model of ICH.
Further clinical studies will be needed to demonstrate if rTWEAK could represent a new
strategy to promote recovery following ICH.
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1. Introduction
Non-traumatic intracerebral hemorrhage (ICH) results from the spontaneous rupture

of blood vessels in the brain and represents one of the most devastating and disabling
forms of stroke. It accounts for 10–15% of all cases of stroke, showing the highest mortality
rate: more than one-third of patients will not survive the first year [1]. Currently, the lack
of effective therapies following ICH prevents better functional outcomes [2].

ICH induces cerebral angiogenesis around hematoma from 4 to 7 days post-lesion [3,4],
a fact that has been related to motor recovery following ICH [5]. However, the exact role
of endothelium during angiogenesis and neuronal repair following cerebral hemorrhage
remains unknown, although endothelial progenitor cells (EPCs) have been suggested as the
main players during these processes after stroke [6,7]. EPCs are circulating endothelial cells
with the capacity to differentiate into mature endothelial cells and self-renewing [7]. EPCs
are mobilized from their niches to the bloodstream following stroke, reaching the damaged
area and carrying out neovascularization and endothelial repair through self-differentiation,
paracrine signaling and exosomes [8–10]. Importantly, several clinical studies have reported
an improved long-term recovery in stroke patients who had higher numbers of circulating
EPCs within the first week after both ischemic [11–13] and hemorrhagic [14,15] insults.
Furthermore, it has been reported that EPC mobilization reduces oxidative stress in several
conditions including hypoxia [16,17]. Therefore, EPCs are a feasible therapeutic target
following ICH.

The TNF-like weak inducer of apoptosis (TWEAK) is a ligand of the TNF family
that can be presented in two forms: as a transmembrane protein and as a soluble ligand
(sTWEAK) following furin proteases activity [18]. TWEAK was initially discovered in cell
death-related mechanisms [19], but subsequent achievements revealed that it controls other
activities besides apoptosis, such as proliferation, migration, differentiation, angiogenesis,
and inflammation [20]. Indeed, the acute inflammatory response has an important role in
ICH as shown by the association between several inflammatory biomarkers and a poor
outcome following the injury [21]. The binding of sTWEAK to its cellular surface receptor
Fn14 triggers several signaling pathways, including the canonical NFκB pathway [20]. The
TWEAK-Fn14 axis regulates several physiological processes, and it is particularly important
in tissue repair following acute damage [22].

Interestingly, Sheng and colleagues [23] highlighted the relevance of the TWEAK-Fn14-
NFκB axis in EPC differentiation, viability, migration to injured tissue and angiogenesis in
an in vivo model of acute myocardial infarction. Therefore, TWEAK-mediated mobilization
of EPCs could represent a new avenue to promote recovery following ICH. However, the
use of TWEAK may be controversial. Several previous studies suggested detrimental effects
of endogenous sTWEAK as well as TWEAK treatments in both in vitro and in vivo models
of cerebral ischemia [24–27]. There are no preclinical studies addressing the relationship
between TWEAK treatment and hemorrhagic stroke so far.

Altogether, the main goal of this proof-of-concept preclinical study was to assess
the use of TWEAK as a treatment to provide brain tissue repair through EPCs-mediated
neovascularization in a rat model of ICH.
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2. Materials and Methods
2.1. Animals

All Experimental protocols were approved by the University Clinical Hospital of
Santiago de Compostela Animal Care Committee (15010/2019/004), according to the
European Union (EU) rules (86/609/CEE, 2003/65/CE and 2010/63/EU) and the ARRIVE
guidelines. Male adult Sprague Dawley (SD) rats (300–350 g) were kept in day/night cycles
of 12/12 h at a mean temperature of 22 ± 1 ◦C and humidity of 60 ± 5%, and they had
water and food ad libitum.

2.2. ICH Rat Model

The ICH rat model was used as previously described [28,29]. Prior to surgery, animals
were injected subcutaneously with buprenorphine dosed at 0.05–0.1 mg/kg. Anesthesia
was maintained by inhalation of 4% sevoflurane in a N2O/O2 mixture (70/30), and body
temperature was maintained at 37 ± 0.5 ◦C with a heating pad until animals completely
recovered from anesthesia and displayed normal motor activity. Rats were placed in a
stereotaxic frame (Stoelting Co., Wood Dale, IL, USA) under sevoflurane anesthesia. After
drilling a small burr hole, 1 µL of saline containing 0.2 U/µL bacterial collagenase type VII
(Sigma-Aldrich Corp, St. Louis, MO, USA) was injected into the right striatum (0.6 mm
anterior to bregma, −3.0 mm lateral and 5.5 mm depth) using a Hamilton syringe with a
30 G needle. Injections took 10 min, and the needle was left for an additional 10 min before
removal. The burr hole was filled with bone wax (Ethicon, Somerville, NJ, USA), the scalp
incision was closed with sutures, and lidocaine was applied to the wound locally.

2.3. Experimental Groups

Three experimental groups (n = 6 per group) were designated: (1) a control group
treated with saline (0.9% of NaCl); (2) 50 group, treated with 50 µg/kg of rat recombinant
TWEAK (rTWEAK, #80154-R01H, Sino Biological, Beijing, China) dissolved in saline; and
(3) 150 group, treated with 150 µg/kg of rTWEAK dissolved in saline. The concentrations
of rTWEAK were selected taking previous work as a reference [30], but here we wanted
to assess potential dose-dependent effects. All treatments were given as a single bolus
(jugular) at two-timepoints: (1) 1 h after ICH, following the basal magnetic resonance
imaging (MRI), and (2) 24 h after ICH induction. The required sample size was calculated
from previous studies using the same model in order to be able to detect a 25% effect size
on hematoma growth versus controls (2-tailed t-test) [28,31]. Six animals per group are
required to detect this difference with a power (1 − β) of 0.8 and α = 0.05. N was calculated
using EPIDAT software version 4.2 (http://www.sergas.es/Saude-publica/EPIDAT-4-2,
v4.2, accessed on 13 May 2025). Animals with hemorrhage located far from the basal
ganglia (n = 2) were excluded from the study before treatment administration.

The experimental procedure was performed following several criteria derived from
the STAIR (Stroke Therapy Academic Industry Roundtable) group guidelines for preclinical
evaluation of stroke therapeutics [32]: (1) ICH hematoma was evaluated at 1 h, right before
rTWEAK injections, by T2-weighted MRI to confirm ICH, as an index of the reliability
of the hemorrhagic model; (2) animals were randomly assigned to treatment groups of
the study; (3) researchers were blinded to treatment administration; (4) researchers were
blinded to treatments during outcome assessment; and (5) temperature was controlled
during the surgical period.

2.4. Magnetic Resonance Imaging Protocol

Based on a previous hematoma growth profile study [28,29], hematoma volumes were
assessed basally (1 h after collagenase injection to induce ICH) and at 24 h, 7, 14, and

http://www.sergas.es/Saude-publica/EPIDAT-4-2
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28 days after ICH induction by means of MRI conducted on a 9.4-T horizontal bore magnet
system (Biospec 94/20USR, Bruker BioSpin, Ettlingen, Germany) with 20 cm-wide actively
shielded gradient coils (440 mT/m), as previously described [28,29]. Before MRI acquisition,
the animals were placed in a gas chamber containing 6% sevoflurane in a NO2/O2 mixture
(70/30) until they were unconscious, and then they were positioned prone on the scanner
bed. Rectal temperature was maintained at 37 ± 0.5 ◦C using a feedback-controlled heating
pad. Radiofrequency transmission was achieved with a birdcage volume resonator, and
the signal was detected using a four-element surface coil positioned over the head of the
animal. Gradient-echo pilot scans were performed at the beginning of each imaging session
for accurate positioning of the animal inside the magnet bore.

T2-weighted images were acquired using a Rapid Acquisition Relaxation En-
hancement (RARE) sequence with the following acquisition parameters: echo time
= 9.5 ms, 8 echos, rare factor = 4, repetition time = 3 s, number of averages = 2,
field-of-view = 19.2 × 19.2 mm2, image matrix = 192 × 192 (isotropic in-plane resolution
of 0.1 mm2/pixel), and 18 consecutive slices of 0.5 mm thickness. All images were pro-
cessed using ImageJ (RasbandWS, ImageJ version 2.3, NIH, http://rsb.info.nih.gov/ij, 2.3v,
accessed on 13 May 2025). The analyzed region of interest was the hematoma. Hematoma
volumes (basal, 24 h and 7, 14, and 28 days), as well as edema volumes (24 h and 7, 14, and
28 days), were manually traced from T2-weighted images by a blind investigator.

Edema was firstly estimated by measuring the volumes of the affected (VLes) and
contralateral (Vc) hemispheres and using the formula: edema (%) = 100 × [(VLes − Vc)/Vc].
Then, these values were normalized against those from the 24 h timepoint.

2.5. Bederson Scale

Following the STAIR criteria, animal models must show neurological and functional
deficits in line with the produced lesion. The model of collagenase-induced hemorrhage pri-
marily damages the striatum, producing a small forelimb paresis contralateral to the lesion.
The neurological deficit was evaluated using a modified Bederson scale [33], ranging from
0 (asymptomatic) to 8 (severe deficit), which included the following items: spontaneous
movement, spontaneous rotation, spontaneous flexing of the contralateral forelimb, edge
detection, turn after tail suspension, and protection reflex.

Behavioral studies were performed at baseline (before surgery), as well as at 1, 7, and
28 days after ICH during the darkness cycle. An experienced blind investigator analyzed
the behavioral tests.

2.6. Flow Cytometry Analysis of Blood Progenitor Cells

Blood samples were drawn from the tail vein before ICH (basal sample), and at days
1, 3, 7, 14, and 28 days after ICH. The samples were collected into K2EDTA tubes (BD
Microtainer, BD, Franklin Lakes, NJ, USA), and then, erythrocytes were lysated using a com-
mercial kit (FACS Lysing, #349202, BD Biosciences, USA). Immunofluorescence cell staining
was performed with fluorescent conjugated antibodies anti-ckit (#567471, BD Biosciences,
USA) and anti-sca-1 (#CL8934PE, Cederlane, Burlington, ON, Canada) [34]. Cell fluores-
cence was measured 15 min after staining by flow cytometry with BD FACS Aria II (BD,
Franklin Lakes, NJ, USA). Numbers of EPCs (ckit+/sca1+) were calculated using the FACS-
Diva software (https://www.bdbiosciences.com/en-us/products/software/instrument-
software/bd-facsdiva-software accessed on 13 May 2025), as previously described [34].

2.7. Tissue Processing

After the completion of the neuroimaging study, three animals per group at 28 days
after ICH were euthanized by an overdose of anesthetic (sevoflurane 8%) and perfused
with PBS and 4% formaldehyde. Brains were dissected out coronally in three parts and

http://rsb.info.nih.gov/ij
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postfixed, in the same fixative solution, overnight at 4 ◦C. Brain blocks were rinsed with
0.1 M phosphate buffer and sequentially immersed in 10%, 20%, and 30% (w/v) sucrose in
phosphate buffer until they sank. After cryoprotection, 20 µm-thick coronal sections were
obtained with a freezing-sliding cryostat (Leica CM 1950 AgProtect; Leica Microsystems,
Wetzlar, Germany).

2.8. Immunofluorescence Protocol

Sections were rinsed in 0.1 M phosphate buffer (PB) and incubated in 50 mM NH4Cl for
30 min. Then, a permeabilization protocol was carried out with 0.3% Triton X-100 (Sigma) in
0.1 M Tris/HCl (pH 8.0) for 10 min. Incubation in the primary antibody solution was carried
out in CaCl2-containing buffer (0.1 mM CaCl2, 0.1 mM MgCl2, 0.1 mM MnCl) and blocking
solution, 0.05% (v/v) Triton X-100 (Sigma) and 2% (v/v) goat serum (Jackson Immunore-
search Laboratories, West Grove, PA, USA) [35]. Rabbit anti-Iba1 (#019-19741, 1:200, Wako
Chemicals, Neuss, Germany) and anti-IB4 (#L2140, 1:50, Sigma) primary antibodies were
used. Sections were incubated for 2 h at room temperature with fluorophore-conjugated
secondary antibodies (1:500, Jackson Immunoresearch Laboratories). Nuclei were stained
with the commercial monomeric cyanine nucleic acid stain TO-PRO-3 (far-red fluores-
cence; Molecular Probes T3605, Invitrogen) for 10 min. After rinsing with PB, sections
were mounted with Fluoromount (Sigma) aqueous mounting medium. Sections were
examined with a spectral laser confocal microscope (Leica TSC-SL; Leica Microsystems)
with three lasers: multiline Argon (488 nm), Helium-Neon (543 nm), and Helium-Neon
(633 nm), and equipped with Å~ 40, Å~ 63 (1.4) HCX PL Apo oil immersion objectives for
high-resolution imaging.

2.9. Immunofluorescence Quantifications

To quantify the intensity of each immunofluorescence (IF) signal in perilesional cortical
regions, the area occupied by IB4+ vessels and Iba1+ was estimated using ImageJ soft-
ware. All values were normalized against control values. The experimenter was blinded
during quantifications.

2.10. Statistical Analyses

Data were presented as mean ± S.E.M. Normality of the data was determined by the
Shapiro–Wilk normality test. The results of each experiment (lesion volume, EPCs numbers,
immunofluorescence, and Bederson’s score) were analyzed by a one-way ANOVA (for
normally distributed data) or a Kruskal–Wallis test (for non-normally distributed data).
Correlation analysis was assessed with the Pearson correlation coefficient test. In the
figures significant values were represented by different numbers of asterisks (vs. 150 µg/kg
TWEAK treatment group) or pounds (vs Control group): *(#) p < 0.05; **(##) p < 0.01;
***(###) p < 0.001; ****(####) p < 0.0001. Statistical analysis was carried out using Prism 8
(GraphPad software, La Jolla, CA, USA).

3. Results
3.1. rTWEAK Decreases Long-Term Hematoma Volume After ICH Induction

The intraparenchymal injection of collagenase caused an intracerebral hematoma with
similar size in all animals at the basal timepoint (Figure 1A–A”,F). The 50 µg/kg dose of
rTWEAK showed decreased hematoma at long-term compared with both controls and the
150 µg/kg TWEAK treatment group, although differences were statistically significant at
28 days post-injury only vs. the 150 µg/kg TWEAK treatment group (Kruskal–Wallis test,
p = 0.040) (Figure 1B–E”,G). In order to investigate the effects of a subacute injection of
the treatment (at 24 h), we also analyzed the reduction in brain damage in relation to this
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timepoint. Here, the long-term reduction in the 50 µg/kg dose is even clearer compared to
both controls (Kruskal–Wallis test, p = 0.132) and the 150 µg/kg dose (Kruskal–Wallis test,
p = 0.048) at 28 days post-ICH (Figure 1B–E”,H). Edema was reduced in all experimental
groups 7 days post-damage (Figure 1I); there was also a reduction in the volume of the
ipsilateral hemisphere compared to the contralateral hemisphere (negative values) at 14 and
28 days, which was bigger in the controls than in the 50 and 150 µg/kg TWEAK treatment
groups, but this was not statistically significant (Figure 1I).
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Figure 1. Treatment with 50 µg/kg of rTWEAK promotes a reduction in hematoma in the long term.
(A–E”) Analysis of hematoma volume was performed by T2-weighted magnetic resonance image.
Saline (control) or rTWEAK (50 µg/kg and 150 µg/kg) treatments were administered at 1 and 24 h
after collagenase injection. (F) Basal hematoma volumes. (G) Percentage of hematoma expansion
from basal timepoint. (H) Percentage of hematoma reduction from the 24 h timepoint. (I) Analysis of
edema evolution from the 24 h timepoint. In all graphics, results are expressed as the mean ± SEM
and analyzed by one-way ANOVA or Kruskal–Wallis tests; differences from 150 group vs. 50 group
are denoted as * p < 0.05; non-significant results are denoted as “ns”. Six rats per group were used.
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3.2. rTWEAK Promotes and Maintains Long-Term Blood Progenitor Cell Mobilization

Our analysis demonstrates that only the 50 µg/kg treatment increased the levels of circu-
lating blood progenitor cells, mainly EPCs, at different post-ICH timepoints (Figure 2). Such
elevated numbers of EPCs were statistically significant as soon as 72 h post-injury (Kruskal–
Wallis test, vs. Control: p = 0.009), and at 7 (One-way ANOVA test, vs. Control: p = 0.013;
vs. 150: p = 0.045), 14 (One-way ANOVA test, vs. Control: p = 0.007; vs. 150: p = 0.0004), and
28 days (Kruskal–Wallis test, vs. Control: p = 0.004; vs. 150: p = 0.010) (Figure 2A). Moreover,
the peak of circulating EPCs in the 50 µg/kg TWEAK treatment group was reached at 7 days
post-injury (Figure 2A) and this correlates with lower hematoma volumes at this timepoint
(Figure 2B).
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Figure 2. (A) Time course of blood progenitor cells numbers from blood samples (250.000 cells
counted in each one). Circulating cells were determined by the expression of the surface antigens
ckit+/sca1+ using flow cytometry: we first gated sca1+ peripheral blood cells and then examined
the resulting population for dual expression of c-kit. Stats at each timepoint are controls (#) and
150 (*) vs. 50 group. Results are expressed as the mean ± SEM and analyzed by one-way ANOVA or
Kruskal–Wallis tests (*(#) p < 0.05; ## p < 0.01; *** p < 0.001); non-significant results are denoted as
“ns”. (B) Negative correlation between the number of blood progenitor cells and hematoma volume
at 7 days post-injury (Pearson correlation’s coefficient, r = −0.75; p = 0.086). Six rats per group
were used.
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3.3. rTWEAK Enhanced Cortical Neovascularization

We performed immunohistochemical analysis targeting the vascular cell marker
isolectin-B4 (IB4), which represents a suitable index of vascularization [32,33]. Given
that IB4 also labels microglial cells, we used the microglia-specific marker Iba1 to dis-
tinguish microglial cells from endothelial cells (Figure 3A–E). Regarding IB4+ cells, we
observed that only the 50 µg/kg TWEAK treatment group had increased vascular density
in cortical areas at 28 days post-injury, as revealed by the enhanced IB4 staining indicating
vascular repair, and so, neovascularization (One-way ANOVA test, vs. Control: p = 0.0571;
vs. 150: p = 0.001) (Figure 3B,E and Figure 4). Moreover, the 150 µg/kg TWEAK treatment
group also displayed statistically significant differences compared to controls (One-way
ANOVA test, p = 0.016). Iba1 staining displayed a 10% increase in the 150 µg/kg TWEAK
treatment group compared to controls, but without statistical significance (Figure 3C,E).
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n = 3 each group) treated rats were subjected to experimental ICH. Brain sections were co-stained with the
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are expressed as the mean ± SEM and analyzed by one-way ANOVA test (* p < 0.05); (** p < 0.001);
non-significant results are denoted as “ns”. Three rats per group were used.
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3.4. The Effect of rTWEAK Treatments on Neurological Recovery

We used the modified Bederson scale to assess any beneficial effect of rTWEAK
treatments on the neurological deficits caused by the hemorrhagic lesion. Results showed
that scores were close to 0 at baseline, as expected for healthy subjects (Figure 5A); however,
both rTWEAK treatments showed higher deficit at 48 h (Figure 5A), in agreement with the
larger hematoma volume seen at 24 h. Therefore, we analyzed the effects of a subacute
injection (24 h) and observed that the 50 µg/kg dose, but not 150 µg/kg dose, induced
a relevant neurological recovery at post-ICH timepoints compared to both other groups,
especially at 28 days (Kruskal–Wallis test, vs. controls: p = 0.1688; vs. 150: p = 0.012)
post-injury (Figure 5B).
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control and rats treated with the 50 µg/kg dose or the 150 µg/kg dose at 1 day before surgery
(baseline) and 48 h, 7, and 28 days afterwards. (B) Analysis of neurological recovery from a 48 h
timepoint. Results are expressed as the mean ± SEM and analyzed by the Kruskal–Wallis test
(* p < 0.05); non-significant results are denoted as “ns”. Six rats per group were used.

4. Discussion
In this study, we show that a 50 µg/kg dose of rTWEAK induces smaller long-term

lesion volumes, mobilizes higher numbers of circulating blood progenitor cells, mainly
EPCs, and enhances neovascularization. Thus, our study represents the first proof-of-
concept study assessing the therapeutic and dose-effect of TWEAK treatments in an animal
model of ICH. Remarkably, our results suggest a direct effect of this treatment on EPCs-
mediated vascularization. Here, we discuss the implications and possible mechanisms
underlying this TWEAK-mediated response following ICH.

The role of the TWEAK-Fn14 axis as an in vitro and in vivo inducer of growth, prolif-
eration, and migration of mature and progenitor endothelial cells is well-known, and it acts
in a dose-dependent manner [23,25,36–40]. Intriguingly, our experiments showed that the
rTWEAK treatment of 50 µg/kg mobilizes progenitor cells to the blood flow, likely EPCs,
in a significant way, whereas the 150 µg/kg concentration had no effect on EPCs, likely
because of the saturation of the Fn14 receptor. Moreover, several previous studies also
showed that TWEAK can promote angiogenesis in mature and progenitor endothelial cells
both in vitro and in vivo [23,36,37,39]. Our experimental group treated with a 50 µg/kg
dose of TWEAK showed a higher degree of neovascularization in immunohistochemical
analysis at day 28 post-injury, which agrees with previous studies. Based on the important
role of EPCs in angiogenesis and neovascularization [7], it is plausible that a low dose of
TWEAK induces EPCs-mediated neovascularization, given that this outcome was not seen
in the high-dose group, where no significant EPCs mobilization was seen. Future studies
should confirm whether TWEAK-mediated neovascularization is achieved through EPCs
mobilization and/or angiogenic factors.

Addition to modulating angiogenesis and neovascularization, many studies have
addressed the beneficial roles of EPCs following stroke such as reducing inflammation and
promoting neuronal survival [7]. Indeed, higher numbers of circulating EPCs within the
first week were associated with an improved long-term recovery in patients who suffered
from both ischemic [11–13] and hemorrhagic [14,15] stroke. Here, we observed a higher
and sustained EPCs mobilization and neovascularization after the administration of the
50 µg/kg dose, which was reflected in a beneficial long-term outcome both on lesion
volume and on the neurological recovery of animals compared to control counterparts.
Furthermore, peak levels of circulating EPCs in the 50 µg/kg TWEAK treatment group
were reached at 7 days post-injury and were correlated with lower hematoma volumes.
This result aligns with a previous clinical study of our group, in which hemorrhagic
stroke patients with good functional outcome showed higher EPC levels at day 7, and a
correlation was found between increased levels of EPCs and smaller ICH residual volume
at 6 months [15]. Based on this, we proposed an indirect effect of TWEAK on reducing ICH
damage through EPCs. As previously discussed, EPCs can promote angiogenesis and the
repair of damaged vessels as well as trigger neovascularization. Moreover, a protective role
of EPCs has been suggested by maintaining the integrity of the blood–brain barrier (BBB)
following both ischemic [41] and hemorrhagic [15] stroke. Overall, our results highlight
the positive role of increasing EPCs following stroke likely by restoring and protecting
vascular integrity.

Results in rodent models of ischemic stroke showed that the blockage of the
TWEAK/Fn14 axis results in beneficial effects [24–27]. Similarly, a few clinical studies
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reported a potential correlation between serum levels of sTWEAK and a poor functional
outcome in ischemic stroke patients [42], as well as with the risk of developing early ICH
growth [43]. Moreover, the ICH injury may not activate the same molecular pathways
as the ischemic injury (e.g., the NFκB pathway [44]) [29,45], and this could explain the
differences between previous ischemic studies and our results. Nevertheless, our strategy
was not based on inhibiting TWEAK but on using it in a low dose given that several works
indicated that the TWEAK/Fn14 axis can coordinate the inflammation and the response
of progenitor cells in the context of acute tissue damage to promote tissue repair [46]. In
this way, present results suggest that our hypothesis was partially right as the 50 µg/kg
dose exhibited modest results compared to the control group regarding lesion, edema, and
behavior, but it had a major impact on EPCs dynamics and angiogenesis. Remarkably,
the second injection at 24 h post-injury appeared to be crucial in this TWEAK-mediated
EPCs mobilization. Indeed, acute injection of rTWEAK at 1 h post-injury seems to slightly
increase injury volumes at 24 h. Such results suggest that the subacute treatment is more
efficient than the acute one, which may explain the statistically relevant differences when
data are relativized to 24 h/48 h. Therefore, this indicates that activating the TWEAK/Fn14
axis following hemorrhagic stroke is not harmful per se, but it depends on the intensity
and/or the timing. Further studies assessing lower doses than 50 µg/kg of TWEAK at
different subacute/chronic timepoints would be necessary to find the best dose and time to
apply the treatment.

TWEAK is a pro-inflammatory cytokine that controls other activities besides apoptosis,
such as inflammation and oxidative stress [18,47–50]. A previous in vitro study reported
the dose-dependent increase in pro-inflammatory cytokines released by astrocytes treated
with TWEAK [51]. Similarly, we showed that only the 150 µg/kg TWEAK treatment
group had an increase in microglia labeling on day 28 after ICH, suggesting increased
neuroinflammation even in the chronic phase of the insult. Indeed, microglia plays vital
roles in both tissue damage and repair processes after ICH, specifically the perihematomal
activated microglia [52]. So, it is plausible that this increased inflammation seen in the
150 µg/kg TWEAK treatment group is linked to higher lesion volumes and sensorimotor
deficit. Furthermore, excessive TWEAK-mediated activation increases reactive oxygen
species in several cell cultures, including human umbilical vein endothelial cells [47],
macrophages [48], and astrocytes [49]. Both neuroinflammation and oxidative damage are
important causes of BBB disruption, as they alter the architecture of the neurovascular unit
(NVU) and they exacerbate the brain injury following ICH as well [53]. Our data reported
that a 150 µg/kg dose of TWEAK increased the hematoma volume compared to the control
and the 50 µg/kg groups at all timepoints after ICH. Several in vivo studies showed glial
cells as the main targets of endogenous TWEAK that trigger BBB dysfunction after cerebral
ischemia and ICH [25–27,52,54,55]. Based on our data, we hypothesize that the 150 µg/kg
dose is harmful enough to act on and activate NVU-forming glial cells, resulting in bigger
lesion volumes and poorer animal behavior. Undoubtedly, further studies are mandatory
to elucidate the exact impact of TWEAK on glial cells and BBB dysfunction following ICH.

There are several limitations in this study. We used the IB4 marker to assess angiogen-
esis as it is widely used as a well-known index of neovascularization [35,56]. Although
additional assays assessing angiogenesis would have provided further information on
this process, our proof-of-concept study fully supports the assumption that a 50 µg/kg
dose of TWEAK promotes angiogenesis in vivo following ICH. This result agrees with
previous studies showing that TWEAK activates the Hippo-YAP signaling [57], a positive
regulator of angiogenesis [58], and promotes EPCs differentiation, viability, migration to
injured tissue and angiogenesis in an in vivo model of acute myocardial infarction [23]. We
cannot exclude the possibility of EPC-derived secretome/exosomes having a role during
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the neovascularization seen in this study [7,59], and future studies are needed to decipher
the exact impact of these exosomes during this process. We characterized blood progenitor
cells by studying the surface expression of both sca1 and ckit antibodies as previously
described [34]. Although we did not determine the co-expression of those markers with
CD31, a mature endothelial marker, ~90% of sca-1+ cells are also CD31+ [34], and so the
majority of these cells are EPCs. Importantly, our results agree with those from hemorrhagic
stroke patients, showing a correlation between increased levels of EPCs and smaller ICH
residual volume at 6 months [15], similar to what we report here. Finally, the sample size
may be considered a limitation as the 50 µg/kg dose exhibited modest results compared
to the control group regarding lesion, edema, and behavior, although such differences
are close to the statistical significance at day 28. However, this is a proof-of-concept pre-
clinical study to assess the use of TWEAK as a treatment to provide brain tissue repair
through EPCs-mediated neovascularization in a rat model of ICH, and present results
suggest that our hypothesis is correct, as we observed a major impact on EPCs dynamics
and angiogenesis.

In conclusion, we found that a 50 µg/kg dose of rTWEAK mobilizes higher numbers
of circulating EPCs, enhances neovascularization, and induces smaller lesion volumes.
Remarkably, our results suggest a direct effect of this treatment on EPC-mediated vascular-
ization. However, further regulatory preclinical and clinical studies should be conducted
to clarify whether rTWEAK may be able to be a therapeutic target in hemorrhagic stroke.
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