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The NF-κB transcription regulation system governs a diverse set of responses to various

cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based

whole genome investigations, great strides have beenmade in understanding howNF-κB

transcription factors control the expression of specific sets of genes. Nonetheless, these

efforts have also revealed a very large number of potential binding sites for NF-κB in

the human genome, and a puzzle emerges when trying to explain how NF-κB selects

from these many binding sites to direct cell-type- and stimulus-specific gene expression

patterns. In this review, we surmise that target gene transcription can broadly be thought

of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of

NF-κB dimers for the regulatory sequence and the availability of this regulatory site.

We use this framework to place quantitative information that has been gathered about

the NF-κB transcription regulation system into context and thus consider questions

it answers, and questions it raises. We end with a brief discussion of some of the

future prospects that new approaches could bring to our understanding of how NF-κB

transcription factors orchestrate diverse responses in different biological contexts.

Keywords: NF-κB, transcription regulation, specificity, accessibility, competition

INTRODUCTION

The nuclear factor-κB (NF-κB) family of transcription factors regulate the expression of genes that
are crucial to a wide variety of biological processes, ranging from immune, stress, and inflammatory
responses, to cell apoptosis. The NF-κB family is made up of five proteins, p105/p50 (encoded
by NFKB1), p100/p52 (encoded by NFKB2), RelA (also known as p65), RelB, and c-Rel, which
can form a range of homo- and hetero-dimeric complexes [Figures 1A,B; (6)]. When partnered
with inhibitory IκB proteins, NF-κB dimers are preferentially shuttled to the cytoplasm where they
are held inactive. In response to stimuli, IκB is phosphorylated and subsequently degraded, thus
releasing NF-κB and allowing it to accumulate in the nucleus (Figure 1C). Once in the nucleus an
NF-κB dimer can bind to κB sites to activate or repress the transcription of its target genes. The
best-studied κB sites fit the consensus κB site pattern, 5′-GGGRNWYYCC-3′ (where R, W, Y, and
N, respectively denote purine, adenine or thymine, pyrimidine, and any nucleotide) (7–9). In the
human genome encompassing 3 × 109 base pairs, there are undoubtedly myriads of sequences
matching the consensus κB site. Indeed, early on, ChIP-chip (chromatin immunoprecipitation to
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FIGURE 1 | The NF-κB transcription factor family and its dimerization and

DNA interactions. (A) Diagrams of the five NF-κB subunits showing their Rel

homology domain (RHD), which encompasses both their DNA-binding

(Continued)

FIGURE 1 | domain and dimerization region, the transactivation domains (TD)

of RelA, RelB, and c-Rel, as well as the ankyrin-rich region of p105 and p100

(repeats 1-7; ANK1-7), which is cleaved to yield p50 and p52. (B) Diagram of

the ways in which the NF-κB subunits can partner to form dimers that contain

zero (all red), one (blue/red), or two (all blue) transactivation domains. (C)

Simple schematic of the process of activation of NF-κB dimers. Upon

stimulation, a series of events leads to phosphorylation and

proteasome-mediated degradation of IκB to release NF-κB dimers (left) and/or

cleavage of p105 or p100 to remove their IκB-like ankyrin-rich domain and

again release NF-κB dimers (right). Free NF-κB dimers are preferentially

shuttled into the nucleus where they have access to the regulatory sequences

of NF-κB target genes. TD-containing NF-κB dimers can activate transcription

of target genes (blue arrow), while TD-lacking NF-κB dimers can act as

transcriptional repressors (red). (D) Venn diagrams representing potential

target sites (right) and potential target genes (left). There may be up to 2 × 106

consensus κB sites or half-sites in the human genome (1) although various

ChIP-seq studies have reported that there may be between 1 and 5 × 104

NF-κB-bound peaks in a mammalian genome across a population of

stimulated cells [e.g., (2–4)], of which 30–50% contain a consensus κB site.

Because many gene regulatory sequences have multiple NF-κB-bound peaks,

one estimate is that around 1.3 × 104 genes have at least one RelA peak in

their regulatory region (5). However, the same study found only ∼1,000 genes

were detectably regulated by RelA-containing NF-κB with ∼60% of these

having a RelA ChIP-seq peak in gene-proximal regulatory regions (5).

microarray) experiments interrogating the sequence of human
chromosome 22 suggested that there are more than 1.4 × 104

of these consensus sites contacted by NF-κB dimers during a
response to stimulus (2, 10). More recent ChIP-seq experiments
have identified 20,000–50,000 RelA-bound peaks, although it is
unclear whether RelA directly contacts the DNA at all of these
sites (3, 4). Just considering the RelA subunit, 1 × 105-1.5 ×

105 molecules enter the nucleus following stimulation (11), a
portion of these molecules bind to DNA and this regulates the
expression of just ∼600 genes [a curated list of known NF-
κB target genes can be found at the Boston University NF-
κB Transcription Factors website; (12)]. The large number of
RelA molecules in comparison to the relatively small number of
regulated transcripts suggests a complex relationship between the
amount of NF-κB in the nucleus and the subsequent expression
of target genes.

Numerous ChIP-seq and whole genome sequencing
experiments have shown that the recruitment of many
transcription factors, including NF-κB, to chromatinized
DNA is dependent on the cellular context and therefore must
be highly regulated [reviewed in (10)]. However, despite the
wealth of genomic data now available, the mechanisms by which
NF-κB-DNA interactions generate specific gene expression
profiles following stimulation remain largely unknown. For
example, by allocating ChIP-Seq peaks to their nearest gene,
RelA-containing NF-κB was found to bind ∼13,600 genes in
TNF-stimulated HeLa cells, yet only ∼1,000 genes were up or
down-regulated in response to RelA perturbation, and only∼600
of these were directly bound by NF-κB [Figure 1D, left; (5)].
Thus, a vast majority of the genes that are bound by NF-κB in
response to stimulus are not regulated. This raises the questions:
how do NF-κB dimers select their binding sites and why are only
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some of the bound genes transcriptionally regulated? Seeking to
answer these questions, we will focus herein on three key sets
of factors that regulate NF-κB recruitment to DNA: abundance
of NF-κB dimers and κB binding sites, binding affinity, and the
availability of the κB sites at any given time.

ABUNDANCE

κB Binding Sites
If, as Martone et al. (2) estimated, there are ∼104 consensus
κB sites in the genome that are bound by RelA and ∼1 × 105

RelA-containing dimers enter the nucleus upon cell stimulation
[estimated by Hottiger et al. (11)], a simple view of the system
would predict rapid saturation of these consensus κB sites (see
Box 1). However, experiments demonstrate that many consensus
κB sites are not bound and, in fact, this lack of saturation
of the system is necessary to generate stimulus- and cell-type-
specific gene expression profiles (16–18). One explanation for
this apparent dichotomy is that, in addition to consensus κB sites,
NF-κB can bind to degenerate κB sites. Structural, biochemical,
and in vivo assays have demonstrated that NF-κB dimers can
bind to κB half sites, sites whose sequences deviate from the
consensus sequence, and even unrelated sites (3, 19–24). With
these additional non-consensus binding sites, the total number
of potential NF-κB sites in the human genome could easily climb
to 2 × 106 (1). This flips the NF-κB protein vs. NF-κB binding
site calculus (Figure 1D, right), and our first question becomes:
how do the relatively sparse NF-κB dimers decide which of the
numerous potential κB binding sites to interact with?

In recent years, innovative live-cell imaging techniques based
on fluorescence recovery after photobleaching (FRAP), along
with kinetic modeling of the collected data, have started to
shed light on the dynamic nature of the transcription factor-
DNA interaction process. Broadly speaking, this work indicates
that most transcription factors may rapidly diffuse through
the nucleus (with diffusion coefficients of ∼0.5–5 µm2s−1

depending on transcription factor size) while “scanning” the
genome for high-specificity sites (25, 26). Of note, the use of
the term “scanning” should not necessarily evoke the image of a
transcription factor gliding along chromatin, although such one-
dimensional sliding models have been posited following single-
molecule imaging studies of the p53 transcription factor (27, 28).
Instead, many transcription factors, including NF-κB dimers,
may “scan” by visiting multiple sites in a trial-and-error series
of short-duration binding events (29). Therefore, transcription
factors undergo thousands of these transient encounters with
chromatin that ultimately will have no direct consequence on
gene expression.

Interestingly, it is now thought that most functional NF-κB
interactions with chromatin—interactions that lead to a change
in transcription—are fleeting. Early, in vitro, bulk biochemical
measurements of NF-κB interactions with κB sites indicated the
formation of very stable complexes with a half-life of up to 45min
(30); using bulk, ChIP-based assays, similarly long interaction
half-lives have been measured for other transcription factors
(31) and shown to be regulated by ubiquitylation [reviewed in
(32, 33)]. However, a subsequent study using FRAP in live cells

expressing RelA-GFP showed that most RelA-DNA interactions
are actually quite dynamic, with half-lives of a few seconds
(16). Using stopped-flow kinetics and surface plasmon resonance,
which can both directly measure association and dissociation
kinetics, in vitro measurements made in physiological salt and
pH conditions recapitulated these faster kinetics [yielding half-
lives of 1.5 and 40 s, respectively for RelA:p50-DNA (34) and
a range of a few seconds to a few minutes for a variety of
NF-κB dimers and binding sites (22)]. Strikingly, IκBα can
further accelerate the RelA:p50-DNA dissociation by up to ∼40-
fold, “stripping” dimers from DNA in a process that has now
been extensively characterized (34–39). Indeed, a recent study
used single-molecule tracking of individual Halo-tagged RelA
molecules in live cells to show that the majority (∼96%) of RelA
undergoes short-lived interactions lasting on average ∼0.5 s,
while just ∼4% of RelA molecules form more stable complexes
with a lifetime of∼4 s (40). Because the ability of the RelA fusion
proteins to induce transcription of target genes was verified
in both the FRAP and single-molecule in vivo studies, these
results suggest that long-lasting NF-κB binding may not be
required for preinitiation complex assembly or for the activation
of transcription. However, the mechanisms that distinguish NF-
κB-DNAbinding events that change transcription of a target gene
from those that do not remain unclear.

Recent studies have found that while individual interactions
are very brief, the integrated target site occupancy of Sox2 and
Oct4 transcription factors can be highly sensitive to the nuclear
concentration of the transcription factor (41). This implies that
even when transcription factor occupancy at target sites is
short-lived, high nuclear concentrations facilitate rapid turnover
and, overall, increase the frequency of these short interactions.
In this way, high rates of transcription factor sampling at
binding sites may generate enough cumulative site occupancy to
affect transcription (29). Having many binding sites across the
human genome, NF-κB may also use this mechanism to tune
the spatiotemporal patterns of gene expression it generates in
response to stimulation by, for example, having a larger effect on
sites that have the highest cumulative occupancy.

Intriguingly, high frequencies of transcription factor sampling
have also been observed at non-consensus sites, yet these
interactions were shown to have no direct effect on transcription
(42). This observation has revived ideas first proposed years
ago, whereby a key part of the target search process is
transcription factors making non-specific contacts with DNA
and then proceeding to slide or hop around the local chromatin
environment until either a specific contact is formed, or contact
and access to DNA is lost (43, 44). This model could partially
explain the large number of sites detected by static, end-point
biochemical binding assays including ChIP-Seq studies, which
appear to be non-functional. Although these sites are “visited”
in the search process, their cumulative occupancy may not be
sufficiently long, or their interaction qualitatively suitable, to
affect transcription.

If transcription factors rapidly sample many sites, would
a cluster of non-functional binding sites near a target gene
promoter or enhancer increases, or decreases, the local
concentration of transcription factor? An increase in local
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Box 1 | Computing fraction of binding sites occupied by transcription factor.

Computational models provide a powerful means to examine, interrogate, and ultimately better understand the relationships between inputs and outputs of

complicated biological processes. Here, we use a simple mass-action kinetics model to illustrate how (i) binding affinity, (ii) abundance of transcription factors

and their binding sites, and (iii) the availability of these binding sites due to the presence or absence of a binding competitor species affect the fraction of sites bound

by the transcription factor. Although in reality, binding by a transcription factor is only a rough correlate of gene transcription in response to stimuli, this toy model

shows us how the interplay between quantitative aspects of protein-DNA interactions potentially affects transcription regulation. Previous studies have used similar

kinetics models to calculate fraction of binding sites (13).

In the simple scenario that we depict (Figure Box 1A), we model the binding of transcription factors to their cognate sites on the genome as a simple adsorption

process—where molecules bind to sites, unchanged. This model therefore gives us a theoretical limit on the fraction of bound sites when the process is activation

energy-limited (i.e., within-nucleus transport is much faster than DNA binding) and the process of a transcription factor finding a binding site is random. We also

make additional simplifying assumptions: (1) the contents of the nucleus are well mixed and both genomic and non-genomic compartments are homogeneous; (2)

all binding sites are equivalent with identical affinities for the transcription factor and competitor species; (3) the total nuclear concentrations of transcription factor

and competitor species are fixed, under the assumption that any change occurs on a time scale slower than that of the binding process (and therefore, in this very

simplistic model, we assume that the steady state is reached faster than changes in nuclear abundance and post-translational modifications of transcription factors).

Given the stated assumptions, we will let X be free nuclear transcription factor, Xcomp be free nuclear competitor species, and Y represent the transcription factor

binding site. Y can be bound by X or Xcomp creating the complexes Y :X and Y :Xcomp, respectively. Binding of transcription factor and competitor species to DNA

can then be modeled by two reaction equations:

X + Y ↔ Y :X

Xcomp + Y ↔ Y :Xcomp

As we assumed identical affinities to DNA binding sites for the transcription factor and its competitor, we will also assume the same association rate parameter α

and dissociation rate parameter γ . Using mass action kinetics and mass balance equations, our reaction system can be fully described using two ordinary differential

equations (ODEs):

d[Y :X ]

dt
= α ·

(

XT − [Y :X]
)

·
(

YT − [Y :X] −
[

Y :Xcomp
])

− γ · [Y :X]

d[Y :Xcomp]

dt
= α ·

(

X
comp
T

−
[

Y :Xcomp
]

)

·
(

YT − [Y :X] −
[

Y :Xcomp
])

− γ ·
[

Y :Xcomp
]

Here, XT , X
comp
T

and YT are the total number of molecules or sites for a given nucleus and, under our assumption of time scale separation (#3), they are assumed

constant while solving the ODEs. We also define KD =
γ

α
, the dissociation constant (which is, as usual, the inverse of the binding affinity constant). Solving the system

of ODEs gives the concentration of each species over time and at steady state. Solving the ODEs for different sets of parameter values and initial concentrations for

XT , X
comp
T

and YT allows us to illustrate the relationships between these parameters and initial concentrations and the steady state (ss) fraction of sites bound by

the transcription factor, calculated as
[Y :X]ss
YT

.

To survey a biologically relevant range of concentration values, we considered a typical HeLa cell, with a total cell volume of 2,700 µm3, a cytoplasmic to nuclear

volume ratio of 3.3 (14), and ratios of transcription factors and available binding sites from 103:106 to 106:103 molecules/site. In the absence of the competitor

(Figure Box 1B; continuous lines) and for KD >10 nM, we need a large amount of transcription factor (log10

[

XT
Y

]

> 1) to effectively saturate most of the binding

sites at steady state. If we consider the RelA:p50 heterodimer, which has been reported to bind to the consensus κB site with a KD of 12.8 ± 2.2 nM (15), and ∼1.5

× 105 heterodimers in a nucleus (11) with ∼1.4 × 104 binding sites (2), we obtain log10

[

XT
YT

]

> 1, and the simple model finds that >90% of the DNA binding sites

would be occupied. In the presence of the competitor species (in abundance equal to that of the dimers) the achievable occupancy is reduced to half (Figure Box 1B,

dashed lines). Even a simplistic illustrative model such as the one we used here clearly shows how the interplay between abundance and affinity changes the fraction

of bound sites in a nonlinear fashion, and how one mechanism for regulating availability of the sites—competition—can substantially reduce the number of sites

occupied by a transcription factor. As we discuss in this review, there are many other nuances to abundance, affinity, and availability which will require more complex

models to fully capture.
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Figure Box 1 | A toy model illustrates the impact of abundance, affinity and availability on the fraction of potential sites bound. (A) Schematic diagram of the reactions

and molecular species included in the model. DNA binding sites are present on the genome and can be bound by a transcription factor (blue) or by a competitor

protein (red) with an on-rate of α and off-rate of γ . (B) Model-derived input-output relationships between the ratio of total transcription factor to potential binding

sites (
XT
YT

) and the steady state fraction of sites that are bound by a transcription factor. The relationship was derived for three different transcription factor binding

affinities for the DNA sites (expressed using the dissociation constant, KD =
γ

α
), in the presence (dashed lines) or absence (solid lines) of a competitor species

(where, XT = X
comp
T

).
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concentration could occur if the brief interactions with
clustered sites keep more transcription factor molecules nearby,
increasing the probability that one binds to the functional
target site [e.g., via an avidity effect as theoretically considered
by (45)]. Alternatively, if the non-functional sites sequester
transcription factors away from the functional target sites, acting
as “natural decoys” (46), they would effectively decrease the
local concentration of transcription factors. An early study
showed that transfection of double-stranded oligonucleotides
with κB sites inhibits the NF-κB-induced production of
inflammatory cytokines in a rat model of myocardial infarction
(47) showing a decoy-site effect. However, in that scenario,
the transfected oligonucleotides likely reduce the global, not
local, concentration of available NF-κB dimers and thus globally
suppress transcription NF-κB-driven transcription. A more
direct test of the effects of clusters of sites would be to
manipulate the sequences near an NF-κB target gene promoter.
In budding yeast, synthetic promoters were used to show that
adding clustered sites for a transcriptional activator reduce the
transcriptional output, as expected for decoys (48). In addition,
the clustered sites could qualitatively change a transcriptional
response from a graded response, correlated to transcription
factor abundance, to a threshold-based, non-linear response (48).
A combination of mathematical models and synthetic LacI-
based constructs in E. coli showed that varying the number
and chromosomal context of repressor binding sites can also
quantitatively and qualitatively change the response (49). With
so many possible nuances driving up or down the probability
of transcription factor-DNA interactions, it may well be that
the effect of additional sites on the transcription of an NF-
κB target gene, whether enhancing or dampening, is highly
context-dependent. The relative affinity, number, and two- or
three-dimensional clustering of the sites could all modulate
their effects and diversify the response of target genes to one
NF-κB signal.

In one more layer of complexity, many NF-κB target genes
have multiple κB sites within their regulatory regions [a common
feature of many transcription factor binding motifs; (50)]. In
fact, 95% of up-regulated and 91% of down-regulated NF-
κB target genes have been shown to contain more than three
κB sites in their regulatory regions [e.g., (2, 5)]. For many
years, the predominant model for transcriptional regulation
was that having multiple sites within gene promoters would
drive cooperativity in DNA binding by the cognate transcription
factors (51). This cooperative binding was then thought to
lead to rapid, binary switching between fully unoccupied
inactive promoters and fully occupied active promoters,
yielding a largely all-or-none transcriptional activation (or
repression) response. However, more recent studies have shown
that NF-κB (via RelA) does not generally show cooperative
binding to DNA, and instead NF-κB-dependent transcriptional
activity scales gradually with NF-κB nuclear concentration (52).
Therefore, Giorgetti and colleagues propose that the presence
of multiple κB sites in one regulatory region increases the
dynamic range of transcriptional outputs, with promoters with
more consensus κB sites driving higher transcription at the
same nuclear concentration of NF-κB, thus providing yet

another means to quantitatively modulate NF-κB-dependent
gene expression.

In summary, these observations indicate that the distribution
of κB sites in the genome is non-uniform and clustering of the
consensus and non-consensus sites in combination with highly
frequent interactions of NF-κB with these sites can influence
the transcriptional logic as well as shape the dynamic range
of transcription. As, in fact, most human transcription factors
are generally observed to bind to only a fraction of their
consensus sites in any given cell type (53); this site selection
process may be a generalized mechanism to achieve specific
transcriptional responses.

Nucleus-Localized NF-κB Dimers
One challenge for anyone surveying the NF-κB literature with
a quantitative mindset is that the terms “NF-κB” and “RelA”
are often used interchangeably, and most studies reporting on
the abundance of “NF-κB” in the nucleus focus exclusively
on the RelA subunit. By ignoring other dimer species, these
numbers muddle the relationship between signal, nuclear “NF-
κB,” and DNA binding or transcription output. Different
stimuli can lead to the nuclear accumulation of specific NF-
κB dimers, indicating the importance of considering more
than just the RelA subunit [e.g., (54)]. As other reviews
have considered stimulus-specific activation of particular NF-κB
dimers (17, 55); here, we specifically consider how the nuclear
abundance of different dimer species canmodulate NF-κB-driven
transcriptional responses (Figure 2).

The five NF-κB subunits can dimerize in almost every
combination, each with unique but overlapping DNA and
protein binding affinities [Figure 1B; (3, 22, 23, 56)]. RelA,
RelB, and c-Rel each contain a transactivation domain (TD),
capable of recruiting the transcription machinery, and thus NF-
κB dimers including at least one of these subunits can activate
transcription. In contrast, p50 and p52 do not have a TD and
homodimers or heterodimers made up of only p50 and p52
are not capable of inducing transcription without recruiting
an additional TD-containing transcription factor. Bound to the
same κB site, a TD-containing NF-κB dimer will likely act as a
transcriptional activator while a TD-lacking NF-κB dimer can act
as a transcriptional repressor.

Although RelA:p50 is frequently cited as the most abundant
NF-κB dimer, this may be dependent on cellular context. Other
dimer species can also be highly expressed, and some are
more likely to be found in the nucleus prior to stimulation.
For example, p50 homodimers localize to the nucleus in
resting mouse bone marrow derived macrophages (BMDMs)
at a concentration of ∼200 nM, which is similar to the
maximum nuclear RelA:p50 concentration following stimulation
in these cells (57). Thus, a quantitative framework that seeks to
explain or predict NF-κB-DNA interactions and NF-κB-driven
transcription at target genes but considers only RelA:p50 dimers
is greatly oversimplifying the system. The 1.5 × 105 molecule
per cell figure that we have considered overlooks contributions
from other dimer species, the nuclear concentration of which is
not necessarily correlated with that of RelA:p50. Therefore, the
simple assumption that nuclear RelA:p50 is themajor contributor
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FIGURE 2 | A generalized function for NF-κB-driven gene regulation. Schematic diagram of quantitative and qualitative factors that can differentially modulate

NF-κB-driven gene regulation gene-by-gene and across various cellular contexts. Broadly speaking, target gene transcription is set by the nuclear abundance of

NF-κB dimers, the NF-κB-DNA binding affinity and the availability of the DNA binding sites (left). The nuclear abundance of NF-κB dimers is itself a function of NF-κB

subunit monomer expression, of NF-κB subunit competition in the various dimerization reactions, and of processing and degradation of inhibitory domains

(ankyrin-rich domains of p105 and p100) and inhibitory proteins (IκBs) (top right panel). The NF-κB-DNA binding affinity is influenced by the DNA sequence (for both

consensus κB sites and non-consensus sites), by NF-κB dimer identity and their post-translation modifications, and by the presence of regulatory co-factors that may

help recruit NF-κB dimers to DNA or stabilize the interactions (center right panel). We note here that the DNA sequence is, arguably, the only factor that is not cell-type

specific (gray shading). Finally, the availability of DNA binding sites for interaction with an NF-κB dimer is a function of the chromatin state, including the presence of

histones and histone modifications, of competition from other NF-κB dimers and their relative affinities for the same site, and of competition with other regulatory

factors that may bind to and occlude the potential binding site (bottom right panel).

to NF-κB-driven transcription not only underestimates total
nuclear NF-κB abundance, but may also obscure the true
relationship between “NF-κB” abundance and DNA-binding and
transcription activation (see also Box 1).

Finally, the abundance of the different NF-κB dimers is not a
static quantity. Some stimuli induce the production of specific
dimer species, for example via processing of the p100 subunit
to p52, which leads to an increase in p52-containing dimers
[Figures 1C, 2; (55)]. There is also competition between the
various NF-κB subunits for dimerization, due to the similar
affinity of multiple subunits for a given subunit dimerization
partner [Figure 2; (58)]. Therefore, if, for example, p52
abundance increases, not only could this induce an increase in
repressive p52:p52 dimers, competition for NF-κB dimerization
will reduce the abundance of lower dimerization affinity subunit
pairs, which could lead to splitting of dimers containing two
TD domains to generate p52-containing heterodimers, and
effectively increase the abundance of transcription activating
NF-κB dimers. Overall, although many studies consider only
one protein, the RelA subunit, the total nuclear abundance of
NF-κB factors could be substantially higher and the relative
abundances of various dimers dynamically modulated. In the
section ‘Competition between NF-κB dimers’ below, we come
back to this and discuss how different dimer abundances can
impinge on κB binding site availability.

As we add resolution to quantitative understanding and
models of NF-κB-driven transcription in various cellular
contexts, we will need to reevaluate simplifying assumptions
about the abundance of NF-κB dimers and consider the
contributions of the combinatorial possibilities of the “NF-
κB dimer network” (17). Because of dimer-specific activities,
transcription is certainly impacted by subunit abundance and
competition for partnering with TD-containing subunits.

AFFINITY OF NF-κB DIMERS FOR κB
BINDING SEQUENCES

Biochemical DNA binding studies of a wide variety of 9–12
base-pair sequences have revealed that different NF-κB dimers
bind far more sequences than previously thought, with different
dimer species exhibiting specific but overlapping affinities for
consensus and non-consensus κB site sequences (3, 22, 23).
Although specific NF-κB dimer-DNA affinity values are hard to
pin down because they are strongly condition-dependent (15),
a constant is that for a given sequence and assay, the affinities
of different dimers are consistent with more than one dimer
being able to bind this sequence in cells [e.g.,(15, 22, 34)]. Many
sequences that contain only a single consensus half-site also show
substantial dimer binding (22). Furthermore, structural studies
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showed that in certain conformations, only one subunit of NF-
κB dimers is involved in sequence-specific DNA interactions
(24). Taken together, these studies indicate that κB half sites are
sufficient for functional NF-κB dimer binding and that the state
of the dimer may direct its binding toward certain sequences.
Importantly, just as dimers exhibit preferences for different DNA
sequences (Figure 2), the corollary must be true, that different
DNA sequences may recruit one specific dimer combination
over another.

Interestingly, once bound to DNA, each NF-κB dimer has
been shown to induce different amounts of transcriptional
activity from target genes [reviewed in (56)]. The clearest
example, as mentioned above, is that because neither p50 or
p52 possesses a TD, dimers containing just these subunits are
unable to activate transcription alone. More subtle differences
have also been reported, for example, the decreased recruitment
of RNA polymerase II (RNAPII) as the IL12B promoter switches
from binding RelA-containing dimers to RelB-containing dimers
(59). The combination of dimer specificity with dimer switching
during a response can thus provide a mechanism to generate
temporally diverse NF-κB-dependent transcription responses.
On the one hand, a response could be abbreviated when TD-
containing dimers driving transcription are replaced with TD-
lacking repressing dimers, to switch off gene transcription. In a
specific example, the stabilization of p50 homodimers during the
response of macrophages to LPS stimulation leads to curtailing
of the pro-inflammatory transcription of TNFA (60), likely via
a switch from transcriptionally active dimers to inactive p50
homodimers at the promoter region. By contrast, a switch to
the p52/RelB heterodimer, which is insensitive to inhibitory
IκB proteins, was found to facilitate the sustained activation
of target genes such as NFKBIA and NFKB2 [encoding IκBα

and p100/p52, respectively; (59)]. Therefore, the intricacies of
sequence-specific affinities of NF-κB dimers and dimer-specific
RNAPII-recruiting activities can enable not only tuning of
the strength but also the duration and temporal patterns of
transcriptional responses at target gene promoters.

How might different consensus κB sites modulate the activity
of the NF-κB dimers? Structure-function studies have shown
that binding to different consensus κB sites can alter the
conformation of the bound NF-κB dimers, thus dictating dimer
function [(61, 62), reviewed in (10, 63)]. When an NF-κB
dimer interacts with a DNA sequence, side chains of the amino
acids located in the DNA-binding domains of dimers contact
the bases exposed in the groove of the DNA. For different
consensus κB site sequences different bases are exposed in this
groove, and NF-κB seems to alter its conformation to maximize
interactions with the DNA and maintain high binding affinity
(61). Changes in conformation may in turn impact NF-κB
binding to co-regulators of transcription, whether these are
activating or inhibitory, to specify the strength and dynamics of
the transcriptional response (64). These findings again highlight
how the huge array of κB binding site sequences must play a key
role in modulating the transcription of target genes.

Finally, as an additional layer of dimer and sequence-specific
regulation, each of the subunits can be phosphorylated at
multiple sites with, depending on the site, effects on nearly

every step of NF-κB activation [reviewed in (55)]. While the
function of each phosphorylation site is still emerging, there are
clear examples of phosphorylation events that have κB-sequence-
specific effects on DNA binding and transcription (Figure 2).
One of these is the phosphorylation of serine 329 (Ser329) of
p50. This phosphorylation attenuates the affinity of p50 for
consensus κB sites with a cytosine (C) vs. adenosine (A) at
position −1, leading to differential transcriptional activation at
A- vs. C-containing sites (65). In addition to effects on NF-
κB dimer affinity for DNA, we note that phosphorylation at
other sites on the NF-κB subunits has also been shown to affect
dimer abundances, via effects on dimerization, monomer and
dimer stability, affinity of IκBs, and nuclear translocation rates
[reviewed in (55)].

Overall, when considering the various ways in which NF-
κB dimer abundances and their affinity for DNA can be
modulated, it becomes clear that with these multiple cascading
effects, small differences in consensus κB site sequences and
small a priori differences in interaction affinities can ultimately
have a large impact on the transcriptional response to NF-κB
pathway activation.

AVAILABILITY OF HIGH AFFINITY κB
BINDING SEQUENCES

Chromatin State
So far, in our discussion of the large numbers of κB sites on
DNA and the high nuclear abundance of NF-κB dimers upon
stimulation, we made a strong implicit assumption that all the
consensus κB sites and half sites are available for binding. Given
their high abundance, nuclear NF-κB dimers should be able to
locate and bind to many consensus κB sites and half sites within
minutes of an initial cell stimulation. However, ChIP-PCR studies
in the murine monocytic cell line Raw 264.7, have shown that
while recruitment of NF-κB occurs rapidly after LPS addition
for a subset of genes (e.g., NFKBIA and CXCL2), other gene
promoters containing high affinity κB sites remain unbound by
NF-κB dimers for over an hour (e.g., CCL5 and IL6) despite the
continued presence of nuclear NF-κB dimers (66). This kinetic
complexity of the recruitment of NF-κB dimers to DNA during a
stimulus-induced response has been largely attributed to variable,
chromatin-state-dependent accessibility following stimulation.

The promoter regions of early response genes have abundant
histone acetylation or trimethylation prior to stimulation [e.g.,
H3K27ac, (67) and H4K20me3, (66)], a chromatin state “poised”
for immediate activation. This chromatin state may lead to
a more open chromatin structure, constitutively accessible to
transcription factor binding (66, 67). In contrast, promoters
of late genes often have hypo-acetylated histones, requiring
conformational changes to the chromatin to become accessible.
They are therefore unable to recruit NF-κB for up to several
hours after stimulation (68), due to the slow process of chromatin
remodeling. Of note, we recently observed that recruitment of
RelA-containing dimers displayed similar rapid binding kinetics
at highly and poorly acetylated H3 HIV LTR insertions, but
recruitment of RNAPII was different, with highly acetylated H3
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correlating with more efficient transcription (69). Others have
also reported early appearance of nascent transcripts of late
genes, again hinting that, at least in some contexts, recruitment of
NF-κB dimers may take place early, but that differential stability
or processing of the transcript leads them to accumulating only
later (70–72). Nevertheless, taken together, these different studies
of chromatin state and NF-κB dimer binding suggest that despite
the large repertoire of potential binding sites, only a fraction of
these sites are available for binding, or for active recruitment of
RNAPII, at any given time. This accessible repertoire can change
upon stimulation and is dictated by the epigenetic state of the cell.

Indeed, another aspect of the NF-κB DNA-binding response
that has been revealed by ChIP-seq experiments is its cell-
type- and stimulus-specific nature, with different NF-κB subunits
binding to diverse sites under different experimental conditions.
For example, Xing et al. (5) compared the genes that were
bound and regulated by RelA in TNF-treated HeLa human
cervical carcinoma cells, to the direct, transcriptionally regulated
target genes identified in LPS-treated U937 and THP-1 human
monocytic cells. They found a strikingly small overlap between
the sets of genes directly regulated by NF-κB in all three of these
scenarios. Although deeper and less stringent analyses of these
data may reveal a greater overlap, it is clear that cell type and
stimulus combine to regulate chromatin accessibility and focus
NF-κB dimer-DNA interactions at a subset of all consensus κB
binding sites. Therefore, one role of the very large number of
potential κB binding sites may be to allow context-specific and
diverse use of the NF-κB pathway in response to a variety of
stimuli and across different cell types and states.

Beyond the binding events monitored by ChIP-seq and other
protein-DNA interaction assays, the “function” of a binding
event is generally assessed by determining the transcriptional
outcome of the nearest gene. However, this simple view may
need to be revisited. Indeed, until recently, it was assumed that
the regulatory elements of a gene must be located within several
kilobases of its locus, and situated on the same chromosome
(73). Contrary to this, there is mounting evidence of functional
long-range interactions occurring between genomic regions that
are situated megabases apart, and even located on different
chromosomes (74, 75). Moreover, chromosome organization
studies have implicated RelA-containing NF-κB dimers in the
initiation or maintenance of higher-order intra- and inter-
chromosomal complexes (76, 77). In particular, Apostolou and
Thanos (77) found that RelA-containing NF-κB binding to
specialized Alu repeats plays an important role in initiating
interchromosomal interactions, and in the initiation of the
IFNB1 enhanceosome assembly during the early stages of
Sendai virus infection (77, 78). Alu repeats are ubiquitous
repetitive DNA transposable elements that had been shown
to contain putative κB-binding sites; they were later shown
to represent 11% of p52-, RelB-, and RelA-bound sites in
HeLa cells (1). What becomes clear is that NF-κB dimers, at
least RelA-containing dimers, can use long-range intra- and
inter-chromosomal interactions to regulate gene expression,
meaning that the “nearest gene” method of assessing impact
of consensus κB sites likely misestimates the number of
functional sites.

Taken together, chromatin state and chromatin organization
strongly influence the selection of DNA binding sites by NF-κB
dimers and, most likely, the selection of the target genes that
are regulated by these protein-DNA interaction events. Analyses
that consider binding events in the context of three-dimensional
nuclear organization and chromatin composition will be required
to generate a more accurate view of the ways in which NF-κB-
DNA binding affects gene transcription.

Competition Between NF-κB Dimers
In addition to cell-state specific chromatin modifications
and chromatin conformation, NF-κB-driven transcriptional
responses can also be modulated by competition between
different dimer species for response element binding (Figure 2).
Indeed, while global NF-κB dimer abundance may set the
global number of sites that are occupied, which dimers
are present pre- and post-stimulus will modulate which
sites are transcriptionally activated or repressed, based on
relative abundances and affinities. In particular, competition
between dimers is consequential when dimers lacking a TD
occupy consensus κB sites and limit site availability for
newly translocated TD-containing NF-κB dimer binding. As
mentioned above, this mechanism of transcription repression
has been studied most extensively for the p50 homodimer,
which has been shown to play a critical role dampening
the inflammatory response [reviewed in (79, 80)]. Specifically,
NFKB1 (p50-encoding) knockout mice have been shown to
be more susceptible to several types of infection or infection
models [e.g., (81–83)], and some of these responses have
been linked to disruption of the transcriptional regulation of
inflammatory signals (83, 84). By contrast, perturbations that
increase nuclear p50:p50 lead to increased promoter binding by
p50:p50 and reduced transcription in response to stimulation
of many inflammatory genes (60, 85). Those two examples
represent relative extremes of dimer concentrations modulation.
Yet, given that, as we discussed above, the nuclear abundances
of TD-containing NF-κB dimers appear far from saturating
conditions, even moderate changes in nuclear concentration of
TD-lacking dimers should affect consensus κB site availability to
TD-containing, transcription activating dimer binding (see also
Box 1). Taken together, differences in dimer abundances, along
with competition for κB sites, help explain why different cell types
or states exhibit varied responses to NF-κB-activating stimuli.

Co-regulators of Transcription
Because DNA binding by NF-κB may not necessarily require
high affinity and high specificity [e.g., (3, 22)] and non-NF-κB
transcription factors can also bind consensus κB sites due to
degeneracies in recognized sequences (86) or as they search for
their targets (43, 44), it follows that other transcription factors
could act as co-regulators of transcription by competing with
or helping recruit NF-κB dimers (Figure 2). In addition, TD-
containing NF-κB subunits are also known to interact via their
TD with a variety of transcriptional co-factors that modify the
chromatin landscape to facilitate NF-κB recruitment and initiate
transcription [e.g., (87, 88), and reviewed in (89, 90)]. Here,
there are two potential scenarios: (1) the partner transcription
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regulators pre-exist at the κB sites and activation is rapid, or
(2) the partner transcriptional regulators must be activated by
the same stimulus that activates NF-κB. In the latter scenario,
the time scale of NF-κB’s ability to affect transcription will be
dependent on the time scale of activation of its co-regulator.
If this partner is required for releasing a binding site from a
competitor or other barrier to site accessibility, then delayed
partner activation is another factor that could explain the
delayed NF-κB occupancy at high affinity sites. With these
different possibilities, co-regulators could effectively modulate
the abundance and identity of available κB sites over time.

How do NF-κB dimers interact with the chromatin modifying
machinery? One way is via post-translationally modified NF-κB
dimers that are known to recruit the histone acetyltransferases
(HATs) p300 and CBP, which promote chromatin accessibility
and transcription factor binding. For example, RelA interacts
with the CBP/p300 complex once RelA Ser276 has been
phosphorylated, following the degradation of IκBα (87, 91).
When Ser276 is mutated to alanine to prevent phosphorylation,
RelA cannot recruit CBP/p300 and fails to induce transcription
at a subset of NF-κB-dependent genes (92). Intriguingly, which
genes are affected does not seem directly related to whether they
normally show delayed expression or not; some genes whose
response normally peaks early show reduced transcription when
RelA cannot recruit HATs (92), so there may be additional factors
that come into play to determine site accessibility and its timing.

In contrast to RelA, the p50 and p52 NF-κB subunits lack a
TD and as such bind to histone deacetylases (HDACs) instead of
HATs [e.g., (93)]. HDACs are associated with formation of closed
chromatin and transcriptional repression (94). In the context of
κB sites found in the HIV genome, the recruitment of HDACs
by the p50:p50 homodimer acts to maintain transcriptional
repression and latency (93). Upon stimulation with cytokines that
activate the NF-κB pathway, RelA-containing NF-κB dimers can
displace p50:p50 homodimers andHDACs, leading to restoration
of an acetylated histone state and transcriptional reactivation of
the HIV genome (93). A similar mechanism has been suggested
for the transcriptional regulation of pro-inflammatory cytokine
genes in hepatic cells (84, 95). Taken together, these studies
show that the interactions of NF-κB dimers with different
modifiers of chromatin can result in the dynamic regulation of
the chromatin state and of the availability of consensus κB sites
for transcriptionally repressive or activating interactions with
these dimers.

NF-κB has also been reported to bind cooperatively to
many general transcription factors in vitro. For example, the
in vitro assembly of the interferon-β (IFNB1) enhanceosome
was shown to be dependent upon interactions with the AP-1
family member c-Jun, interferon regulatory factors (IRFs) and
activating transcription factor 2 (ATF2) [reviewed in (10) and
in (96)]. However, in vivo these factors are recruited to the
enhanceosome in a stepwise manner, without any dependence
upon cooperative interactions (77, 78). As such, there is currently
little in vivo evidence that NF-κB dimers binding to consensus
κB site is enhanced by association with partner transcription
factors. Nevertheless, ChIP-seq experiments have detected many
instances where NF-κB dimers may be brought to enhancer

or promoter sequences lacking κB sites via interactions with
another transcription regulator such as PU.1 or ZNF143 (3).
Overall, with promoter and enhancer sequences replete with
transcription factor binding sites, NF-κB dimers likely partner
with other transcription factors to modulate target genes
transcription, but how these interactions are coordinated and
how they impact transcription is still unclear for most of
these targets.

Although here we have only discussed a few specific examples,
there are several other points of cross-talk between NF-κB dimers
and other families of transcription factors [e.g., nuclear hormone
receptors (97) and (33, 98), as well as STATs and IRFs, recently
reviewed in (99)]. Overall, it is clear that the differing abilities
of NF-κB dimers to recruit other transcriptional regulators
via protein-protein interactions and the specific sets of DNA-
protein interactions that can take place at each gene’s regulatory
region could potentially be combined to produce a vast diversity
of context-specific, temporally distinct NF-κB-dependent gene
expression patterns.

THE FUTURE OF NF-κB RESEARCH

Understanding the mechanisms that regulate NF-κB-DNA
interactions is critical to elucidating the intricacies of
NF-κB-specific gene expression profiles. In this review
we have discussed the relationships between NF-κB
and κB binding sites, and some of the many known
complexities of these relationships that affect the regulation
of target genes (Table 1). However, despite the wealth of
information that has already been uncovered by studies
of the NF-κB transcription factors, a comprehensive
understanding of the mechanisms underpinning NF-κB-DNA
interactions that explain stimulus- and cell type-specific
responses remains elusive as numerous questions are
yet unanswered.

In recent years, our ability to probe chromatin and
visualize transcription has considerably advanced, and these
advances will be key to developing a better understanding
of the complex regulatory processes in the NF-κB system.
Chromosome conformation capture (3C) and its subsequent
iterations, most recently Hi-C (100), have facilitated the
observation of chromatin folding and identification of long-
range interactions on a genome-wide scale [reviewed in (101)].
Of particular interest for the study of the interactions of
promoters of NF-κB target genes with other regions of the
genome, the Promoter Capture Hi-C assay takes promoter-
containing fragments from Hi-C libraries and performs paired-
end sequencing to identify long-range promoter interactions
with distal regulatory elements (102). However, it is important
to keep in mind that such methods inform us on the
enrichment of particular interactions in bulk populations
of cells, an average readout of chromosomal interactions
and conformation. Other approaches will be required to
understand how different instances of the system vary and
how this variability translates into different NF-κB-driven gene
expression programs.
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TABLE 1 | Summary of layers of regulations influencing NF-κB-driven gene

transcription.

Quantity Influential factors

ABUNDANCE

κB binding

sites

Number of sites

Consensus vs. non-consensus sites

Duration and frequency of interactions with DNA

Cumulative occupancy of binding sites

Avidity vs. decoy site effects of clusters

Cooperative vs. independent binding at promoters

Nucleus-

localized

NF-κB dimers

Homodimerization and heterodimerization

Transcription activators vs. repressors

Stimulus- and time-dependent changes

Competition for subunits in dimerization

AFFINITY

NF-κB dimers

for κB

sequences

Diversity of bound sequences

Dimer-specificity of binding sites

Dimer switching and temporal patterns

Sequence-specific conformational changes

Post-translational modifications of NF-κB subunits

AVAILABILITY

Chromatin

state

Histone acetylation and poised chromatin state

Cell-type specificity and stimulus-dependence

Nearest gene: accessed in 2- vs. 3-dimensions

Competition

between

NF-κB dimers

Relative abundances

Activating vs. repressive dimers

Pre- and post-stimulus changes

Co-regulators

of

transcription

Pre-existing vs. recruited co-regulators

HDACs and HATs recruitment

Cell-type specificity and stimulus-dependence

Factors that influence NF-κB-driven gene transcription, its “layers of regulation,” organized

by the quantity, abundance, affinity, or availability, with which they were associated in the

organization of this review.

Simultaneous developments in the fields of biomolecular
labeling and imaging technology have facilitated the visualization
of transcription factor dynamics in living cells [reviewed in (29)].
These approaches offer unparalleled insights into the interactions
occurring between transcription factors and DNA at the single-
cell, single-molecule level. Early studies of transcription factor
diffusion and DNA-binding dynamics often used fluorescent
proteins and fluorescence recovery after photobleaching (FRAP)
assays (29, 103). In FRAP assays, the rate of fluorescence
recovery after bleaching then provides information regarding the
diffusion and binding kinetics (kon and koff) of a large population
of fluorescently labeled molecules (104, 105). However, FRAP
measurements fail to accurately capture the heterogeneity in
binding dynamics (26, 106).

Single-molecule tracking approaches promise a more
complete picture of the different types of dynamic interactions,
slow and fast, between NF-κB dimers and DNA. However, two
difficult challenges from the use of fluorescent protein tags in
these approaches are that the low photostability of fluorescent
proteins can severely limit the duration of tracking and the
generally high number of expressed fusion proteins yields
densely packed, difficult to resolve, transcription factors. The
advent of high-brightness, photostable, self-labeling dye tags,

relying on fusion with the enzymatic HaloTag and SNAPTag
(107, 108) is facilitating long-term imaging of single-molecules
at high signal-to-noise ratios. In addition, the development
of genome-editing techniques has enabled the tagging of
endogenous proteins instead of relying on high-expression
exogenous promoters for fusion proteins, thus generating
more sparsely labeled populations of molecules to track.
Combining these approaches with super-resolution imaging
modalities such as photoactivated localization microscopy
(PALM) and stochastic optical reconstruction microscopy
(STORM) should open the door to the development of a
clearer picture of the NF-κB-DNA interactions and subsequent
gene expression.

Another quantitative aspect of NF-κB biology that merits a
revisit in the future is how the landscape of dimer abundances
changes across different cellular contexts and across time.
Our current understanding of this landscapes relies mostly
on bulk, population-based, endpoint biochemical assays, as
well as inferences made from lots of accumulated knowledge
from in vitro affinity measurements and disruptions of cellular
contents with knockout of specific NF-κB subunits [reviewed
in (56)]. From many single-cell studies of the dynamics of
RelA translocation to the nucleus in different cell types and
under different stimuli, we have learned that these dynamics
are quite variable [e.g., (109–113)] and, importantly, that the
observed variability is absolutely consequential for target gene
expression and cellular outcomes [e.g., (14, 69, 72, 111, 114–
121)]. However, in all these studies, we are left to assume
which RelA-containing NF-κB dimers are actually present in
each cell, and each nucleus, and we still lack a similar body of
knowledge onNF-κB dimers that do not contain RelA. Capturing
live-cell dynamics of the nuclear abundance of other NF-κB
subunits and how these dynamics affect transcriptional output
of target genes should help us figure out whether what we
learned for RelA also applies to these other subunits. Finally,
the application of fluorescence correlation spectroscopy (FCS)
and fluorescence-lifetime imaging microscopy (FLIM) has begun
to reveal aspects of protein dimerization and multimerization
in other systems [e.g., p53 tetramerization in irradiated human
cells (122) and cell type-determining transcription factors in
the Arabidopsis root (123)]. In the future, similar approaches
should help us broaden our understanding of how NF-κB
transcription factors interact with each other, interact with other
transcription regulators and interact with DNA in a complex,
tunable system that regulates gene expression in many cellular
decision processes.

CONCLUSIONS

Over the years, studies have dissected the NF-κB pathway,
uncovering many factors and nuances that influence the
outcome of DNA binding in this complex system. With
hundreds of thousands of DNA binding proteins, and
millions of potential DNA binding sites, the recruitment
of NF-κB to DNA is regulated in complex ways. This
regulation generates gene-, stimulus- and cell type-specific
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NF-κB responses, allowing NF-κB to respond to numerous
different inputs, with a diverse array of outputs. However,
a complete, mechanistic understanding of these processes
remains unresolved. As we collect better measurements
from single-molecule to genome-wide scales, systems
biology models may now help us reassemble this dissected
system into a framework that can predict ensembles of
transcriptional responses.
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