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Abstract: Phage therapy is the use of bacterial viruses (phages) to treat bacterial infections,
a medical intervention long abandoned in the West but now experiencing a revival. Currently,
therapeutic phages are often chosen based on limited criteria, sometimes merely an ability to plate
on the pathogenic bacterium. Better treatment might result from an informed choice of phages.
Here we consider whether phages used to treat the bacterial infection in a patient may specifically
evolve to improve treatment on that patient or benefit subsequent patients. With mathematical and
computational models, we explore in vivo evolution for four phage properties expected to influence
therapeutic success: generalized phage growth, phage decay rate, excreted enzymes to degrade
protective bacterial layers, and growth on resistant bacteria. Within-host phage evolution is strongly
aligned with treatment success for phage decay rate but only partially aligned for phage growth rate
and growth on resistant bacteria. Excreted enzymes are mostly not selected for treatment success.
Even when evolution and treatment success are aligned, evolution may not be rapid enough to keep
pace with bacterial evolution for maximum benefit. An informed use of phages is invariably superior
to naive reliance on within-host evolution.
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1. Introduction

Driven by well-warranted concerns about the growing numbers of infections with antibiotic
resistant pathogens, there has been a resurrection of interest in, research on, and even patient
trials with a therapy that predates antibiotics by more than fifteen years: bacteriophages [1–4].
Fueling this enterprise, which is now becoming increasingly commercialized (see above references),
are well-publicized successes of a handful of compassionate uses of phage to treat chronic, recalcitrant
bacterial infections. Patients who were on their way to succumbing to or remaining infected with
antibiotic resistant, Acinetobacter baumannii, Mycobacterium abscessus, or Pseudomonas aeruginosa survived
and in some cases were cleared of the infecting bacteria following treatment with phages [5–8]. The role
of phages in these successes is not always clear, as these treatments were necessarily uncontrolled and
involved single patients. Also not apparent is whether other (and how many) compassionate use trials
fail. Indeed, recent clinical trials of phage therapy that did involve controls have often been failures
(e.g., [9–11]).

Could the difference between success and failure in these therapeutic efforts be simply a matter
of phage suitability for treatment—that some phages are better that others? There are certainly
properties that a priori seem to be ideal candidates for therapy and that might guide choices of
phages (Table 1). Against this possibility, host range was the sole criterion for phages used in
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some patient successes, suggesting that treatment outcomes might be indifferent to phage choice.
Yet, some experimental work indicates that phage characteristics can influence success ([12,13],
and see below). Furthermore, given that therapeutic success with patients often required weeks
to months and multiple administrations of phages, it is entirely plausible that a wise choice of phages
could vastly improve the progress of treatment, even when the long term outcome is the same for
arbitrarily-chosen phages.

If phage characteristics matter to treatment success, might there be a shortcut to identifying the
best phages? Motivated by the highly visible field of directed evolution of biological molecules [14],
it is tempting to consider a directed evolution parallel for phage therapy: can phages evolve themselves
to improve treatment? There is even an historical precedent for a similar approach: in his earliest
phage therapy experiments, D’Herelle [15] used phages isolated from patients to treat other patients.
The idea also has intrinsic appeal: one of the oft-cited benefits of phages over antibiotics is that,
by amplifying within the host, they can evolve and perhaps keep abreast of any bacterial resistance
evolution. Within-host evolution might then obviate the need to design treatments wisely, instead
letting evolution rather than engineers identify good treatment practices. However intrinsically
worthy that idea might seem, it is not a simple one to evaluate from first principles: processes of phage
dynamics and evolution can be highly unintuitive, and their effects on treatment adds a second layer
of complexity. To avoid reliance on intuition, we approach the problem of within-host phage evolution
using mathematical and computational models.

Here we evaluate the premise that, during the course of therapy, selection favors phages and
phage combinations that are specifically effective at killing the bacteria causing an infection. Use of
the phage ‘effluent’ from one patient to treat another assumes that the infections in different patients
will be suitably similar, and thus possibly of limited utility. Even if not, however, the study of
phage evolution from convalescent patients might at least help identify principles that apply to other
infections. Given that therapeutic use of phages in humans is so limited at present (at least in the U.S.
and much of Europe), initial research on within-host evolution will likely need to use non-human
animals and identify principles that could be applied to humans. Indeed, widespread adoption of
the One Health perspective, coupled with the problem of drug resistant infections in non-human
animals and the need to limit antibiotic use in those settings [16], provides many reasons to develop
phage therapy for animals—with the added benefit of helping formulate practices that would work
on humans as well. Although established animal infections may prove at least as useful as human
infections in discovering principles that work well for treatment, experimental infections may need to
be chosen carefully to avoid artefacts.

Table 1. Phage properties ideal for therapy.

Characteristic How Beneficial

Broad host range can be applied rapidly, with minimal testing of pathogen
sensitivity

Good in vivo growth and persistence single dosing sufficient for treatment

Bacterial resistance difficult single phage type sufficient for treatment

Synergistic with antibiotics * can be used in combination with standard treatment

Disrupts bacterial extracellular protections makes vulnerable bacterial clusters (e.g., biofilms and
aggregates) that are otherwise recalcitrant to treatment

* synergy means that phages and antibiotics work better together than expected from their independent effects.

1.1. A Precedent for the Need to Choose Phages Wisely

One critical understanding in the development of good phage therapy practices is the extent to
which different phages matter to treatment success—beyond the obvious one of whether the phages
can grow on the infecting bacterium. If a phage’s ability to plate on a bacterium is all that matters,
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phage therapy might unfold with nearly the same generality as did antibiotic use. Conversely, if phage
characteristics greatly affect outcomes, success may hinge on careful choice of the best phages—unless
within-host evolution is self-correcting. Even when different phages are each capable of effecting long
term recovery, they might differ in speed of recovery, cost of recovery, and morbidity.

A 1982 study suggested that phage choice can have a profound effect. Using an experimental
mouse infection with a K1-capsulated bacterium, Smith and Huggins [12] discovered that lytic
phages isolated from the wild fell into two classes regarding treatment success. With simultaneous
infection and treatment, one class of phages provided almost 100% recovery, the other closer to 30%.
The underlying basis of the difference was that the ‘good’ phages required the bacterial capsule for
infection, the ‘poor’ phages did not. The work set a precedent in demonstrating that phage therapy
could work in vivo and in exploring the dynamic basis of success (although it is less often noted that
treatment success fell off dramatically with an 8 hr delay in treatment [12], the cells rapidly becoming
recalcitrant to treatment [17]). The work Smith and Huggins [12] was especially important in revealing
that differences among phages could profoundly affect treatment success. It thus follows that, if we
can identify or even generate good phages, better treatment should follow.

1.2. Phage Properties Subject to Selection in Patients

Smith and Huggins [12] sets the stage for our study, but the emphasis here is one step beyond: to
what extent can in vivo evolution and cocktail competition be used to improve treatment or at least
identify the best phages? It is obvious from the Smith and Huggins experiment that the ‘poor’ phages
were not themselves evolving fast enough in vivo to achieve the high success rates of the good phages,
or the rescue rates would not have differed between the phages. But we may instead ask about the
effect of within-host phage competition: if both types of phages were injected together into the mouse,
would the ‘better’ phage come to dominate the phage population? One can do a formal within-host
competition experiment to answer the question for these phages (e.g., [18]), but we seek principles that
will allow us to predict the outcome more broadly.

At a general level, predicting the outcome of phage competition requires understanding how the
entire suite of characteristics for each phage affects its growth and killing of bacteria—i.e., the phage as
a whole. It is also possible to consider the evolution of individual phage characteristics that we expect to
influence treatment success: (a) phage decay rates [19], (b) enzymatic digestion of a protective bacterial
extracellular matrix [20,21], and (c) ability to block bacterial resistance evolution [4]. Considering
the phage as a whole might seem to make the most sense, but it may be a single characteristic that
determines treatment success, as with the Smith and Huggins [12] example.

A technical note is that we apply the concept of within-host ‘evolution’ in both a narrow sense
and a broad one. The narrow sense is the standard Darwinian process of natural selection: mutations
arise and ascend based on their merits, eventually resulting in most of the phage population carrying
the mutations, all during the interval of treatment. Our broad-sense use is a competition of different
phage types within cocktails: the different phage types increase or decrease as a proportion of the total
within-host phage pool, their relative fitnesses depending on their intrinsic properties. (For an overview
of issues with cocktail pharmacology, see [22]). Both processes will occur in any host treated with a
cocktail. The main differences between evolution in the narrow sense versus cocktail dynamics are:
(i) with cocktail dynamics, the phages may differ in several characteristics that affect their competition
with other phages in the mix, so the selective advantage of one trait may be overwhelmed by other
differences, and (ii) because cocktails start with high levels of variation, cocktail dynamics will typically
be much faster than Darwinian dynamics. However, reliance on cocktail dynamics to inform and
improve treatment can only be applied when different phages are available, but this may not always
be the case.

A second application for in vivo phage evolution is engineered phages—genetically modified
to improve treatment [7,21,23]. Engineering may inadvertently introduce imperfections due to
imbalanced gene expression or incompatibilities between wild-type proteins and the engineered
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protein. Within-host evolution offers a simple means to correct imperfections without even needing to
diagnose the causes.

The focus here is two-fold. First, does within-host phage evolution work in favor of treatment?
Second, can it work fast enough within one patient to plausibly augment that patient’s outcome?
Regardless of the second answer, if within-host dynamics and evolution at least work in favor
of treatment, then we might collect phage from a treated patient to use in treating subsequent
patients—D’Herelle’s method. Any understanding of these processes is most accurately studied
in vivo, but in vitro work and modeling is often all that is available or even practical. In any case,
modeling is often necessary to interpret the in vivo work. New results provided here are limited to
modeling, using a mix of mathematical models and computater simulations. Some processes can be
analyzed as simple optimization problems, but others must be embedded in non-linear dynamics that
involve interactions and feedbacks. Even the simplest evolutionary problems require quantitation to
appreciate the impact on treatment success. Treatment outcomes may be qualitative (infection clearance
or not), but the difference between controlling an infection versus bacterial escape may rest on minor
quantitative differences, thus requiring a models framework.

2. Methods: Models

2.1. The Standard Model and Anomalies from Phage Therapy Results

For over half a century, the standard models of phage-bacterial dynamics assumed mass
action—full mixing—with homogeneity of bacterial and phage states [24–26]. Mass action was depicted
mathematically as the product kPB to represent all infections, with B as bacterial density, P as phage
density, and k as an adsorption rate constant. With kPB as the loss to the bacterial population,
an important consequence of mass action is that bacteria cannot persist in high densities of phage,
hence the bacterial population crashes to miniscule (decimal) levels. This model was appropriate
for bacterial growth in flasks or chemostats, which was the experimental norm and allowed for easy
parameter estimation. The tight coupling between models and experiments and the ease of analysis
afforded by this model resulted in most of our current understanding about phages being based on a
mass action perspective. The typical outcome is that phages quickly amplify and profoundly depress
high densities of sensitive bacteria. From this framework, the attraction of using phages to control
bacterial populations is easily understood: a single application of even a small number of phages
can virtually wipe out the bacterial population in hours, leaving only a handful of survivors for the
immune system to clear.

Full mixing is a poor approximation to phage dynamics in bacterial biofilms and other structured
environments. Indeed, in early laboratory experiments, sensitive bacteria were discovered to have
found refuge from phage predation in the walls of chemostats. Aggregates, abscesses, and other highly
structured populations are now also recognized as important features of bacterial infections [2,27,28].
Furthermore, recent successes with phages in treating individual patients has revealed that some key
mass action outcomes are violated (reviewed in [2,4]). First, success in clearing or even suppressing
an infection with phages is gradual and sometimes requires months—violating the principle that
phages quickly outnumber and kill their sensitive prey. Second, single infusions of phages are often
not sufficient: multiple infusions of high doses of phages are required. Both outcomes are difficult
to reconcile with the standard model, and although there could be varied causes, spatial structure of
bacterial populations (and the associated bacterial inhomogeneity in susceptibility to phages) is one
obvious and empirically-justified alternative to consider.

2.2. A Dynamics Model to Accommodate Spatial Structure

The observations from successful therapies pose a dilemma: high densities of genetically sensitive
bacteria persist in the presence of phage. This behavior is a clear violation of the law of mass action.
Resolution of this anomaly would seem to require that much of the bacterial population is protected
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from attack, whether by a polysaccharide matrix, ionic gradients, low receptor expression, or even
by some property of the animal host. Taking as inspiration the high-resolution imaging study of
Darch et al. [29] on Pseudomonas in a structured environment, we model the bacterial population
as consisting of a mix of individual cells (density B) and multi-cellular aggregates density (BA).
The individual cells are fully sensitive to phage attack and obey standard mass action dynamics (and
for convenience will be referred to as ‘planktonic’), whereas aggregates are protected from phage attack.
However, aggregates convert into planktonic cells and vice versa, so the protection is not permanent;
this switching of states accommodates the observation that aggregate numbers are somewhat reduced
by phage attack but much less so than isolated cells [29]. Our formulation constitutes a refuge model
(also true of [27] but we present a more explicit refuge).

Equations and parameters are given in Appendix A. For the model of a single bacterial strain
(Appendix A.1), the main change from the standard model is to protect aggregates from phages
and to allow bacteria to move between planktonic and aggregate states (some of B move to BA and
vice versa). Mass action applies to phage-bacterial interactions in the planktonic population, as they
are fully sensitive. For the model that incorporates both sensitive and resistant bacteria (Appendix A.2),
each bacterial strain is modeled as switching between an individual state (planktonic) and aggregates,
but all states of the resistant strain are protected against phage infection.

Numerical trials of the equations were run in Mathematica 12.0.0.0, which was used to generate
the figures. Mathematica files are uploaded as supplements, but the equations used in those files are
given in Appendix A and can be numerically solved with other software.

3. Results

3.1. Growth on a Single Bacterium

A basic question is how phage evolution works to suppress bacterial numbers. For example,
can phage evolution ever allow bacterial density to increase? From a therapeutic perspective,
we suppose that decreasing bacterial numbers improves treatment success. In the simplest
system—well mixed with a single, sensitive bacterial state—the answer from modeling efforts is
straightforward: bacterial evolution may lead to higher bacterial densities, but phage evolution does
not. At dynamical equilibrium, one phage type will prevail, the phage that most depresses bacterial
density [26]. Dynamic equilibrium is not necessarily applicable to therapeutic success, but a similar
theoretical result applies to phages invading a bacterial population: the phage with fastest growth
will prevail while bacteria are abundant, which means that selection is for the fastest growth and
killing [30]. These results apply equally to phage evolution in the narrow sense and to dynamics of
different cocktail phages within the therapeutic regime.

A simple use of this principle in a cocktail setting would be ‘phage sorting’—separating
poorly-growing phages from those that grow well. In vitro growth—easily determined in advance of
treatment—may poorly reflect in vivo growth [13], so the appropriate environment is within the patient.
Adding a cocktail of phages to an infected patient and then sampling hours or days later should easily
determine which phages grow (and survive) at least moderately well in the host. Sorting could be
used in a highly quantitative manner, but such refinement is not advisable, as considered below.
Phage sorting overlaps with D’Herelle’s approach of isolating therapeutic phages from convalescing
patients, the difference being that here, the phages are being administered to the patient and then
collected later. D’Herelle’s method recovered phages that the patient acquired naturally.

Within-host evolution is especially relevant to genetically engineered phages. On a uniform
population of bacteria, selection will be for better growth. Any growth impairment caused by the
engineering will be selected for improvement, which could result in loss of the engineering—if the
engineering introduced a gene that is non-essential, for example [23]. This problem occurs when the
engineering enhances treatment success in ways that are not aligned with phage growth (such examples
are presented in subsequent sections).
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The simple nature of phage selection and evolution changes when multiple bacterial states
exist—bacterial heterogeneity. We assume initially that all states are sensitive to the phage and merely
differ in phage-infection properties—burst size, adsorption rate, or lysis time. Different bacterial
states could be driven by environmental or physiological heterogeneity, as might be represented by
planktonic versus aggregate/biofilm/abscess cells, growth on different substrates, or variation in
surface molecules, e.g., capsules or O antigens affecting adsorption. These kinds of heterogeneity
would develop prior to phage administration and typically have a non-genetic or ‘phenotypic’ basis.
(Genetic bacterial resistance evolution is addressed in a different section.)

Well-mixed systems with heterogeneous cell states present several unintuitive outcomes that
violate a direct link between phage evolution and treatment success. Notably, selection can favor
phages to avoid some types of hosts, even when the phage can productively infect those hosts [30,31].
In essence, the phage evolves to specialize on the most productive bacterial states. However,
we conjecture that the types of phenotypic variation most relevant to infections will be spatially
structured, such as planktonic cells dominating liquid tissues, and biofilms, aggregates or abscesses
in solid tissues. With spatial structure, different phage types or mutants will differentially amplify
in patches of cells where they grow best. In these settings, phage evolution and competition should
often work loosely in favor of treatment, at least on a local level, but dynamical complexities allow
for exceptions.

With phage cocktails or in vivo evolution of phage mutants, the composition of actively growing
phages exuded from patients will typically change over time as bacterial densities are suppressed at
different rates in different locations. The cumulative phage composition should mirror the phages with
the biggest numerical effect on bacterial killing at the time. However, one dilemma faced in phage
collection from the patient is that the relative abundance of different phages in the collection need
not match phage importance to reduction of the patient’s symptoms. If the bacteria responsible for
morbidity or maintenance of the infection are confined to small or semi-protected bacterial populations,
or slowly growing ones, the patient’s phage output may be dominated by phages that kill large numbers
of bacteria in other tissues that contribute only slightly to virulence. Phage evolution itself will be
driven by growth on the larger, rapidly growing populations of bacteria in the host. As a consequence
of these varied processes and possibilities, there is no predicted time to harvest phages from one
patient that would ensure maximum benefit for use on subsequent patients.

Conclusions. Intrinsic processes of phage evolution work unambiguously in favor of bacterial
killing when bacteria exist in a single, well-mixed state. When multiple bacterial phenotypic states exist
and are well mixed, phage evolution and cocktail competition can give rise to unintuitive outcomes
whereby phages are selected even to avoid some bacteria. Spatial structure of bacterial states, as with
biofilms (aggregates or abscesses) versus planktonic cells, may align phage evolution with suppressing
bacterial numbers locally, but these processes are not easy to study and are not well understood
in vivo. Importantly, global phage growth rate need not be closely aligned with treatment success in a
heterogeneous infection.

Although encouraging, these results do little more than suggest an expected, qualitative direction
of evolution regarding treatment. They offer nothing on the speed or magnitude of infection clearance.
Nor do we have any sense of how much within-host evolution to expect, given a potentially short
duration of treatment. Deeper insight to the uses of in vivo evolution to improve treatment comes by
addressing specific phage characteristics, next.

3.2. Phage Decay Rates

Using two well-characterized tailed phages (λ and P22), Merril et al. [19] (i) showed that the initial
or ‘wildtype’ isolate of each phage was rapidly cleared from mice (in the absence of bacteria), and (ii)
evolved mutants of each that were cleared more slowly (a clearance rate approximately 20% of the
initial). The study further showed that the long-persisting phages were advantageous in prophylactic
therapy—administered in advance of the infection—presumably from their ability to persist up to the
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time of bacterial introduction. The interval in which phage decay was measured was short, less than a
day after inoculation, too fast for adaptive immunity to develop in the naive mice. The suggestion was
that phage clearance was due to the reticuloendothelial system.

These results raise two questions. (i) Is the benefit of long-persisting phages large enough to
affect treatment outcomes? If phages amplify during treatment, phage differences in survival might
have little benefit, except when phage amplification is weak. (ii) Will long-persisting phages evolve
during treatment and evolve quickly enough that there is little to be gained by starting treatment with
long-persisting phages? Phage clearance rate is not something easily predicted or measured outside
of the patient, so if clearance rate is important to treatment success, it is a property that might be
improved only via within-host evolution.

Of the phage characteristics analyzed in this paper, this one experiences the simplest evolutionary
process: each phage type and mutant evolves independently of other phages, and the selection does
not involve frequency- or density-dependence. Simple calculations can be informative as a first step.
Let phage survival follow exponential decay, e−wt for the ‘wildtype’ and e−mt for the mutant (m < w,
with t in minutes). If the mutant starts at frequency p0, the ratio of the mutant to wildtype will change
in time according to R(t):

R(t) =
p0

1 − p0

(
e−m

e−w

)t

. (1)

R(t) increases without bound over time, but only as long as both phage types are abundant enough to
approximate deterministic dynamics.

The time at which the mutant comprises half the phage population is approximately

t ≈ −ln(p0)

w − m
. (2)

For new mutations, the numerator will typically lie in the range of 10 to 20. Although this
calculation ignores phage amplification (which should have little impact on relative phage abundances
in the absence of other differences between the phages), this formula shows that the time for an initially
rare mutant to dominate the phage population depends on the reciprocal of the log of its relative
advantage [(w − m)−1]. Given that both rates must be positive (and w > m), the magnitude of w − m
cannot exceed w. A wild-type phage with a very low clearance rate (w << 1), cannot be quickly
displaced even for a mutant that is never cleared (m = 0). Evolution works fastest the more important
the change, but of course, if w is small, there is little benefit from further reductions.

Are clearance rates of wild phages high enough to evolve during an infection? Calculations from
the results in Merril et al. [19] and Westwater et al. [32] gave wildtype clearance rates on the order of
2 − 6 × 10−3 (see calculations in [33]). A five-fold improvement (say from 5 × 10−3 to 1 × 10−3) and
p0 = 10−6 requires just over 2 days for the mutant to comprise half the population. This may be a long
time to wait for any treatment benefit afforded by the mutant. Furthermore, if the phage population
was declining (e.g., unable to maintain itself), the phages might be too rare after 2 days to observe any
improvement in treatment from mutant ascendance.

When phages are used prophylactically, it is obvious that any benefit of reduced clearance must
be achieved by evolving the phage before administration. The goal of prophylaxis is to maintain
the phages as long as possible in a non-growing state in anticipation of a possible bacterial infection.
The drawback of starting with a pure rapidly-decaying phage cannot be overcome by phage evolution
when the phage are not growing. However, the situation changes if phages are administered to an
infection, because now a slow-decaying phage may arise by mutation and could in principle take
over the within-host population rapidly. If this process was rapid, one could rely on within-host
evolution to improve treatment of that patient. To address this possibility, we rely on a numerical
model (Figure 1). As described in our Methods section, this model attempts to capture more realistic
dynamics than is typical of the standard ‘mass action’ model of phage-bacterial dynamics. This new
model assumes both a sensitive bacterial population and a ‘refuge’ population of bacteria protected
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from infection, leading to reduced oscillations and (sometimes) a need to serially inoculate repeated
doses of phage to keep bacterial numbers low. With this model (Figure 1), it is seen that (i) decay
rate matters to rapid bacterial suppression (compare panels (B) and (D)), and (ii) early in treatment,
evolution is not as effective as is dosing with the pure, slowly-decaying phage (compare (C) and (D) at
time 5000).

The decay rate of engineered phages may also be improved by within-host evolution. Given the
inherent problem that an engineered phage may be predisposed to evolve reversal of the engineering,
one ideal aspect of in vivo evolution of decay rate is that it can be done in the absence of phage growth.
Thus, if the engineering does not affect virion proteins, selection for reduced decay can be done in
the absence of selecting properties affecting phage replication. In contrast, even if the phage is not
growing, in vivo selection for reduced decay may directly select against engineering that does alter the
virion surface, as with phage display (e.g., [34]).

Conclusions. If the wildtype phage has a suitably high in vivo decay rate, evolving the phage
to a lower decay rate can offer a significant improvement in treatment. Evolution of phages in the
within-host environment seems to be the only means at present of obtaining slow-decay phages, and it
thus presents a compelling case for the use of within-host evolution to improve treatment. However,
there is no assurance that the outcome of within-host evolution will be of significant benefit in a
different host. With this caveat, evolving slow decay in advance of treatment is the only solution to
improve phage prophylaxis, but evolution in advance may also offer a significant improvement over
relying on evolution during treatment.

The treatment benefit of decay-rate evolution depends on the wildtype decay rate and the
magnitude of improvement afforded by available mutations. Relying on within-host evolution
during treatment to achieve dominance by a slow-decaying phage becomes feasible only when the
treatment phages actively grow and maintain themselves in the host for days. Phages recovered from
a patient, as in D’Herelle’s approach, may well have evolved lower decay rates that could be used with
subsequent patients.

BA
B

P0
P1

0 5000 10000 15000
102

104

106
(A)

0 5000 10000 15000
102

104

106
(B)

0 5000 10000 15000
102

104

106
(C)

0 5000 10000 15000
102

104

106
(D)

1

Figure 1. Phage dynamics and evolution as a property of phage decay rate. The vertical axis gives
density, the horizontal axis time (minutes). Thin orange curves are protected bacteria in refuges,
thick blue curves are susceptible, planktonic bacteria. Dashed grey indicates the fast-decaying phage
(P0, decay rate of 0.008 per min), dotted grey indicates the better, slow-decaying phage (P1, decay rate
of 0.002 per min). The inset key (A) applies to all panels. All trials use the same bacterial growth
parameters and initial bacterial densities (given in Appendix A.1). When phage are present, they are
first added at 3000 min and added every 3000 min thereafter. (A) Bacterial densities slowly increase in
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the absence of phages. (B) Treatment with 105 rapidly-decaying phages causes a sudden decline in free
bacterial densities, a somewhat slower decline in aggregate bacteria. The system is approaching
equilibrium in that phage and bacterial densities are being approximately maintained between
inoculations. (C) The phage inoculum consists of 105 rapidly-decaying phage and 0.1 slowly-decaying
phage, the latter value to represent mutation. The slowly-decaying phage ascends profoundly but
then drops when bacterial densities are too low to sustain it. (D) The phage inoculum consists of
just 105 slowly-decaying phage. There is a substantial difference between the treatments with a pure
fast-decaying phage or a pure slow-decaying phage. The main effect of starting with a slow-decay
phage (D) instead of relying on within-host evolution (C) lies in the early dynamics, although a modest
lingering benefit is apparent. Parameter values and initial conditions are given in Appendix A.1.
Outcomes vary with parameter values, and the actual effect of within-host evolution or treatment with
pre-evolved, slowly decaying phages would need to be evaluated for each specific application.

3.3. Matrix Degrading Activities: Depolymerases

Some phages encode enzymes (depolymerases and lysins) that may have important direct or
indirect antibacterial activities. Depolymerases (the focus here) degrade bacterial secretions and may
foster bacterial killing and clearance [20,21,35–39]. Thus those enzymes have the interesting property
that they do not kill per se but enable killing by other agents. It is now known that the superior
phage type discovered by Smith and Huggins [12] differs from the poor phage type by encoding a
depolymerase that degrades the bacterial capsule [40]. The free enzyme is likely critical to treatment
success—the pure depolymerase can successfully treat an infection even in the absence of phage [41–45].
Protective bacterial secretions include more than just bacterial capsules, such as the chemically complex
matrices in biofilms and aggregates [21,29,38,46–48]. Phage-encoded enzymes do not necessarily exist
for all bacterial matrix components, but enzyme-encoding genes from other sources (bacteria, fungi)
can be engineered into and expressed from phages to achieve degradation (e.g., [21,49,50]).

In wild phages, depolymerases are assembled as tailspikes used in the initial, specific recognition
of the host. The enzymes allow the virion to penetrate the protective surface layers of the bacterium and
thus provide a direct benefit to the individual phage much as does any phage-encoded contribution to
infection. But depolymerases also provide a dispersed benefit for treatment: considerable free enzyme,
that not assembled onto virions before cell lysis, is released and can diffuse into the surrounding
environment where it acts separately from the phage. The effect of the diffusing enzyme can often be
observed on plates as an expanding halo beyond the plaque [46,51–53].

Interest here is primarily in the dispersed benefit of phage-encoded enzymes—a benefit beyond the
phage killing itself. Free enzyme augments other forms of bacterial killing by degrading the protective
layers around many bacteria. Loss of those layers exposes the bacteria to attack by complement,
immune cells, drugs, and even by other types of phages that would not otherwise be able to access the
bacteria. From a treatment perspective, free enzyme is ideal because it augments treatment by multiple
antibacterial agents and immunity. Furthermore, genetic engineering greatly expands the capacity
of phages to degrade substrates that do not directly aid infection [21]. If this property of a phage or
cocktail can be evolved and maintained, it has the potential to greatly augment treatment.

Evolution of a dispersed effect from an enzyme is not straightforward. Released enzyme diffuses
into the local environment and acts as a ‘public good’ that can benefit phages which do not produce the
enzyme. By benefiting others, the producer phage is subjected to a ‘tragedy of the commons’ that works
against its success in competition with non-producing mutants and phage types [23,53]. The ‘tragedy’
can be especially acute for phages engineered to encode depolymerases, as those enzymes are usually
encoded entirely as free enzymes and not part of the virion [21]: evolution can quickly dispense
with the engineered gene because it is not essential and even benefits mutants lacking the gene [23].
In contrast, enzymes encoded as tailspikes are genetically (evolutionarily) stable because they are
essential to infection; even in this case, the excess enzyme can work against the producer phage by
benefiting other phages in a cocktail. Maintenance of an enzyme-producing phage in cocktails thus
has little to do with its public-good benefit in clearing the infection, and such phages can be lost even
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if bacterial clearance depends on their presence [53]. Evolution and dynamics can work in favor of
enzyme-producing phages when the bacterial environment is spatially structured, where the free
enzyme does not diffuse far to help other phages [23], but there is as yet no evidence on whether
appropriate spatial structure applies to natural infections. Exogenous addition of enzyme is a possible
alternative to relying on phage-carried enzymes [44,45,54] should within-host evolution prove inimical
to maintaining phages encoding the enzyme.

Conclusions. Although the dispersed benefits of enzyme-producing phages can greatly enhance
clearance of structured bacterial populations, within-host evolution and competition among phages
are not aligned with maintaining enzymes for that reason. Within-host phage competition will not
typically improve the collective enzyme-degrading activities of the input phages. Retaining the
treatment benefit from engineered depolymerases requires that the engineered phages be specifically
designed to avoid evolutionary loss of the enzyme. Cocktails should be administered with an a priori
understanding of dynamics that may work against them.

3.4. Phage Evolution to Overcome Bacterial Resistance

The most-studied evolutionary process involving phages is their impact on and response
to bacterial resistance evolution. The problem has long been considered from the perspective
of genetic and molecular mechanisms, both from the perspective of bacterial defenses and
phage escape [24,55–62]. The process has also been studied as phenotypic outcomes of phage-bacterial
arms races in co-culture, both in conditions of natural or semi-natural dynamics [63–68] as well
as highly contrived conditions in which vast numbers of phage were amplified on a permissive
host and forced to grow on resistant hosts [55–58]. Our interest here is in observations from
(semi-)natural dynamics.

Although many types of bacterial defenses against phages are known, many of them are irrelevant
to within-host evolution during treatment. Anti-phage defenses will affect the initial choice of phages
for treatment; phages that fail, for whatever reason, to grow on the pathogen at hand will not usually
be further studied. Bacterial mutation in surface element genes affecting phage adsorption appears to
be the most commonly-observed evolutionary response to phages, and most other bacterial defense
systems will not evolve to block phage growth in the patient. For example, restriction–modification
(R-M) systems—a well known mechanism blocking phage infections [69–72]—will not evolve within
the patient to change specifically in response to phages. However, CRISPR loci, if present in the
infecting bacterium, may evolve in vivo to block phage infection. The degree to which this process
operates is under active investigation [62,73–76], but CRISPR is notably absent from at least some
multidrug-resistant pathogens [73,77,78], and it is too early to tell if it will prove an important
evolutionary escape in vivo.

The ascent of resistant bacteria within the patient will typically be inimical to treatment success and
should be avoided. Furthermore, there remains the formal possibility that a phage-resistant bacterium
will have increased virulence, perhaps by becoming mucoid and thus less sensitive to immune system
components; reports of such outcomes so far seem to be lacking. Experimental work indicates that
evolution of bacterial resistance is a seemingly ubiquitous and easy response to a high abundance of
phages. From in vitro co-culture studies of phages grown on single bacterial strains in simple media,
a common outcome of arms race evolution is ultimate dominance by resistant bacteria [64]. The arms
race may involve a few steps of phages evolving to overcome bacterial resistance and new bacterial
resistance evolving, but ultimately a bacterial resistance evolves that cannot be overcome by phage
evolution; phage are subsequently lost or their abundance greatly suppressed. This simple story is
often violated when bacteria are grown under more complex in vitro environments or in natural ones:
resistant bacteria may fail to ascend, with the phage persisting and permanently suppressing the
bacteria [79,80]. However, other outcomes have also been observed [65,66,68]. The hope is for in vivo
outcomes that avoid bacterial resistance, but in fact, resistant bacteria have been observed to ascend
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within patients [61,81]). So the hope then turns to learning how to choose phages to direct the outcome
toward blocking bacterial resistance evolution.

3.4.1. Intrinsic Phage Evolution to Overcome Bacterial Resistance Is Not Assured

Bacteria are selected to avoid killing by phages. Likewise, phages are selected to overcome
bacterial resistance, both in vivo and in vitro. Nonetheless, reliance on de novo mutation and Darwinian
evolution to overcome bacterial resistance faces two problems. First, the requisite mutations may not
arise—the jump to utilize a new bacterial receptor may require an improbable combination of multiple
mutations in the phage genome. (If a CRISPR-based immunity evolves within the host, there may
be no way for a phage to overcome it). Second, the population dynamics work against evolution
because of a mismatch between selection and phage population size (opportunity for mutation):
selection is strongest when the resistant bacterial population is largest, but the phage population may
already have plummeted from a declining number of sensitive hosts. These dynamics commonly
lead experimentalists to evolve new phage host ranges by allowing amplification on permissive hosts
between bouts of selection on resistant hosts (e.g., [55,56]).

3.4.2. Cocktails Can Be Designed to Block Stepwise Bacterial Escape, but They Can Experience Lags
and Phage Loss

Natural phage evolution is not the only solution to bacterial resistance. One alternative is to isolate
wild phages that grow on the resistant hosts, then use those in the therapeutic cocktail. Engineering
is another possibility for generating resistance-blocking phages [50,82–85]. Advance selection of
resistance-blocking phages is possible because bacterial evolution to resist a single phage often follows
a common molecular pathway, enabling the investigator to replicate in vitro the within-patient
arms race. One simply evolves resistant bacteria in vitro and then selects resistance-blocking
phages in advance of treatment, ultimately including them in the cocktail at sufficiently high
concentrations that they are not lost before substantial numbers of resistant bacteria have arisen.
Indeed, our mechanistic understanding of resistance evolution is so advanced as to realize that phages
infecting the same host by using different receptors will provide complementary blocks to bacterial
resistance evolution—pathways of resistance evolution can thus be anticipated even before the patient
experiences the resistant bacteria. Unfortunately, the approach of designing a cocktail to anticipate
bacterial evolution may only be applicable to chronic infections, as the time and effort to identify
phages and their specific receptors, and then formulating an appropriate cocktail, is considerable.

The dynamics of multiple, resistance-complementing phages in a cocktail works in favor of
suppressing bacterial resistance, but the timing is not ideal. The main complication is that phage
dynamics are not anticipatory, responding to what is present rather than what is about to occur.
Given the intrinsic differences in growth likely to exist among wild phages, the initial dynamics of the
cocktail will typically be dominated by one phage, with the other phages dropping to low numbers
(or even disappearing) before resistant bacteria ascend (Figure 2B and [71]). Resistant bacteria will
ascend and potentially exacerbate symptoms before being suppressed by other phages in the cocktail
(Figure 2C), and the cycle may repeat. If the cocktail contains resistance-blocking phages, it would seem
that the ascent of resistant bacteria could be avoided by periodic dosing with the cocktail, but a very
high dose may be needed (see Figure 2D,E). Overall, therefore, cocktail dynamics can ultimately work
in favor of overcoming bacterial resistance (provided that appropriate phages are present), but the best
treatment may require an informed design and application of cocktails.

The successive collection of phages from the patient should reveal much about the dynamics
before and during bacterial resistance evolution. Recovered phages may be a source of improved
phages that can be used on other patients infected with the same strain, as may be likely in an epidemic.
Such phages may also have been selected for lower rates of clearance by the reticuloendothelial or
other systems.
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Figure 2. A ‘broad’ host-range phage that blocks bacterial resistance is subject to delayed ascendency.
Periodic dosing may be only moderately more useful in suppressing bacterial resistance than is relying
on intrinsic dynamics. The model assumes two strains of bacteria, each in two states (solid colored
curves) and two strains of phage (dashed and dotted gray); the inset legend in (A) applies throughout,
with equations and parameters given in Appendix A.2. The vertical axis gives density, the horizontal
axis time (minutes). The phages differ in whether they can infect both bacteria (the ‘broad’ phage,
given by P1, dotted curves) or just one bacterium (the ‘narrow’ phage, given by P0, dashed curves);
the narrow phage has the advantage of a slightly higher adsorption rate. The bacterial strain given by
blue and orange curves is sensitive to both phages, the other (green and pink curves) is resistant to
the narrow phage and is initially rare. Each bacterium exists both planktonically (thick curves) and
in aggregates (thin curves), with aggregates being protected from all phages. The two bacteria differ
only in sensitivity to the phages. (A): Growth of the bacteria in the absence of phages. (B): Both phages
are introduced at time t = 1000 at a density of 105 but are considered to be extinct when densities drop
below 0.1. They have a rapid effect of driving the sensitive bacterial strain to low numbers, allowing the
resistant bacterium to become the majority. Both phages are lost when the bacterial density is too low
to sustain them, and all bacteria begin to recover, maintaining their relative abundances. (C): The same
as in (B), except that phages are never considered to be extinct. The broad phage eventually rebounds
in response to the high numbers of ‘resistant’ bacteria, and it suppresses both strains. (D): A cocktail
of both phages is applied, each at a dose of 105 (time 1000) and then each at a dose of 107 (times 4000
and 7000). The narrow-host range phage gains early because of its superior adsorption rate. Resistant
bacteria eventually ascend and allow the broad phage to maintain itself. Note that there is a substantial
lag before the broad phage dominates. (E) The same as in (D), but the inocula at times 4000 and 7000
are increased to 109 of the broad phage. All bacteria are now pushed to near extinction.
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3.4.3. Resistance-Proof Phages Can Avoid Evolutionary Arms Races, but In Vivo Dynamics Do Not
Ensure Their Ascendancy in Cocktails

Resistant bacteria do not invariably ascend ([4,12] and references above). Failure to ascend occurs
when bacterial resistance seriously impairs bacterial growth in the local environment. Thus, Smith and
Huggins [12] observed that their ‘good’ phages required the bacterial capsule for growth; bacterial
resistance resulted in loss of the capsule, which rendered the bacterium susceptible to the immune
system and thereby prevented ascendancy. Other trade-offs between bacterial resistance to phages and
bacterial growth are known; they often depend on the environmental context [4,86]. These observations
suggest that single phages might be chosen wisely to prevent the ascendance of resistant bacteria.
Use of such ‘resistance-proof’ phages has an obvious advantage, even over cocktails, as such treatments
do not face the even temporary ascendance of resistant bacteria (although resistance-proof phages are
subject to the same predator-prey cycles of other phages). A resistance-proof strategy has even been
employed successfully with patients [4,8]. (Again, if CRISPR-based immunity evolves, there may be
no possibility of a resistance-proof strategy using a single phage.)

As a possible source of resistance-proof phages, narrow host-range phages may be evolved
to overcome bacterial resistance, thereby changing their host range. This selection works well in a
laboratory setting where defined cultures are employed, and may lead to resistance-proofing because
most host range mutations confer an expansion of host range, rather than a switch. However, the result
is usually a compromise, with the rate of adsorption to both the old and new hosts being less than
of specialist phages that only infect one or the other strain. Reduced adsorption may allow sensitive
bacteria to persist at moderate densities or in refuges that might be suppressed by other phages;
reduced adsorption will generally affect therapeutic success if rapid phage multiplication is required
in vivo.

Although resistance-proof phages have sometimes been chosen a priori by design [4], a scientific
basis for choosing them may not always be available in advance of treatment. Might in vivo
competitions be used to dynamically evolve such phages? That is, if a cocktail of phages is used in
treatment and the cocktail were to contain a resistance-proof phage, would it automatically ascend and
displace the others? Not necessarily, at least not because of its resistance-proof status. At the outset,
a resistance-proof phage has no advantage when the cocktail is first introduced on the sensitive strain,
and whichever phage grows the fastest will predominate (e.g., [71]). When the bacterial population
evolves resistance to this first phage—a potentially slow process if bacteria exist in protected states
(e.g., Figure 2)—the resistance-proof phage may be one of several remaining phages capable of
growing on the resistant bacteria. Again, the fastest-growing phage will predominate, not necessarily
the one that is resistance-proof. Beyond this phase, there are countless possibilities as to preclude
generalities—from phage competitions, bacterial competitions, bacterial protected states, and delayed,
density-dependent dynamics. We thus lack assurance that a resistance-proof phage will prevail.
Treatment with a single phage known to be resistance-proof appears to be the surest way to maintain a
lasting block against bacterial resistance evolution, but the phage must be chosen intelligently rather
than by relying on within-host evolution.

As noted above, our presentation of bacterial resistance has implicitly emphasized changes in
surface receptors affecting phage adsorption. Other mechanisms of bacterial resistance to phages are
known [59], but most are not prone to evolve new resistance profiles in vivo and so only affect the
initial choice of treatment phages. Furthermore, changes in surface receptors may evolve in deference
to other changes [76]. Nonetheless, the dynamics of phage evolution to overcome bacterial resistance
by other mechanisms will face the same types of issues identified here.

Engineering phages with altered or broad host ranges is increasingly feasible [50,82–85].
To minimize the time lag problem, perhaps the goal should be to engineer a single, broad phage
rather than a collection of mutants that collectively spans multiple host strains (e.g., [85]). In vivo
evolution of phages engineered for host range should usually be compatible with maintaining the
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engineering. Such in vivo evolution may improve adsorption and tail stability, for example. But any
evolution may also favor specialization that will limit phage growth on other strains.

Conclusions. Within-host evolution favors bacterial resistance to phages, but the ascendance of
resistant bacteria then favors phages that grow on the resistant strains. Within-host evolution of single
phages is not assured of overcoming bacterial resistance, if only because the requisite mutations may
not occur. Cocktails may be designed to anticipate and block bacterial resistance evolution, but timing
remains a problem: phage evolution in response to resistant bacteria necessarily lags the ascendance of
resistant bacteria. Phage engineering to overcome bacterial resistance is gaining attention and may offer
a shortcut from laboriously screening wild phages. Because of the time-lag problem, repeated dosing
with a cocktail may be required to prevent the temporary ascent of resistant bacteria. Resistance-proof
phages offer a solution to a bacteria-phage arms race, but there is no in vivo protocol that ensures
automatic selection of single, resistance-proof phages, even when a resistance-proof phage is present
in the initial cocktail. They must therefore be chosen from experience or an a priori understanding of
the costs and benefits of bacterial resistance to phages.

4. Discussion

It is already clear that, whatever its ultimate utility, phage therapy of bacterial infections will not
afford the simplicity of treatment that has been true of antibiotics. Perhaps phage treatments will need
to be tailored to the infecting strain and may even need to be tailored to the nature of the infection.
However, one hope for phage therapy that does not apply to antibiotics is evolution. When starting a
treatment with one or more phages that infects the pathogen, either Darwinian phage evolution or
cocktail dynamics within the patient might be aligned with treatment success and ‘automatically’ yield
the best phages, obviating the need for a sophisticated understanding of best treatment practices.

Evaluating the potential utility of within-host evolution has special merit in light of the fact that
current treatment protocols have been rather simplistic. This is not a criticism, one needs to know
what the problems are before designing more complex protocols. In some cases, phages were selected
for treatment based on no more than a demonstrated host range in vitro. In other cases, phages were
chosen merely to grow on the infecting strain and also block the ascent of resistant bacteria, again based
on in vitro assays. Although infections have been successfully suppressed by some of these protocols,
improvements may be warranted to shorten recovery periods or to depress bacterial densities beyond
that which was attained. Furthermore, in vivo phage evolution may not only augment treatment,
but studying it may lead us to new insights that could improve treatment.

The thesis that in vivo phage evolution is aligned with treatment success applies to some
phage properties but not others. The reason for the different effects of within-host evolution on
phage improvement is that the different phage properties evolve under different dynamic processes,
and only some processes are aligned with treatment. Properties improved by within-host evolution
are phage growth rate and (reduced) clearance rate, as well as the ability to overcome bacterial
resistance. However, phage evolution to overcome bacterial resistance has a time lag problem:
phage evolution tracks bacterial resistance, so resistant bacteria ascend before being suppressed
again. Resistance-proof phages avoid the emergence of resistant bacteria if they are the only phages
administered, but when given as one of several phages, they do not ensure against the cyclical rise of
resistant bacteria. Wise cocktail design and delivery timing is the more assured way of limiting the
ascent of resistant bacteria.

Intrinsic dynamics/evolution within the patient offer no assurance for the maintenance of
phage-encoded enzymes that degrade extra-bacterial substances. The release of free, phage-encoded
enzymes may profoundly help clear an infection, but this benefit does not help maintain the phages
producing the enzymes—unless the infection is highly structured. Again, wise choice of phages,
cocktail composition, and dosing times may be required to optimize treatment.

Phages may act in synergy with antibiotics [87–89] and other therapies, although there appears to
be no grand generality—some drug-phage combinations are synergistic, others antagonistic [90].
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The performance of individual phages may thus well be affected by interactions with other
therapies. Indeed, phage therapy with humans may invariably require co-treatment with antibiotics,
so phage–drug interactions may well be critical to success. However, we do not expect the principles
underlying the alignment of within-host evolution and treatment success to change because of
antibiotic use.

The concept of engineering a ‘super’ phage for therapy has often been raised. Such a phage
would likely have a broad host range and encode one or more enzymes that degrade extracellular
matrices. A priori, it may be desirable to encode anti-R-M and anti-CRISPR functions, methylases,
and other proteins that antagonize host defenses. However, as the maximum capacity of a phage
capsid for DNA is limited, extensive engineering of a phage genome is likely to require removal of
“non-essential” (within a laboratory setting) genes. The engineering may thus be self-defeating unless
carefully designed. Nevertheless, within-host evolution could be used to improve such a ‘super’ phage
in several respects, and where evolution led to undesired outcomes (e.g., loss of a phage-encoded
enzyme), the evolution could at least help identify where the engineering needed improvement.
Indeed, a within-host competition of different engineered phages could quickly identify which phages
were the most genetically stable.

Depressing Bacterial Densities versus Improving Infection Outcomes

The perspective here has assumed that decreasing bacterial numbers invariably improves the
patient’s outcome. Depressing bacterial numbers will no doubt be essential to cure, but there are hints
that the relationship between bacterial killing and treatment success is not always straightforward:
bacterial lysis releases endotoxins. In an experimental mouse model, lethal but non-lysing phages
given at very high doses were shown to improve host survival over lytic phages [91]. Although that
experimental system was highly artificial, the result fits with known principles of the immune response,
and it points to a wider realm of possible deviations from a simple relationship between bacterial
killing by lysis and treatment improvement. For example, treatment with a phage that releases capsular
depolymerases may boost immune-mediated killing, which does not entail lysis (e.g., [41,42,44,45]).

A second possible concern with ‘successful’ phage therapy is whether bacterial resistance
to phages might increase virulence. Bacterial resistance to phages often entails a reduction in
bacterial growth rates or densities, but if bacterial density is not the sole determinant of virulence,
then an increase in virulence is possible despite reduced bacterial growth. Indeed, some extremely
slow-growing bacteria cause serious infections. Bacterial resistance to phages may impart simultaneous
protection against immunity, as with bacterial mucoidy. It is thus conceivable that some virulent
bacterial mutants may have an advantage within the host only when favored by phage pressure,
in which case they would not be observed in the absence of treatment. Although this possibility
is speculative, there are unconfirmed reports of symptoms made worse by phage treatment.
One conceivable scenario is where the use of broad host range phages and/or complex phage cocktails
inadvertently targets benign commensal bacteria that themselves are antagonistic to proliferation of
the pathogen.
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Appendix A. Model Details

The standard model of bacterial–phage interactions is one of ordinary differential equations
assuming mass action, whereby the number of infections occurring per unit time is simply the product
of the phage and bacterial concentrations (scaled by an adsorption rate parameter, [25,26]). This type
of model typically leads to a rapid and profound depression of bacteria, followed by a bacterial
resurgence and ensuing oscillations of phage and bacterial densities. These dynamics are apparently
not representative of phage therapy patients [2]. We instead offer two models of ordinary differential
equations that deviate from the standard model and can generate some key outcomes mirroring those
of observed with phage therapy: bacteria exist in protected states, phage may slowly decay during
treatment, and multiple dosing may be required [2]. Although our models explicitly include many
components (minimally four variables and nine parameters), they are proposed heuristically in that
they cannot be empirically parameterized. Instead, many parameters need be chosen so that the
baseline behavior allows phage to have only a moderate effect on bacterial densities in the short term,
and indeed for some trials, that multiple phage inoculations are needed to depress bacterial densities
to low levels. Any numerical trial of this model is useful chiefly in illustrating possibilities that are
incompatible with the standard model.

Appendix A.1. One Bacterial Strain with Two Bacterial States and Two Phages

In model (A1), a single strain of bacterium switches between a planktonic state and aggregates.
Planktonic bacteria are susceptible to phages, aggregates are not. Two phage strains are included,
differing only in decay rate. Parameters are defined in Table A1.

ḂA =− ρBA + βB (A1)

Ḃ = ρcBA − k0P0B − k1P1B − dBB

Ṗ0 = b0k0 BP0 − d0P0

Ṗ1 = b1k1 BP1 − d1P1 .

Parameter values used in Figure 1 are: k0, k1 = 3 × 10−9, d0 = 0.008, d1 = 0.002, dB = 0.001,
b0, b1 = 50, c = 2.5, ρ = 0.0018, β = 5 × 10−4. Initial bacterial densities are: B(0) = 2 × 105,
BA(0) = 8 × 104.

Table A1. Model variables and parameters.

Notation Description Units

Variables (Functions of Time) Description Units

BA density of bacteria in aggregates (protected) /mL
B density of susceptible, planktonic bacteria /mL
P0 density of strain 0 phage /mL
P1 density of strain 1 phage /mL

Parameters Description Units

ki adsorption rate of phage strain i to planktonic bacteria mL/min
di death rate of phage strain i /min
dB loss rate of bacteria from death or conversion to aggregates (dB ≥ β) /min
bi burst size of phage strain i individuals
c conversion rate of aggregates to planktonic bacteria
ρ loss rate of aggregates to become planktonic bacteria /min
β aggregate formation rate by planktonic bacteria /min

Appendix A.2. Two Bacterial States with Two Bacterial States and Two Phages

This model is similar to that in (A1), except that it adds a second strain of bacteria, one whose
planktonic state is resistant to one of the phages, necessarily also resistant as aggregates. To keep the
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emphasis on the effect of resistance, many of the same parameter values are used for the two types of
bacteria and for phage infection of the bacteria.

ḂA =− ρBA + βB (A2)

Ḃ = ρcBA − k0P0B − k1P1B − dBB

ṘA =− ρRA + βR

Ṙ = ρcRA − k1P1R − dBR

Ṗ0 = b0k0 BP0 − d0P0

Ṗ1 = b1k1 BP1 + b1k1RP1 − d1P1 .

Only variables that differ from those in model (A1) are defined in the table below. Parameters are
the same as in Table A1.

Table A2. New variables for model (A2).

Notation Description Units

Variables (Functions of Time) Description Units

RA density of resistant bacteria in aggregates /mL
R density of resistant, planktonic bacteria /mL

Parameter values used in Figure 2 are the same as for Figure 1 except: k1 = 1 × 10−9, d0 = d1 =

0.006, dB = 0.009, c = 2.2, ρ = 0.018, β = 5 × 10−3. Initial bacterial densities are: B(1) = 2 × 106,
BA(1) = 8 × 105, R[1] = RA[1] = 10.
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