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Abstract

Objective: Monthly scanning with triple-dose gadopentetate dimeglumine has been shown to be

associated with progressive increases in bone T1 hyperintensity, hypophosphatemia, and leuko-

penia. This study was performed to retrospectively investigate the potential associations among

these phenomena.

Methods: This retrospective analysis involved patients who had received monthly triple-dose

gadopentetate dimeglumine for up to 2 years as part of treatment for multiple sclerosis. Monthly

magnetic resonance imaging scans of the brain (n¼ 67) were segmented to evaluate the signal

intensity in the cranial marrow. Potential associations among the marrow T1 hyperintensity,

serum phosphate concentration, and white blood cell count were examined.

Results: Patients in the no leukopenia group showed a statistically significant mean monthly

increase in the bone marrow signal-to-noise ratio of 0.0430/month. Patients in the leukopenia

group showed a mean monthly increase in the bone marrow signal-to-noise ratio of 0.0398/

month, but this was not statistically significant. Patients in the hypophosphatemia group were

significantly less likely to develop leukopenia than patients who had never developed

hypophosphatemia.

Conclusions: Although monthly administration of triple-dose gadopentetate dimeglumine over

13 months has been associated with progressive increases in leukopenia, hypophosphatemia, and
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T1 signal intensity of bone, this study showed an inverse relationship between leukopenia and

hypophosphatemia.
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Background

Recent studies have revealed deposition of
gadolinium (Gd) within the tissues of
patients who have undergone Gd-based
contrast-enhanced magnetic resonance
imaging (MRI).1–3 Most notably, deposi-
tion of Gd within the gray matter has
been demonstrated.1–6 Evidence of reten-
tion has been seen as late as 10 years after
administration of repeat doses.7 Recent
studies have demonstrated Gd deposition
in bone using emission spectroscopy in
ex vivo studies8 and in live patients using
MRI.9 The question that remains unan-
swered from these preliminary studies is
whether the deposition of Gd results in
immediate or long-term cellular or physio-
logic effects of clinical significance in
patients with normal renal function.

Perhaps the largest currently available
clinical and imaging data sets of patients
who have undergone serial Gd-based con-
trast examinations are from the randomized
controlled trial “Betaseron vs Copaxone
in Multiple Sclerosis with Triple-Dose
Gadolinium and 3-Tesla MRI Endpoints”
(BECOME trial).10 This study included
75 patients with multiple sclerosis who
underwent monthly contrast-enhanced
MRI scans of the brain using off-label
triple-dose (0.3mmol/kg) gadopentetate
dimeglumine contrast for up to 2 years.
The purpose of that study was to compare
the clinical efficacy of the immunomodulat-
ing therapeutic agents interferon beta-1b

(BetaseronVR ; Bayer, Leverkusen,

Germany) and glatiramer acetate

(CopaxoneVR ; Teva Neuroscience, Kansas

City, MO, USA). A retrospective analysis

of the data from that trial, which included

serial bloodwork, showed that patients

receiving serial triple-dose Gd-based con-

trast demonstrated a higher frequency of

hypophosphatemia9 and leukopenia when

compared with pre-study levels.11 This was

true of both treatment arms. Furthermore,

the frequency of hypophosphatemia was

found to progressively increase with repeat

triple doses over 12 months (only 4% of

patients developed episodes of hypophos-

phatemia in the first 3 months of the

study, but 26% developed hypophosphate-

mia over the last 3 months).12 In addition, a

retrospective analysis of the bone marrow

signal intensity over 13 months of monthly

triple-dose Gd contrast administration

demonstrated a progressive increase in the

mean T1 signal-to-noise ratio (S/N) in the

medullary cavity (0.039/month, p< 0.0001),

suggesting bone marrow Gd deposition.9

The purpose of the present study was to

investigate the potential associations

among leukopenia, hypophosphatemia,

and bone marrow T1 hyperintensity sec-

ondary to serial Gd administration.

Methods

De-identified data from the first 13 months

of the BECOME trial (cohort study) were
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retrospectively analyzed. Because the cur-
rent study was a retrospective analysis of
de-identified patients, the IRB office
issued a waiver of IRB approval and patient
consent. Analysis of Gd bone deposition
has been described in a separate report.9

Patients from the original BECOME trial
were consecutively enrolled at New Jersey
Medical School from 16 February 2003 to
26 February 2005. Scans from 67 patients
from the BECOME multiple sclerosis trial
cohort (original cohort, n¼ 75) were avail-
able for analysis. Eight patients were
excluded from the analysis because of cor-
rupted imaging data. The demographic
characteristics of the patients are listed in
Table 1.

Data included monthly contrast-
enhanced brain MRI scans obtained using
triple-dose gadopentetate dimeglumine con-
trast. Monthly blood specimens were col-
lected immediately prior to contrast
injection to identify any potential effects
from prior months. The monthly brain
MRI scans were segmented to evaluate the
signal intensity within the marrow compart-
ment, and signal intensity changes were
compared with the serum phosphate con-
centration and white blood cell count mea-
sured at the same time points to identify a
potential relationship.

T1-weighted fat-suppressed MRI scans
of each patient at 14 time points spanning
13 months were used (screening, baseline,

and months 1–12). ITK-SNAP software13

(https://www.itksnap.org) was used to man-
ually segment regions of interest (ROIs)
centered on the medullary cavity of the
skull base, which served as a mask for sub-
sequent automated analysis of co-registered
T1-weighted fat-suppressed images. The
internal occipital protuberance or the
clivus was chosen to optimize the size of
the ROI. In any given patient, the same
medullary cavity was used at all time
points. The S/N was defined as the ratio
between the signal intensity of the bone
ROI and the signal intensity of the air ROI.

Linear mixed regression modeling with a
random intercept using the monthly data
was performed. The patients were divided
into groups based on whether their
bloodwork revealed an episode of hypo-
phosphatemia (defined as a phosphate con-
centration of <2.5mg/dL). These groups of
patients were defined as the hypophospha-
temia group (�1 episode) and no
hypophosphatemia group (0 episodes).
Similarly, the patients were divided into
groups based on the number of episodes
of leukopenia (defined as a leukocyte
count of <4000/lL). These groups of
patients were defined as the leukopenia
group (�1 episode) and no leukopenia
group (0 episodes). The relationship
between leukopenia and the phosphate con-
centration was analyzed using the chi-square
test. The relationship between leukopenia
groups was analyzed using analysis of vari-
ance. All statistical analyses were performed
using SAS Version 9.4 (SAS Institute Inc.,
Cary, NC, USA) and R Version 3.6.1. (R
Core Team, Vienna, Austria). The reporting
of this study conforms to the Equator
STROBE guidelines.14

Results

Patients in the hypophosphatemia group
were significantly less likely to develop leu-
kopenia than patients in the no

Table 1. Demographic characteristics of the
75 patients randomized in the BECOME study.

Demographic characteristics Number of patients

Age, mean (range) years 36 (18–55)

Female 52

Male 23

Ethnicity

White 39

Black 21

Hispanic 14

Indian-Asian 1
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hypophosphatemia group (p¼ 0.038)

(Table 2). Patients in the no leukopenia

group showed a mean monthly increase in

the bone marrow S/N of 0.0430/month

(p¼ 0.013) (Figure 1). Patients in the leuko-

penia group showed a mean monthly

increase in the bone marrow S/N of

0.0398/month, but this finding was not

statistically significant (Figure 2). There

was no statistically significant difference

between the slopes of these two groups.

Discussion

It has been proposed that the mechanism

underlying episodes of hypophosphatemia

is Gd activation of the calcium-sensing

receptor of the parathyroid gland.9 Gd is

a lanthanide, an ion family sometimes

referred to as “super calcium” that can act

as a calcium-sensing receptor agonist.15

Hypothetically, this activation could cause

downregulation of the release of parathy-

roid hormone, resulting in transient hypo-

calcemia.9 This hypocalcemia may then

trigger a rebound increase in parathyroid

hormone secretion, causing bone resorption

by osteoclast activation. Under this hypoth-

esis, individuals exposed to high doses of

Gd could develop hypophosphatemia and

changes in bone signals.
Previous research on patients receiving

monthly triple-dose gadopentetate dimeglu-

mine showed that patients who experienced

at least one episode of hypophosphatemia

developed bone marrow T1 hyperintensity,

Table 2. Relationship between hypophosphatemia and leukopenia.

No hypophosphatemia Hypophosphatemia Total

No leukopenia 17 (33%) 34 (67%) 51

Leukopenia 10 (63%) 6 (37%) 16

Total 27 40 67

Figure 1. Signal-to-noise ratio by month of triple-dose gadopentetate dimeglumine administration in
patients without leukopenia.
S, screening; B, baseline; M, month; s.d., standard deviation.
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but at a slower rate than patients who

were consistently normophosphatemic.9

The reason for this is unclear.
An unanswered question is whether Gd

deposited in bone can cause both leukope-

nia and hypophosphatemia. Macrophages

(a subtype of white blood cell) and osteo-

clasts (which resorb bone, releasing free

serum phosphorus) reportedly share a

common macrophage/osteoclast progenitor

cell.16 Therefore, any marrow cytotoxic

effect specific to this common progenitor

cell (e.g., Gd released from bony trabecu-

lae) could conceivably result in both leuko-

penia and hypophosphatemia.
Dissociation of free Gd ions (Gd3þ) from

chelated complexes allows for transmetala-

tion and deposition within the bone reser-

voir, which could explain the progressive

increase in the MRI signal upon serial

administration. Osseous release of Gd ions

could conceivably cause selective cytotoxic,

antagonistic, or inhibitory effects on leuko-

cyte precursors within the marrow cavity.

One study showed that leukocytes can

internalize an amount of Gd that is two

orders of magnitude higher than that inter-

nalized by red blood cells.17

If the T1 hyperintensity seen in the med-

ullary cavity of bone represents Gd deposi-

tion, it is unclear whether the deposition is

in the trabecular bone or the red marrow

itself. Bony trabeculae have a paucity of

mobile protons and therefore seem to be

unable to facilitate Gd-induced proton–

electron dipole–dipole relaxation enhance-

ment, central to the T1-shortening effect

of Gd. Despite the lack of mobile protons

within the trabeculae, water hydration

layers along the large surface areas at the

“red marrow–trabecular bone interfaces”

could allow for the necessary T1 shorten-

ing. This is akin to the mechanism that

has been theorized as the cause of fluid-

attenuated inversion recovery-related cere-

brospinal fluid suppression failure in the

sulci between closely spaced gyri.9

Alternatively, the development of T1 hyper-

intensity may be an indirect rather than

direct effect of Gd. A multitude of factors

can influence signal intensity on T1-

weighted images even when no Gd is

Figure 2. Signal-to-noise ratio by month of triple-dose gadopentetate dimeglumine administration in
patients with leukopenia.
S, screening; B, baseline; M, month; s.d., standard deviation.
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present. Fat was not a contributor in our
study because fat suppression was used.

Although serial triple-dose Gd adminis-
tration has been associated with all three
phenomena (T1 shortening of bone
marrow, hypophosphatemia, and leukope-
nia),9,11 that patients with hypophosphate-
mia in our study were less likely to have
leukopenia (and vice versa) argues against
the “single-hit” model of toxicity of the
macrophage/osteoclast progenitor cell. It
is possible that Gd toxicity may selectively
affect either osteoclasts or macrophages,
but not both, based on some unknown bio-
logic polymorphism.

In addition, confounding factors may
have influenced the measured leukopenia.
Patients in the present trial were receiving
interferon beta-1b (for which leukopenia is
a common adverse effect) or glatiramer ace-
tate (for which leukopenia is an extremely
rare adverse effect).18 Both groups of
patients demonstrated higher frequencies
of leukopenia than expected (p¼ 0.003 for
interferon beta-1b, p¼ 0.001 for glatiramer
acetate), suggesting that additional episodes
of leukopenia may be attributable to Gd
effects.11

Because the absence of leukopenia was
significantly associated with a progressive
increase in the marrow signal (p¼ 0.013)
but the presence of leukopenia was not
may have occurred because the latter was
underpowered by the small sample size, a
limitation of this study. The actual slopes
of the curves in the two groups were com-
parable (Figures 1 and 2), but the leukope-
nia group contained a smaller number of
patients (n¼ 16 vs. n¼ 50).

One consideration for future analysis is
the practical implications of our findings
for patient care because the amount and
dosage of Gd used in this study well
exceed the amount and dosage used in the
clinical evaluation of patients with multiple
sclerosis. Further research is needed to
determine whether progressive increases in

T1 bone hyperintensity, leukopenia, and
hypophosphatemia may be detected at
standard-of-care doses when reviewing
large populations or if this is an isolated
phenomenon with monthly triple-dose Gd.

Conclusion

Although monthly administration of triple-
dose gadopentetate dimeglumine over
13 months has been associated with pro-
gressive increases in leukopenia, hypophos-
phatemia, and the T1 signal intensity of
bone, we found a paradoxical inverse
relationship between leukopenia and hypo-
phosphatemia. The cause of these phenom-
ena warrants further investigation.
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