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Abstract

The Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) share similar

molecular characteristics in that they frequently harbor hotspot mutations in JAK2, CALR or

MPL, leading to activated JAK/STAT signaling. However, these MPN have distinct symp-

toms, morphology, and natural histories, including different tendencies to progress to fibro-

sis. Although the role of inflammation in tissue fibrosis is well recognized, inflammatory gene

expression in bone marrows involved by MPN has been understudied. We analyzed the

expression of inflammatory genes by directly measuring RNA transcript abundance in bone

marrow biopsies of 108 MPN patients. Unsupervised analyses identified gene expression

patterns that distinguish prefibrotic (grade 1–2) MPN from overtly fibrotic (grade 2–3) MPN

with high sensitivity and specificity in two independent cohorts. Furthermore, prefibrotic and

overtly fibrotic MPN are separable into subsets with different activities in biological pathways

linked to inflammation, including cytokines, chemokines, interferon response, and toll-like

receptor signaling. In conclusion, this study demonstrates that MPN with overt fibrosis is

associated with significant inflammatory gene upregulation in the bone marrow, revealing

potential roles for multiple pro-inflammatory signaling networks in the development of mye-

lofibrosis and suggesting potential therapeutic mechanisms to alleviate this process in the

bone marrow microenvironment.

Introduction

Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF)

are a group of Philadelphia (Ph)-negative myeloproliferative neoplasms (MPN) characterized
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by overlapping clinical and laboratory features, as well as common phenotypic driver muta-

tions in the JAK2, CALR and MPL tyrosine kinase genes. Despite these similarities, disease

progression and clinical outcome vary greatly between disease types. For example, 12% of pre-

fibrotic PMF patients develop overtly fibrotic disease within 10 years of diagnosis, whereas

post-ET myelofibrosis is rarer, occurring in only 0.8% of ET patients [1]. The biological basis

of bone marrow fibrosis in MPN remains unclear, but likely involves aberrant growth factor

and cytokine signaling in neoplastic hematopoietic cells [2]. These proinflammatory mole-

cules, such as transforming growth factor beta (TGF-β), platelet derived growth factor

(PDGF), and fibroblast growth factor (FGF), elicit a secondary response in stromal fibroblasts

and endothelial cells resulting in bone marrow fibrosis. However, the study of cytokine gene

expression levels in the microenvironment has been technically difficult, and has sometimes

produced contradictory findings [3].

We previously demonstrated that the mutational profiles of PMF, ET, and PV correlate

with histomorphologic characteristics in a cohort of Ph-negative MPN patients [4]. In this

study, we expand this cohort of PMF, ET, and PV patients to characterize levels of inflamma-

tory gene expression in the bone marrow. Using a technique that permits direct measurement

of transcript levels in clinical bone marrow biopsies, we demonstrate a strong correlation

between myelofibrosis and inflammatory gene expression in the bone marrow. Gene expres-

sion profiles were identified that distinguish prefibrotic MPN from overtly fibrotic MPN and

define MPN subsets with different inflammatory pathway activities. These results emphasize

the central role of the inflammatory microenvironment in the initiation and persistence of

myelofibrosis and suggest that distinct MPN phenotypes may be functionally categorized by

differences in proinflammatory signals.

Materials and methods

Study population

The pathology archives at Brigham & Women’s Hospital (BWH) and Massachusetts General

Hospital (MGH) was queried to identify patients diagnosed with PMF, ET, PV, or MPN,

unclassifiable (MPN-U) on bone marrow biopsy with concurrent hematologic data obtained

between 2005 and 2016. Patients diagnosed with myelodysplastic syndrome/MPN overlap dis-

ease and those who had progressed to acute leukemia, received treatment with chemothera-

peutic agents for prior cancer diagnoses, or had undergone stem cell transplantation were

excluded. BWH specimens were fixed in Bouin’s fixative and decalcified in RapidCal Immuno

(BBC Biochemical) for 15 minutes, followed by routine processing. Specimens from MGH

were fixed in B-plus fixative for a minimum of 4 hours and decalcified in RapidCal Immuno

(BBC Biochemical) for 30 minutes, followed by routine processing. Histologic review and

fibrosis grading were performed by W.W., R.P.H. and O.P. based on consensus, using the

2016 WHO Revised Classification of Myeloid Neoplasms [5]. The study was conducted in

accordance with the principles set forth by the Declaration of Helsinki and the requirement

for informed consent was waived by the institutional review board.

Mutational analysis

Targeted sequencing of 95 commonly mutated genes in myeloid neoplasms was performed on

DNA isolated from peripheral blood or bone marrow aspirates of 83 of the patients as part of

their clinical evaluation. Amplicon library generation (TruSeq Custom Amplicon, Illumina,

San Diego, CA) and next generation sequencing (MiSeq, Illumina, San Diego, CA) were per-

formed as described [6]. Data processing and analysis were performed using MuTect for sin-

gle-nucleotide variants with subsequent manual review and annotation (including evaluation
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of allele frequencies). Likely pathogenic variants were defined as frameshift, nonsense, splice-

site mutations, insertions-deletions, or known pathogenic missense alterations.

Gene expression analysis

RNA was isolated from 50 μm sections prepared from fixed, decalcified and paraffin-embed-

ded bone marrow biopsies using Qiagen RNeasy Kit (Germantown, MD). Briefly, 50 μm histo-

logic sections were scraped into deparaffinization solution and RNA was isolated according to

manufacturer’s instructions. RNA concentration was measured using a Nanodrop spectropho-

tometer (Thermo Fisher, Waltham, MA). Multiplexed mRNA quantification was performed

using Nanostring nCounter GX Human Inflammation Kit (Seattle, WA), which contains

color-coded hybridization probes against 249 inflammation-related genes, including cyto-

kines, chemokines, pattern recognition receptors, cell adhesion molecules, and regulators of

lymphocyte activation. Gene expression analysis was carried out using nSolver software

(Nanostring, Seattle, WA) and RStudio (Boston, MA). For each gene, transcript count was

normalized to the geometric mean of five housekeeping genes (GAPDH, GUSB, HPRT1,

PGK1, TUBB) and six synthetic positive control RNA probes. Baseline threshold expression

was defined as two standard deviations above the mean of six synthetic negative control RNA

probes. Target genes with raw counts below the baseline threshold in more than two-thirds

(67%) of samples were excluded from analysis. Samples with more than 75% of raw transcript

counts below the baseline threshold, or requiring a housekeeping gene normalization factor of

greater than 20.0, were considered to be of inadequate quality and excluded from analysis.

Statistical analysis

Cluster analysis was performed using stats R package. The k coefficient for k-means clustering

was determined by the elbow method. Stepwise selection of differentially expressed genes was

performed using the stepAIC function in MASS. Logistic regression modeling and leave one

out cross validation were performed using caret. The predictive score cut-off was determined

by recursive partitioning using rpart R package. Gene set enrichment analysis was performed

using GSEA software and Molecular Signature Database (Broad Institute, Boston, MA). Differ-

entially expressed genes were also analyzed for enrichment in Gene Ontology pathways

(http://www.geneontology.org/page/go-enrichment-analysis, accessed August 2018). Statisti-

cal significance (p< 0.05) was determined using log2 transformed values by one-way ANOVA

or Student’s t test, as appropriate. Adjusted false discovery rate (FDR; q< 0.05) was calculated

using the Benjamini-Yekutieli method.

Results

We identified 142 bone marrow biopsies from unique individuals diagnosed with MPN. 115

samples were from BWH; 27 samples were from MGH; tissue for gene expression analyses was

available in 135 specimens. Of 135 specimens with available tissue, 108 (80.0%) yielded gene

expression profiles of adequate quality and constituted the final study sample. Low quality

samples excluded from the analysis were associated with older specimen age and fixation in

B-Plus fixative. There was no significant association between sample exclusion and MPN dis-

ease type (p = 0.9) or fibrosis grade (p = 0.9). The final cohort of 108 MPN patients included

36 (33.3%) with PMF, 31 (28.7%) with ET, 25 (23.1%) with PV, and 16 (14.8%) with MPN-U

(Table 1). Of the 36 PMF cases, 13 (34.2%) were prefibrotic (WHO MF grade 0–1), whereas 23

(65.8%) showed overt fibrosis (WHO MF grade 2–3). Eight cases (32%) of PV had progressed

to post-PV myelofibrosis and 10 (32.2%) cases of ET had progressed to post-ET myelofibrosis

at the time of the analyzed biopsy. Seven (43.8%) out of 16 MPN-U cases represented advanced
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stages of MPN in which fibrosis obscured the underlying diagnosis. In total, 60 cases (55.6%)

represented MPN with WHO MF grade 0–1, whereas 48 cases (44.4%) demonstrated overt

(WHO MF grade 2–3) fibrosis. These specimens were randomly divided into training (n = 76)

and test (n = 32) cohorts for further analysis (Table 1).

Unsupervised clustering of inflammatory gene expression was performed on the training

cohort using both hierarchical and agglomerative methods. Hierarchical clustering separated

overtly fibrotic MPN from prefibrotic disease with a sensitivity of 72% and a specificity of 89%

(Fig 1A). However, this analysis did not distinguish specific MPN disease types (ET, PV, prefi-

brotic PMF, versus MPN-U with MF grade 0–1 in the prefibrotic cluster; and post-ET MF,

post-PV MF, overtly fibrotic PMF, and MPN-U with MF grade 2–3 in the overtly fibrotic clus-

ter) from each other. K-means agglomerative clustering (k = 4) demonstrated that both prefi-

brotic and overtly fibrotic MPN can be further partitioned into two groups, each with distinct

gene expression patterns (Fig 1B). Cluster 1 and cluster 3 represented mostly prefibrotic MPN,

whereas clusters 2 and 4 contained mostly fibrotic disease. The overall sensitivity was 95% for

prefibrotic MPN and 72% for overtly fibrotic disease respectively, with an overall accuracy of

83%. Cluster 1 contained most of MF grade 0–1 MPN-U; only three cases (30%) were present

in cluster 3, which was relatively enriched in ET instead (Fig 1B). In contrast, overtly fibrotic

PMF was concentrated in cluster 2, whereas cluster 4 showed no disease-specific patterns.

These differences in disease type were not statistically significant (p> 0.05), suggesting that in

this analysis, pro-inflammatory responses represent a final common pathway leading to end-

stage fibrosis in MPN. Therefore, we focused on inflammatory genes with altered expression

in myelofibrosis independent of disease type.

Out of 199 genes expressed above background, the transcript levels of 123 genes were signif-

icantly altered in the bone marrow of patients with overt fibrosis (q< 0.05; S1 Table). Only

three transcripts (HMGB2, ALOX15, DEFA1) were downregulated, while the remainder were

Table 1. MPN patients’ characteristics.

All patients (n = 108) Training cohort (n = 76) Test cohort (n = 32)

PMF ET PV MPN-U PMF ET PV MPN-U PMF ET PV MPN-U

(n = 36) (n = 31) (n = 25) (n = 16) (n = 26) (n = 21) (n = 17) (n = 12) (n = 10) (n = 10) (n = 8) (n = 4)

Characteristics

Mean age 65.4 60 60.8 62.4 65.2 57 61.4 63 65.8 64 61 60.3

Female (%) 14 (40) 18 (62) 14 (61) 8 (50) 9 (36) 11 (58) 8 (57) 7 (58) 5 (50) 6 (67) 5 (63) 1 (25)

Fibrosis

Grade 0–1 (%) 13 (36) 21 (68) 17 (68) 9 (56) 7 (27) 14 (67) 9 (53) 7 (58) 6 (60) 7 (70) 8 (100) 2 (50)

Grade 2–3 (%) 23 (64) 10 (32) 8 (32) 7 (44) 19 (73) 7 (33) 8 (47) 5 (42) 4 (40) 3 (30) 0 (0) 2 (50)

Phenotypic driver mutation

JAK2 (%) 19 (53) 12 (39) 20 (80) 11 (69) 16 (62) 10 (48) 14 (82) 9 (75) 3 (30) 2 (20) 6 (75) 2 (50)

CALR (%) 3 (8) 8 (26) 0 (0) 2 (13) 2 (8) 5 (24) 0 2 (17) 1 (10) 3 (30) 0 0

MPL (%) 4 (11) 1 (3) 0 (0) 0 3 (12) 1 (5) 0 0 1 (10) 0 0 0

No JAK2, CALR, or MPL (%) 4 (11) 1 (3) 2 (8) 2 (13) 0 0 0 1 (8) 4 (40) 1 (10) 2 (25) 1 (25)

Not assessed (%) 6 (17) 9 (29) 3 (12) 1 (6) 5 (19) 5 (24) 3 (18) 0 1 (10) 4 (40) 0 1 (25)

Treatment

JAK inhibitor (prior) 5 (14) 0 2� (8) 0 4 (15) 0 2� (12) 0 1 (10) 0 0 0

JAK inhibitor (current) 3 (8) 1 (3) 2 (8) 0 3 (12) 1 (5) 2 (12) 0 0 0 0 0

Interferon (prior) 0 0 1� (4) 0 0 0 1� (6) 0 0 0 0 0

Interferon (current) 0 1 (3) 2 (8) 0 0 1 (5) 1 (6) 0 0 0 1 (13) 0

� 1 patient previously treated with both JAK2 inhibitor and interferon

https://doi.org/10.1371/journal.pone.0216810.t001
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upregulated. Five genes (CCL2, MX1, IFIT1, CXCL10, C1R) were upregulated by greater than

3-fold; 28 genes were upregulated by 2- to 3-fold (S1 Table). Notably, CCL2 is upregulated in

other disorders marked by abnormal fibrosis, including fibrosing diseases of the lung, liver,

and kidney. Other upregulated transcripts include additional mediators of the fibrogenic

response [7], such as TGFB3 (2.6-fold upregulated), TGFB1 (1.9-fold upregulated), PDGFA
(2.2-fold upregulated), and HIF1A (1.3-fold upregulated). Cytokines implicated in tissue fibro-

sis, such as TNF (1.9-fold upregulated) and IL1B (1.5-fold upregulated), were also significantly

upregulated. Other upregulated transcripts encode toll-like receptors and their downstream

effectors, such as TLR3, TLR5, RIPK2, and IRF7. In addition, some of the most highly upregu-

lated genes in overtly fibrotic MPN included downstream targets of interferon signaling

(IFIT1 and MX1; both upregulated 3.5-fold).

Gene set enrichment analysis (GSEA) confirmed that each MPN cluster is enriched in

genes associated with distinct expression modules (Table 2 and Fig 2). Cluster 1 showed no

gene expression profile enrichment by GSEA and is termed “cytokine low”. Cluster 3 showed

moderately increased transcript levels of genes involved in cytokine signaling, including a sig-

nificant enrichment in interferon gamma gene expression signature (“IFNγ moderate”). Com-

pared to clusters 1 and 3, clusters 2 and 4 were characterized by high inflammatory cytokine

gene expression. Cluster 2 showed abundant expression of interferons and tumor necrosis

Fig 1. Cluster analysis of inflammatory gene expression in MPN patients. (A) Hierarchical clustering separates MF grade 0–1 MPN from MF

grade 2–3 MPN in a training cohort of 76 patients. (B) K-means clustering (k = 4) separates prefibrotic (MF grade 0–1) disease from overtly

fibrotic disease (MF grade 2–3). Four clusters with differential gene expression are seen: clusters 1 and 3 consist of mostly prefibrotic MPN,

whereas clusters 2 and 4 consist of overtly fibrotic MPN. Each row represents a single gene (n = 199). Each column represents 1 of 76 patients.

The relative abundance (log2 count) of each gene transcript is indicated by the color bar.

https://doi.org/10.1371/journal.pone.0216810.g001
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factors (“IFN/TNF high”), whereas cluster 4 demonstrated a gene expression signature associ-

ated with mature dendritic cells (“DC high”). Interestingly, although clusters 2, 3 and 4 dem-

onstrated increased expression of PPARG2 associated genes, only cluster 2 (“IFN/TNF high”)

showed increased expression of PPARG1 pathway genes, indicating a differential contribution

of these closely-related inflammatory mediators towards certain types of myelofibrosis. We

further carried out gene ontology (GO) term enrichment analysis (S2 Table), which identified

pathways similar to those highlighted by GSEA. These pathways included JAK/STAT

signaling, Toll-like receptor signaling, NFκB signaling, TNF signaling, interferon signaling,

cytokine production and chemotaxis. In addition, pathways involved in VEGF signaling and

osteoclast differentiation were significantly enriched in MPN demonstrating overt fibrosis

(MF grade 2–3).

Only a few genes showed a significant correlation with distinct driver mutations. TGFB2
was significantly upregulated 3.1-fold in MPL-mutant disease, whereas PTGER3 was downre-

gulated 2.2-fold in MPN lacking JAK2, MPL, or CALR mutations (‘triple negative’ disease).

The number of genes that are differentially expressed in various MPN disease types were small

and no statistically significant pathway enrichment was detected.

An independent validation cohort demonstrated similar changes in gene expression

between non-fibrotic and fibrotic MPN. Similar to the training cohort, hierarchical and k-

means clustering of differentially expressed genes in the test cohort segregated overtly fibrotic

(grade 2–3) disease from MPN with grade 0–1 fibrosis, with a sensitivity of 89% and specificity

of 78% in both clustering algorithms (Fig 3A and 3B). We constructed a generalized logistic

regression model using stepwise selection to identify the most distinctive gene expression pat-

terns between non-fibrotic and fibrotic MPN. This predictive signature consists of five differ-

entially expressed genes in fibrotic MPN: DDIT3, ALOX15, TCF4, MAPK14, and MAPKAPK5.

Using this model, we accurately predicted bone marrow fibrosis in the test cohort with a sensi-

tivity of 78% and a specificity of 91%, with an overall accuracy of 88% (kappa = 0.69). We also

performed leave-one-out cross validation in a combined dataset comprising both training and

Table 2. Gene set enrichment analysis of MPN subgroups identified by cluster analysis.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Fibrosis grade (Cytokine low) (IFN/TNF high) (IFNγ moderate) (DC high)

MF grade 0–1 (%) 16 (84%) 2 (12%) 22 (73%) 0 (0%)

MF grade 2–3 (5) 3 (16%) 15 (88%) 8 (27%) 13 (100%)

NES� FDR� NES� FDR� NES� FDR� NES� FDR�

Cytokine signaling

Hallmark_Interferon_Gamma_Response - - 2.47 0.003 2.18 0.12 2.77 0.01

Hecker_IFNB1_Targets 1.1 1 3.14 6.00E-04 1.67 0.35 1.7 0.29

Reactome_Interferon _Signaling 0.62 1 2.65 0.001 1.04 0.81 1.28 0.6

Sana_TNF_Signaling_Up 1.04 1 2.69 9.00E-04 1.54 0.43 1.46 0.46

Peroxisome activity

GSE37533_PPARG1 transduced CD4 T cells 0.76 1 3.02 3.00E-04 1.93 0.27 2.08 0.11

GSE37533_PPARG2 transduced CD4 T cells 0.7 1 3.01 3.00E-04 2.49 0.09 2.46 0.03

Cell-type specific patterns

GSE26030_Th1 vs Th17 stimulated CD4 T cells day 5 1.02 1 2.47 0.003 1.82 0.33 2.23 0.09

GSE7509_FcgR-mediated monocyte and dendritic cell maturation 0.84 1 2.33 0.007 2.25 0.09 2.47 0.04

�NES, normalized enrichment score; FDR, false discovery rate.

https://doi.org/10.1371/journal.pone.0216810.t002
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test cohorts, which generated an overall prediction accuracy of 86% (kappa = 0.72) in assigning

fibrosis grade.

We and others have reported that overtly fibrotic PMF is enriched in ASXL1 mutations

[4,8]. In 83 cases from both training and test cohorts with sequencing data, ASXL1 mutation

was present in 21 (25.3%) cases. The presence of ASXL1 mutation correlated with the upregu-

lation of 58 genes (S3 Table). All but five of these genes (KEAP1, DAXX, MAPKAPK5, TLR9,

RIPK1; 8.6%) belong to the larger set of 123 differentially expressed genes in overtly fibrotic

MPN (S1 Table). GO term enrichment analysis of these 58 genes demonstrates that the over-

represented biological processes in ASXL1 mutant disease are similar to those observed in

overtly fibrotic MPN (S4 Table). However, multiple growth factor pathways, such as MAPK/

JNK, PI3K/AKT, and VEGF signaling show comparatively greater enrichment in ASXL1
mutant disease than in overtly fibrotic MPN, suggesting that the lack of ASXL1 specifically

enhances receptor tyrosine kinase signaling in MPN (Fig 4).

Fig 2. Inflammatory gene expression signatures in each MPN cluster. For each MPN subgroup identified by cluster

analysis, an example of a positively or negatively correlated gene set from the Molecular Signature Database is shown.

(A) Cluster 1 shows no significant enrichment in genes involved in innate immunity and other inflammatory pathways

(q = 0.98). (B) Gene expression in cluster 2 is enriched for IFNB1 and TNF signaling (q< 0.05). (C) Cluster 3 shows

moderate enrichment in interferon-γ pathway genes (q< 0.05). (D) Cluster 4 shows enrichment by genes associated

with mature dendritic cells (q< 0.05).

https://doi.org/10.1371/journal.pone.0216810.g002
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Many of the therapies given to MPN patients, such as JAK inhibitors or interferon, would

be expected to impact inflammatory gene expression. 16 out of 108 patients (14.8%) had prior

(n = 8) or current (n = 8) exposure to JAK inhibitor or interferon (Table 1). In a comparison

with 38 control patients matched for fibrosis grade, no differentially regulated genes were

identified (data not shown).

Discussion

The study of MPN is challenging due to the wide degree of overlap in mutational landscape,

histologic features, and clinical presentation [9]. Furthermore, the development of myelofibro-

sis is a shared characteristic in all MPN, albeit with varying frequencies depending on the dis-

ease type. Our results suggest that overt myelofibrosis coincides with inflammatory gene

upregulation in the bone marrow of MPN patients. The inflammatory gene expression pattern

differs in various subsets of prefibrotic and overtly fibrotic MPN, suggesting that distinct

inflammatory pathways give rise to the common phenotype of bone marrow fibrosis in

advanced MPN. These findings suggest a new taxonomy of MPN based on transcriptional pat-

terns in inflammation-related pathways. These gene expression profiles do not correlate with

MPN disease type. Instead, the high degree of overlap between differentially regulated

Fig 3. Independent validation of MPN subgroups by cluster analysis. (A) Hierarchical clustering separates MF grade 0–1 MPN from MF

grade 2–3 MPN in a test cohort of 32 patients. (B) K-means clustering (k = 4) separates prefibrotic (MF grade 0–1) disease from overtly fibrotic

disease (MF grade 2–3) into four clusters. Clusters 1 and 3 consist of mostly prefibrotic MPN, whereas clusters 2 and 4 consist of overtly fibrotic

MPN. Each row represents a single gene (n = 199). Each column represents 1 of 32 patients. The relative abundance (log2 count) of each gene

transcript is indicated by the color bar.

https://doi.org/10.1371/journal.pone.0216810.g003
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transcripts in JAK, MPL and CALR-mutant MPN supports the concept that MPN pathogenesis

converges on a common JAK/STAT axis [2].

The broadest distinction in inflammatory gene expression lies between MF grade 0–1 (pre-

fibrotic) and MF grade 2–3 (overtly fibrotic) MPN (Fig 1). Prefibrotic MPN is characterized by

Fig 4. Gene ontology (GO) term enrichment in ASXL1 mutant MPN and overtly fibrotic (MF grade 2–3) MPN.

Select GO terms are shown that demonstrate greater fold enrichment in ASXL1 mutant MPN compared to MPN with

grade 2–3 fibrosis. The color intensity reflects absolute fold enrichment. q< 0.05 for all data shown.

https://doi.org/10.1371/journal.pone.0216810.g004
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overall low cytokine gene expression. In contrast, overtly fibrotic MPN activate multiple

inflammatory pathways. These pathways include Toll-like receptor (TLR) signaling and its

downstream components- -including NF kappa-B, MAPK, and TNF signaling (Table 2). TLR

signaling in fibroblasts and tissue macrophages has been implicated in hepatic, cardiac and

pulmonary fibrosis [10]. Our findings suggest that sustained proinflammatory cues in the

bone marrow similarly lead to TLR-mediated fibrosis. Furthermore, two of the downregulated

transcripts identified in this study, HMGB1 and HMGB2, are putative endogenous TLR

ligands, suggesting that there is a negative modulatory response to abnormally activated TLR

signaling in the microenvironment of overtly fibrotic MPN.

In contrast, other upregulated genes are likely to affect both the neoplastic myeloid clone as

well as bone marrow inflammatory cells. For example, activated JAK/STAT signaling is a

defining feature of clonal myelopoiesis in MPN, but JAK/STAT activity in stromal cells can

also lead to fibroblast activation and myelofibrosis [11,12]. Another example is the IL1 family

of cytokines, which exert a direct effect on myeloid development and are associated with

fibrotic transformation in PV and PMF [13–15]. IL1RAP, a gene encoding the IL1 coreceptor,

is upregulated in overtly fibrotic MPN and may represent a potential therapeutic target against

myelofibrosis via anti-IL1RAP antibodies [16]. In a subset of MPN with grade 2–3 fibrosis,

GSEA identified a gene expression pattern characteristic of dendritic cells ("DC high")

(Table 2). Dendritic cells are a major source of pro-inflammatory cytokines in MPN and are

efficiently targeted by ruxolitinib [17]. Dendritic cells also present antigens to T cells, priming

them toward effector or regulatory responses. A recent study showed that defective CD4 T cell

activation by dendritic cells causes a myeloproliferative phenotype in mice, highlighting the

contribution of stromal inflammatory cells to MPN pathogenesis [18].

Importantly, the pattern of inflammatory gene expression did not generally differ between

MPN disease types in our study, except in rare specific circumstances. MPN-U with MF grade

0–1 was absent from the “cytokine low” cluster and was instead enriched in the “IFNγ moder-

ate” cluster, demonstrating that MPN-U in the prefibrotic phase possesses elevated pro-

inflammatory activity compared to other prefibrotic MPN. Conversely, ET with MF grade 0–1

was relatively enriched in the “cytokine low” cluster, suggesting minimal inflammatory path-

way activity compared to pre-fibrotic PMF, PV, and MPN-U. This gene expression profile

may be related to the histological characteristics of ET, which displays relatively lower cellular-

ity and lacks myeloid and/or erythroid hyperplasia in comparison to PV and prefibrotic PMF

[5].

In overtly fibrotic MPN, increased marrow fibrosis in MPN is accompanied by an alteration

in the bone marrow cellular composition. These histologic changes include increased stromal

elements as well as myeloid and megakaryocytic hyperplasia [5,19]. Although our experiments

do not provide spatial resolution of transcriptional changes within the bone marrow environ-

ment, we observed upregulation of genes important in myofibroblast proliferation in overtly

fibrotic MPN, such as PDGFA and MAFK [20,21]. Furthermore, the upregulation of specific

transcripts that are highly expressed in distinct hematopoietic cell lineages (e.g. CD163 and

CD40LG) suggests that inflammatory cell populations, including macrophages and T lympho-

cytes, are increased in the bone marrow of overtly fibrotic MPN. GO analysis also demon-

strated enrichment of osteoclast differentiation and angiogenic pathway genes in overtly

fibrotic MPN. Therefore, multiple cell types contribute to the proinflammatory nature of a

fibrotic marrow [22,23]. Intriguingly, a subset of MPN with grade 0–1 fibrosis demonstrate

increased interferon gamma gene expression signature (cluster 3), suggesting that increased

cytokine activity in the bone marrow microenvironment predates the onset of overt fibrosis

[23].
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In conclusion, we have found that overtly fibrotic MPN demonstrates marked upregulation

of inflammatory genes within the bone marrow via multiple proinflammatory signaling net-

works. Clustering analysis and GSEA identified four subsets of MPN that are distinguished

from each other by fibrosis grade and inflammatory gene expression (chemokines, cytokines,

and innate immune response pathways) in the bone marrow. These results were validated in

an independent cohort. By using bone marrow biopsies obtained as part of the routine care of

patients with MPN, we have demonstrated a robust method of gene expression profiling that is

applicable to Bouin’s-fixed, decalcified tissue. Furthermore, the upregulation of transcripts

encoding targetable proteins in overtly fibrotic MPN suggests potential therapeutic mecha-

nisms to alleviate myelofibrosis in MPN.
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