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SUMMARY

Chromosomal instability (CIN) is a hallmark of human cancer yet not readily test-
able for patients with cancer in routine clinical setting. In this study, we sought to
explore whether CIN status can be predicted using ubiquitously available hema-
toxylin and eosin histology through a deep learning-based model. When applied
to a cohort of 1,010 patientswith breast cancer (Training set: n = 858, Test set: n =
152) from The Cancer GenomeAtlas where 485 patients have high CIN status, our
model accurately classified CIN status, achieving an area under the curve of 0.822
with 81.2% sensitivity and 68.7% specificity in the test set. Patch-level predic-
tions of CIN status suggested intra-tumor heterogeneity within slides. Moreover,
presence of patcheswith high predicted CIN scorewithin an entire slidewasmore
predictive of clinical outcome than the average CIN score of the slide, thus under-
scoring the clinical importance of intra-tumor heterogeneity.

INTRODUCTION

Chromosomal instability (CIN) refers to ongoing chromosome segregation errors throughout consecutive

cell divisions that can potentially result in extensive numerical and structural chromosomal aberrations

(Lengauer et al. 1998). CIN, as one of the hallmarks of human cancer, has been recognized as a central

driver of cancer evolution owning to its multipronged effects that facilitate processes such as metastasis,

immune evasion, and therapeutic resistance (Bakhoum and Cantley 2018; Bakhom 2018; Murayama-Hoso-

kawa, et al., 2010; Swanton, et al., 2009; Walther et al. 2008; Lee, et al., 2011; Hieronymus, et al., 2018,

https://doi.org/10.7554/eLife.37294). For example, Smid et al. (2011) found that elevated CIN and conse-

quent high aneuploidy burden is associated with poor breast cancer prognosis, measured as time to

distant metastasis. Carter et al. (2006) revealed a correlation between a transcriptional signature of CIN

with metastasis, tumor grading, and clinical outcome in multiple human cancers. Paradoxically, some

studies suggest that excessive levels of CIN negatively impact tumor fitness and associate with better sur-

vival outcome, possibly because toomuch chromosomal segregation errors can impart a number of cellular

burdens that produce proinflammatory signals and lead to programmed cell apoptosis (Birkbak, et al.,

2011; Jamal-Hanjani, et al., 2015; Tijhuis et al. 2019; Zasadil, et al., 2014). Given the widespread nature

and far-reaching consequences of CIN in human cancer, strategies for targeting CIN as a therapeutic

vulnerability in some cancers are being actively researched (Zasadil, et al., 2014) (Pierssens, et al., 2017).

Despite its clear importance, CIN status is not readily testable for patients with cancer in routine clinical

settings because it requires complicated experimental assessment involving live microscopy, sensitive

detection of micronuclei (a consequence of CIN) via immunohistochemistry, or comprehensive genomic

analysis. On the other hand, gold-standard histopathological examinations that are used for cancer

diagnosis and grading are ubiquitously available. Here we sought to investigate the feasibility of using

histopathology whole-slide images (WSIs) to predict CIN status.

Deep learning is a state-of-the-art methodology for analyzing and interpreting cancer histology images. In

recent years, a large number of studies attempted to employ a deep learning approach for a variety of tasks

in computational pathology field by taking advantage of deep learning’s ability to extract hierarchical fea-

tures from images in a direct and automatic fashion. Previous research has shown that presence of driver

mutations, mutational signatures, and expression-defined tumor subtypes can be predicted from hema-

toxylin and eosin (H&E) slides (Coudray, et al., 2018; Schaumberg et al. 2016; Xu, et al., 2019; Chen,

et al., 2020; Liao, et al., 2020). For example, Kather et al. (2019) trained a Convolutional Neural Network

(CNN) model that can robustly predict genome microsatellite instability in gastrointestinal cancer from
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H&E histology, obtaining a patient-level area under the curve (AUC) of 0.84. Coudray et al. (2018) trained a

deep learning network that successfully predicted six of ten most commonly mutated genes from lung

adenocarcinoma pathology images, with AUCs from 0.733 to 0.856. Kather et al. (2020) then demonstrated

the ability of deep learning to predict point mutations, molecular tumor subtypes, and immune-related

gene expression signatures directly from H&E images in multiple cancer types. Fu et al. (Fu, Jung and

TORNE 2020) used transfer learning and correlated histopathological pattern features with genomic, tran-

scriptomic, and survival data in 28 cancer types. Javad et al. systematically used CNNs on 23 cancer types

for tasks including tumor versus normal and cancer subtype classifications as well as predicting the pres-

ence of TP53 mutations (Noorbakhsh, et al., 2020).

In this study, we proposed using pathology images to predict patients’ CIN status in breast cancer. We

created a framework that uses transfer learning and feature aggregation to accurately discriminate high-

CIN and low-CIN histopathology slides without human intervention. This framework is not limited to breast

cancer and can be potentially extended to other cancer types. Our results indicate that (1) CIN can be pre-

dicted accurately from histopathology slides and (2) unexpectedly there appears to be substantial intra-tu-

mor heterogeneity CIN status in many patients. These results pave the way for using CIN as a biomarker of

prognosis and response to anti-CIN therapies fully integrated into existing clinical pathology workflows.

RESULTS

A weakly supervised deep learning model for patient genomic CIN classification in breast

cancer

We obtained H&E slides and genomic profiles from patients with breast cancer in TCGA. Here we quantify

CIN using the fraction genome altered (FGA, see transparent methods), which is one of themost commonly

used quantitative measurements of CIN (Sipos, et al., 2021; Burrell, et al., 2013). FGA quantifies the burden

of aneuploidies detectable in bulk genomic profiles. Although FGA is not a perfect measure of CIN and is

incapable of capturing the rate of chromosomal changes by only providing a snapshot of the chromosomal

alteration state, we and others have observed a strong correlation between FGA and CIN measured using

microscopy and/or micronuclei staining (Schonhoft, et al., 2020; Pikor, et al., 2013). We refer to FGA as

genomic CIN score, to contrast it with pathology predicted CIN scores introduced in this study. Genomic

CIN score higher than 0.3 was labeled as high CIN; genomic CIN score lower than 0.3 was labeled as low

CIN (Figure S1). H&E slides were processed as described in transparent methods. Based on our CIN clas-

sification, the breast cancer (BRCA) cohort had 485 high-CIN patients with 515 WSIs and 23,427 patches,

and 525 low-CIN patients with 550 WSIs and 23,568 patches (Table S1). This study presents a deep learning

model that can automatically predict patients’ genomic CIN status on the molecular level from H&E-

stained histopathology slides (Figures 1A–1E, see transparent methods). Our model uses CNN models

pre-trained on ImageNet as patch-level feature extractor (Figure 1B) and then aggregates patch features

into patient features (Figure 1C). This approach not only effectively addresses intra-tumor heterogeneity

using ‘‘weak’’ patient-level labels but also offers opportunity to explore spatial CIN heterogeneity in indi-

vidual patients (Figures 1D and 1E). The 1,070WSIs of 1,010 patients from TCGA-BRCA were randomly split

into training, validation, and test set. We then evaluated model performance in the hold-out test set, which

included 152 patients.

Deep learning model predicts CIN with high accuracy and sensitivity

Several commonly used CNN architectures were tested in the transfer learning step used to extract the

most relevant features that can predict genomic CIN. The best feature extraction method was selected

based on the ability of trained fully connected layers to predict CIN groups in validation dataset (Figure S3).

Results shown in Figure 2 indicate that Densenet-121 achieved the best performance with an AUC of 0.822

and accuracy (ACC) of 74.3%. Densenet networks with different depths achieved similar performance with

AUCs of 0.806 and 0.807 for Densenet-169 and Densenet-201, respectively. The Densenet-121 model got a

good sensitivity of 81.16%. The Xception model achieved an AUC of 0.752 and Resnet-50 achieved 0.650.

Since the models were trained to classify genomic CIN status based on a hard threshold of genomic CIN

score measured by FGA of being 0.3, we thus evaluated the model performance for patients with very high

CIN (FGA>0.4) versus very low CIN (FGA<0.2) as well as patients who have moderate genomic CIN scores

(FGA: 0.2–0.3 versus FGA: 0.3–0.4). Results shown in Table S2 indicate that, although our model performs

best for predicting very low and very high CIN (ACC, 77.6%; AUC, 0.83), it retains good performances in the

intermediate CIN range (ACC, 66.7%; AUC, 0.77). Altogether these results indicate that a deep learning
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model can accurately classify CIN status, achieving an AUC of 0.822 with 81.2% sensitivity and 68.7% spec-

ificity in an independent test set not used for training or parameter exploration.

High-CIN patients exhibit more atypical mitosis events

To independently validate that pathology-predicted CIN status (and genomic CIN) correlates with CIN-

related aberrant mitotic events, we inspected 10 tumor slides at 403magnification level, looking manually

for aberrant mitotic events. Half of the 10 slides were predicted as high CIN and half as low CIN. All 10 slides

were also concordantly labeled as high CIN or low CIN by genomic CIN (in other words, they were true-pos-

itive and true-negative predictions). The expert who conducted the inspections was not informed of the

sample labels to reduce subtle bias. As shown in Figures 3A–3H, both normal and abnormal mitosis events,

including anaphase bridge, spindles with misalignment chromosomes, and multipolar and monopolar

chromosome arrangements, were observed. By fitting the generalized estimating equation (GEE) Poisson

regression model, we found that atypical mitosis event counts per field of view (patches with fixed size of

1,024*1,024 pixels on 403) are significantly higher in predicted high-CIN patients compared with predicted

low-CIN patients (GEE model p value<0.0001, Figure 3I).

Patch predictions demonstrate intra-tumor heterogeneity

As discussed in the previous section, we had hypothesized that not all patches within the same slide may

have the same level of CIN; in other words, we hypothesized that there may be intra-tumor heterogeneity in

CIN within the same tissue section. To test this hypothesis, we visualized patch predictions within one WSI.

Patch predictions were generated by feeding individual patch features into trained fully connected layers

independently. As shown in Figure 4, both high-CIN and low-CIN patches can be found within one WSI

regardless of the slide’s CIN status. Figure 4A is an example of a low-CIN slide with predicted high-CIN

A B C D

E F

Figure 1. Overview of the pipeline

(A) During mage preprocessing, an overall region of interest (ROI) was identified in WSI as window with the highest tissue percentage using a sliding window

approach. Then the ROI was tiled into non-overlapping patches before quality control. Only qualified patches were kept as described in transparent

methods.

(B) Patch-level feature extraction was performed using a pre-trained CNN architecture.

(C) Max-pooling layer was used for aggregating patch-level feature embeddings to patient-level feature embedding.

(D) Fully connected layers were trained in supervised approach based on patient-level genomic CIN status.

(E) Patch-level feature embeddings were fed into trained fully connected layers from (D). Probability maps based on patch predictions were generated, and

fractions of predicted CIN that measure slide intra-tumor heterogeneities were calculated.

(F) Pathological images were used to predict genomic CIN. Since genomic CIN can potentially alter gene expression and pathways on the transcriptional

level, differentially expressed gene analysis and pathway analysis were performed. Pathology-predicted CIN and Genomic CIN were compared with CIN

transcriptional signatures.
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probability of 0.27. Of all 45 patches, 11 (= 24.44%) were predicted as high-CIN patches. Because high-CIN

patches still exist in low-CIN slides owing to intra-tumor heterogeneity, the prevalence scale and patch

probability also have influence of the whole-slide CIN status. Similar results were shown in Figure 4B, where

low-CIN patches were also found in high-CIN slide.We thus define predicted CIN-high fraction score as the

percentage of predicted high-CIN patches based on each pathology image. Altogether we found that only

94 (9.31%) of 1,010 patients in the whole cohort exhibited a low level of intra-tumor heterogeneity with pre-

dicted CIN-high fraction score smaller than 10%. The median predicted CIN-high fraction score of this

cohort is 57% with 25th and 75th percentile of 32% and 83%, respectively (Figure S2). A growing number

of investigations have suggested the positive correlation between CIN status and increased neoplastic nu-

clear size, which can potentially be used as an excellent surrogatemarker for CIN detection (Thompson and

McManus 2015; Penner-Goeke, et al., 2017; Baergen, et al., 2019). Increases in DNA content (i.e., ploidy)

have been found to be one of the mechanisms behind the corresponding nuclear enlargement (Zeimet,

et al., 2011; Petersen, et al., 2009). To further validate the existence of intra-tumor heterogeneity revealed

by patch predictions, we conducted nuclear instance segmentation and classification on all patches from

test dataset using pretrained HoVer-Net model. Segmentation results showed that predicted CIN-High

patches have larger neoplastic cell nucleus comparing with predicted CIN-Low patches (p value<0.0001,

Figure S5A). At the same time, slides with a higher fraction of predicted CIN-High patches showed higher

tumor ploidy values (p value: 0.0031, Figure S5B).

Fraction of predicted CIN high patches is correlated with transcriptional CIN score

CIN, as a hallmark of cancer, has been linked to activation of key downstream biological pathways such as

cGAS-STING and non-canonical nuclear factor kB (NF-kB) (Bakhoum and Cantley 2018). To bridge the gap

between molecular genome alterations with pathological features (Figure 1F), we conducted correlation

Figure 2. Model performance final evaluation

Model performance was evaluated in test set.

(A) Receiver operating characteristic (ROC) curves for different CNN architectures.

(B) Table for model performance with AUC, accuracy, sensitivity, and specificity.
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analysis between a CIN-driven transcriptional gene signature with both genomic CIN score and predicted

CIN-high fraction score. CIN23 is a gene signature derived from the human metastatic cell line models

(MDA-MB-231) engineered to over-express MCAK (to suppress CIN) or a dominant negative version of

MCAK (to increase CIN) (Bakhom, 2018; Cailleau et al., 1978). Employing CIN23, we derived a gene signa-

ture score for each patient as transcriptional CIN score using ssGSEA. Genomic CIN score was positively

correlated with transcriptional CIN score with correlation coefficient of 0.14 (Table S5, p value<0.0001).

We then reasoned that the average predicted CIN intra-tumor heterogeneity measured by the percentage

of predicted high-CIN patches of each slide may correlate with the transcriptional CIN score, which is also

an average representation of CIN across all spatial areas. Indeed, we observed a weak but significant pos-

itive correlation with transcriptional CIN (Table S5, rho: 0.1, p value = 0.0026).

Model performance is not breast cancer subtype specific

In the past, different patterns of CIN were observed to be associated with distinct subtypes of breast

cancer (Kwei, et al., 2010). In this cohort, we found significant positive association between genomic

CIN status with the prevalence of ER- (p value<0.0001), PR- (p value<0.0001), and Triple Negative (p

value<0.0001) subtype status but not HER2 (p value = 0.1) status (Table S3). We therefore sought to

verify that our algorithm is not simply predicting tumor subtypes (since we have that predicting breast

cancer subtypes is feasible from H&E slides [Khosravi, et al., 2018]). We combined subtype information

(ER, PR, HER2 status) along with clinical features including age, race, menopause status, and number of

positive lymph nodes as clinical input. Then we retrained the fully connected layers with three different

settings of input that are clinical input alone, image features alone, and concatenating clinical input with

image, respectively. Results showed adding image features to clinical features can significantly help

improve model performance (p value = 0.047). But when using image for predictions, adding extra clin-

ical features along with subtype information did not improve the model performance (p value = 0.82)

(Figure S4). Finally, no evidence suggested our model to be subtype specific with AUCs statistically

the same across different subtypes (p values: ER, 0.33; PR, 0.94; HER2, 0.41; Triple Negative, 0.86) in

this TCGA cohort (Table S4). We concluded that our model is predictive of CIN independently of tumor

subtypes.

CIN is associated with poor prognosis in breast cancer

The association between CIN and cancer prognosis is complex and paradoxical. Some studies showed as-

sociation of CIN with poorer cancer prognosis (Orsetti, et al., 2014; Carter, et al., 2006), whereas other

studies reached opposite conclusions, suggesting that excessive level of CIN would suppress tumor

Figure 3. Patches containing normal and abnormal mitosis events at 403 magnification

(A and B) Normal mitosis. (C)-(H) Abnormal mitosis.

(C) Anaphase bridge.

(D) Monopolar mitosis.

(E–G) Mitotic figure with unaligned chromosomes.

(H) Multipolar mitosis.

(I) Boxplot of atypical mitosis events per field of view between five predicted high-CIN and five predicted low-CIN patients (GEE model p value<0.0001 ***).
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progression and lead to better clinical outcomes (Birkbak, et al., 2011; Zasadil, et al., 2016). To further

investigate this point, we conducted a survival analysis in the TCGA cohort aiming to explore the prog-

nostic values of different CIN scores. In these analyses, we used maximally selected rank statistics to deter-

mine optimal prognostic CIN score cutoffs and log rank tests to evaluate the differences between survival

curves. We found that high genomic CIN is associated with poorer 5 years’ prognosis compared with low

genomic CIN, where prognosis is measured as time to any events including new tumors or mortality (Fig-

ure 5A; p value = 0.0023). Pathology-predicted CIN using our deep learning model was also predictive of

outcomes (Figure 5B; p value = 0.0045). Finally, the predicted CIN-High fraction score was also correlated

with worse outcomes (Figure 5C; p value = 0.0086). We postulated that the presence of patches with high

predicted CIN scores within each slide may be sufficient to impact clinical outcomes. We calculated

different percentile CIN scores based on all patches of each slide (75th, 95th, and maximum). We found

that all slide-level percentile CIN scores were prognostic (Figures 5D–5F; p values: CIN-75th, 0.0085;

CIN-95th, 0.0018; CIN-max, 0.02) with CIN-95th being the most robust prognostic score, even more predic-

tive than genomic CIN. That CIN-95th is more predictive than CIN-max can be explained by the lack of sta-

bility of maximal value and possibly by the need for more than one patches to have high CIN to impact

outcomes.

CIN is associated with profound transcriptional changes in tumor samples

We reasoned that our ability to predict CIN based on histopathology slides may underlie a relatively pro-

found difference in biological features between CIN low and CIN high tumors, which may influence cell

morphology and tissue structure in H&E slides. We therefore conducted differentially expressed genes

and gene set enrichment analysis between high CIN and low CIN samples. (Figure 1F) To minimize the con-

founding effect of cancer subtypes caused by the unbalanced subtype distributions across CIN groups, we

adjusted tumor subtypes in the design matrix and tested differentially expressed genes for genomic CIN

term. A total of 307 differentially expressed genes were identified (logFC>1, adjusted p value<0.05) be-

tween CIN low and CIN high tumors as shown in Figure S10A. Cell cycle and mitosis-related gene signa-

tures were up-regulated significantly in high-CIN tumor samples (Figure S10B). This analysis thus confirms

substantial biological differences between CIN high and CIN low tumors.

Figure 4. Intra-tumor heterogeneity by patch predictions

Red shows predicted probability of high-CIN slide based on our deep learning model. Numbers within each grid imply patch-level predictions. Blue

indicates high-CIN patch; yellow indicates low CIN patch.

(A) An example of low-CIN slide in test set.

(B) An example of high-CIN slide in test set
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DISCUSSION

In this study we demonstrate for the first time the ability to predict CIN based on H&E slides. At present, it is

challenging to capture the ongoing rate of chromosome mis-segregation to identify CIN in routine clinical

setting sincemitotic alterations are rare in H&E slides; other assays such asmicroscopy ormicronuclei stain-

ing have not been deployed in the clinical setting. Here we demonstrated the ability of using histopathol-

ogy slide images to predict CIN status of each patient and achieved high accuracy (=74.3%) and sensitivity

(=81.2%). Of equal importance, our model indicates the existence of intra-tumor heterogeneity in CIN

levels and revealed its association with poorer clinical outcomes. Further research, perhaps based on

regional sequencing, is needed to further validate these findings. The substantial prognostic impact poten-

tially exerted by spatial sub-regions (patches) with the highest CIN scores is important since it indicates that

such regions may drive response to treatment. Future treatment modalities may need to focus on elimi-

nating CIN high tumor cells if they are to achieve maximal therapeutic impact. Either way, our results

pave the way for integrating CIN as prognosis biomarker and therapeutic vulnerability into existing clinical

pathology settings.

One of the main challenges of computational pathology is to manage the trade-off between abundant

morphological information and large size of WSI. Splitting WSI into hundreds of thousands of patches

and training neural networks on the patch level is a commonly used strategy (Srinidhi et al. 2021). As

mentioned above, there are several studies that successfully demonstrated the ability of using H&E-

stained histology to predict genetic mutations using this patch-level learning approach (Khosravi,

et al., 2018; Kather et al., 2019). We also experimented using patients’ level labels to supervise patch

learnings directly with the same approach but failed in predicting CIN levels. We reasoned there might

exist substantial intra-tumor heterogeneity within individual slides and that therefore using patient-

level CIN labels are not directly applicable to patches for training. To overcome this obstacle for

CIN status learning, we applied a weakly supervised learning approach. More specifically, we used

Figure 5. Kaplan-Meier curves of disease-free survival probabilities grouped by different CIN biomarkers

p values were calculated by log rank test.

(A) Genomic CIN (Stratification cutoff: 0.3).

(B) Predicted CIN (Stratification cutoff: 0.44).

(C) Fraction of predicted CIN high patches (Stratification cutoff: 0.42).

(D) CIN-max, the maximum patch prediction within each slide (Stratification cutoff: 0.77).

(E) CIN-95th, the 95th percentile patch prediction within each slide (Stratification cutoff: 0.72).

(F) CIN-75th, the 75th percentile patch prediction within each slide (Stratification cutoff: 0.55).
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transfer learning to extract patch-level features followed by addition of a max-pooling layer with only

maximum feature values kept along each feature dimension so that most irrelevant features that would

potentially add noise to the model learning throughout the WSI were removed during this step. The

features that were kept training the top fully connected layers were distributed widely throughout the

WSI but not from a local region so that intra-tumor heterogeneity problem is reduced during training.

We further compared model performance between slide predictions with patch predictions in predict-

ing slide-level genomic CIN status to see the influence of this feature aggregation strategy. Contrasted

with slide-level predictions that obtained an AUC of 0.82, patch-level predictions only got an AUC of

0.66 (Figure S11). This difference can be explained by patch-level predictions only representing predic-

tions based on local morphological features, whereas slide predictions look at global morphological

features. In addition, slide-level predictions exhibited a high correlation with continuous genomic

CIN score (Figure S12, Spearman rho, 0.52; p value<0.0001), whereas only binary labels were available

during the training. We successfully demonstrated the effectiveness of this strategy by achieving high

accuracy (=74.3%) in classifying genomic CIN status in the test dataset.

Digital pathology images can be examined at different magnification levels. We experimented on both

2.53 and 103magnified tiles for the predictions. We found that 2.53 achieved more accurate predictions

marginally than 103 (2.53 AUC, 0.82; 103 AUC, 0.76; p value = 0.06) and multi-scaled model by combining

2.53with 103magnification features (2.53AUC, 0.82; multi-scaled AUC, 0.81; p value = 0.59), although not

statistically different tested by DeLong’s method (Figure S4). We reasoned that each tile on the 2.53 level

can capture more relevant features with a wider spatial view than high-resolution tiles, whereas on the 103

magnification level, tiles were more likely to be covered up by some ‘‘unknown’’ irrelevant features. A

similar observation was made in Coudray’s study (Coudray, et al., 2018) that analyzing 53 patches led to

higher accuracy than 203 patches.

To validate the rationale of utilizing pathological slide images to infer genomic alterations, we per-

formed differentially expressed gene analysis between CIN low and CIN high patients. The results re-

vealed the impact of CIN in breast cancer including activating multiple pathways relating to cell cycle

and mitosis (Figure S10B). As expected, mitotic alterations can be identified in slide images on high-res-

olution views. Future studies may focus on training machine learning models to detect aberrant mitotic

events directly from H&E slides. This will require a very large training set of such events, which is

currently not available.

Limitations of the study

In this study we used a bulk genomic aneuploidy burden approach to approximate patients’ CIN status.

Aneuploidy burden is a good but imperfect proxy for CIN, in that it focuses on highly clonal events and

does not capture ongoing CIN. Moreover, in the absence of multi-region genomic sequencing, it is not

possible to get a regional genomic CIN estimation. This limits our ability to demonstrate that our approach

can capture spatial heterogeneity in CIN status. Better measurement for CIN can provide more accurate

labels for training deep learning models as well as validating patch-level predictions. In addition, our re-

sults showed models on 2.53 magnification performed better than 103 magnification. We speculate

that patches on a lower magnification scale contain more spatial context compared with the ones with

higher resolution of the same pixel sizes, thus explaining our results. On the other hand, using a lower res-

olution may miss important morphological feature differences including abnormal mitosis caused by CIN.

Combining our low-resolution approach with sophisticated computer vision approaches that identify fea-

tures such as aberrant mitotic events as assessedmanually for a small number of image patches in our study

may help improve CIN prediction accuracy in the future.

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Dr. Olivier Elemento (ole2001@med.cornell.edu).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

All image and genetic data associated with this study can be downloaded from TCGA website (https://

www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). The source code and

the guideline are publicly available at https://github.com/eipm/CIN.

METHODS

All methods can be found in the accompanying transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102394.
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Supplemental Figures and Tables 
 
 
 

 
Figure S1. Distribution of Genomic CIN Score. Related to Figure 1. Fraction genome altered (FGA) was 
calculated to represent genome CIN score.  Blue dash line indicates genomic CIN score of 0.3. Patients with 
genomic CIN score higher than 0.3 were classified as high CIN, otherwise as low CIN. 
 
 
 
 
 
 

 
 

Figure S2. Histogram of Predicted CIN-High Fraction Score. Related to Figure 4. Predicted CIN-High fraction 
score is defined as the percentage of predicted high CIN patches based on each pathology slide image.  
 



 
 
 
 
 
 
 
 
 
 

 
Figure S3. Model learning curves during training. Related to Figure 2. Triangle point implies the epoch with the 
lowest validation loss where models were chosen for further evaluations in blind test dataset. 
 
 
 
 
 
 
 



 
 
Figure S4. Receiver operation characteristic (ROC) curves of different model configurations. Related to 
Figure 2. Image 2.5x: AUC 0.82 (0.75, 0.89). Image 2.5x and clinical: AUC 0.82 (0.75, 0.89). Clinical variables 
only: AUC 0.71 (0.63, 0.79). Image 10x: AUC 0.76 (0.68, 0.84). Multiscale by combining 2.5x and 10x: AUC 0.81 
(0.74, 0.88).                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. Boxplots of average size of neoplastic cell nucleus and tumor ploidy in test dataset. Related to Figure 
4. (A) Boxplot of average size of neoplastic cell nucleus (pixels) between predicted low CIN patches and predicted 
high CIN patches. (Wilcoxon test, *** p-value<0.0001) (B) Tumor ploidy (patient level) between slides with low and 
high fraction of predicted CIN-High patches. Cutoff of 60% was chosen based on median value of fraction of predicted 
CIN-High patches in test dataset. (Wilcoxon test, ** p-value=0.0031) 
 
 
 
 



 
Figure S6. Kaplan-Meier curves of disease-free survival (DFS) probabilities by genomic CIN for different 
subtypes of breast cancer. Related to Figure 5. P-values were calculated by log rank test. Stratification cutoff: 0.3.  
 
 

 
Figure S7. Kaplan-Meier curves of disease-free survival (DFS) probabilities by predicted CIN for different 
subtypes of breast cancer. Related to Figure 5. P-values were calculated by log rank test. Stratification cutoff: 
0.44.  
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Figure S8. Kaplan-Meier curves of disease-free survival (DFS) probabilities by pathological CIN for different 
subtypes of breast cancer. Related to Figure 5. P-values were calculated by log rank test. Stratification cutoff: 
0.42. 

 
Figure S9. Kaplan-Meier curves of disease-free survival (DFS) probabilities by 95th percentile patch CIN for 
different subtypes of breast cancer. Related to Figure 5. P-values were calculated by log rank test. Stratification 
cutoff: 0.72. 
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Figure S10. Differentially expressed genes and gene set enrichment analysis. Related to Figure 1F and Figure 
3. (A) Heatmap of top differentially expressed genes between high CIN and low CIN with logFC>1 and ajudusted 
p<0.05. FracCIN represents predicted CIN-High Fraction. (B) Gene set enrichment analysis. 
 
 
 
 

 
Figure S11. Receiver operation characteristic (ROC) curves for slide predictions and patch predictions from 
Densenet121 model. Related to Figure 2. Slide Prediction (Slide level prediction from aggregated slide level 
feature embedding): AUC 0.82 (0.75, 0.89). Patch Prediction (Patch level predictions evaluated by slide level 
labels): AUC 0.66 (0.65, 0.67) 
 



 

 
Figure S12. Scatter plots of slide CIN predictions with genomic CIN. Related to Figure 2. Blue lines represent 
regressed correlation lines. High CIN is defined by genomic CIN larger than 0.3. Spearman Correlation coefficient: 
0.52, *** p-value<0.0001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1. Patient and WSI numbers for training, validation and test set. Related to Figure 1 and Results. 
Statistics are in format of: Patient number (WSI number, Patch number).  †: Total number of patients in training and 
validation set is 858, with further split into 730 for training (85%) and 128 (15%) for validation. 
 
 

 Whole Dataset Training and Validation Set Test Set 

High CIN 485 (515, 23427) 416 (441, 20128) 69 (74, 3299) 

Low CIN 525 (550, 23568) 442 (463, 20045) 83 (87, 3523) 

Total 1010 (1065, 46995) 858 (904, 40173) † 152 (161, 6822) 

 
 
 
 
Table S2. Sample size and model performance in test dataset for very high CIN vs very low CIN and 
moderate high CIN vs moderate low CIN. Related to Figure 2. 
 
 

Comparison Samples Test Sample Size Accuracy AUC-ROC 

vs 
<0.2 (very low CIN) 50 

0.776 
0.83 

>0.4 (very high CIN) 57 (0.75, 0.91) 

vs 
0.2-0.3 (moderate low CIN) 33 

0.667 
0.77 

0.3-0.4 (moderate high CIN) 12 (0.61, 0.93) 
 
 
 
 
 
 
Table S3. Genomic CIN is associated with gene-expression subtypes of ER, PR and Triple Status. Related to 
Figure 2 and Results. Numbers in the table represent counts (percentage in each genome CIN group). 
 

  Genomic CIN p value 
    Low High 

ER 
Positive 436 (87.0) 302 (65.4) 

<0.0001 
Negative 65 (13.0) 160 (34.6) 

PR 
Positive 387 (77.2) 251 (54.4) 

<0.0001 
Negative 114 (22.8) 210 (45.6) 

HER2 
Positive 158 (36.3) 171 (41.4) 

0.1 
Negative 227 (63.7) 242 (58.6) 

Triple 
Triple 467 (94.7) 353 (80.8) 

<0.0001 
Tripe Negative 26 (5.27) 84 (19.2) 

 



 
Table S4. Model performance for subgroups based on molecular breast cancer types. Related to Figure 2, 
Results and Table S3. 
 

    ROC P 

ER 
Positive 0.79 (0.70, 0.87) 

0.33 
Negative 0.87 (0.73, 1.00) 

PR 
Positive 0.81 (0.73, 0.90) 

0.94 
Negative 0.81 (0.67, 0.94) 

HER2 
Positive 0.84 (0.71, 0.96) 

0.41 
Negative 0.77 (0.66, 0.87) 

Triple Triple 0.77 (0.68, 0.86) 
0.86 

Tripe Negative 0.79 (0.57, 1) 

Overall   0.82 (0.75,0.89)   
 
 
 
 
 
 
 
 
Table S5. Correlations between transcriptional CIN score with genomic CIN score and Predicted CIN-High 
Fraction score. Related to Figure 1E, Figure 1F and Results. ER: Estrogen receptor. PR: Progesterone receptor. 
HER2: Human epidermal growth factor receptor 2. 
 
 

 Genomic CIN Predicted CIN-High Fraction 

 Correlation P Correlation P 

ER- 0.2005 0.0026 -0.0052 0.9379 

ER+ 0.0466 0.2079 0.0338 0.361 

PR- 0.2157 0.0001 0.113 0.0425 

PR+ 0.0237 0.5524 -0.0021 0.9572 

HER2- 0.1838 <0.0001 0.1495 0.0007 

HER2+ 0.0172 0.756 0.0182 0.7422 

Non Triple 0.0634 0.0704 0.0463 0.1869 

Triple- 0.1769 0.0659 -0.0464 0.6322 

Overall 0.1403 <0.0001 0.0952 0.0026 

 
 
 



Transparent Methods: 
 
Dataset: 

Whole slide images along with clinical and genomic data were downloaded from The Cancer 

Genome Atlas (TCGA), project TCGA-BRCA using the TCGAbiolinks R package (Colaprico, et 

al. 2015). Only formalin-fixed paraffin-embedded (FFPE) diagnostic H&E-stained histopathology 

slides from primary tumor sites were used for this study. After removing slides that lack 

magnification information, and/or slides with artefacts including tissue folding, air bubbles and 

out-of-focus regions, the cohort consisted of 1,010 patients with 1,070 whole slide images (WSI). 

    Fraction genome altered (FGA), which was defined as the ratio of Sum of altered genome size/ 

Total genome size analyzed, was calculated using whole exome sequencing based copy number 

variation (CNV) data on the same TCGA patients. Copy-number segments were downloaded from 

TCGA.  Segments with log transformed mean copy number values larger than 0.2 or less than -0.2  

(Salas, et al. 2017, Ali Hassan and Mokhtar 2014) were treated as altered segments, respectively. 

Based on examining the FGA distribution for all 1,010, patients, we labelled patients with FGA 

less than 0.3 as low CIN; those with FGA above 0.3 were labelled as high CIN.  

 

Image Preprocessing: 

First, a single overall region of interest (ROI) with dimension of 2,048x2,048 pixels on 2.5x 

magnification (4mpp) was determined by a sliding window approach from each whole slide image, 

which typically has dimension of about 8,000x4,500 pixels. A simple thresholding method was 

used to distinguish tissue from white space background on greyscale space. All pixels with value 

lower than 215 were treated as tissue, otherwise as background. The ROI window that contained 

the highest percentage of tissue was kept for further processing. The selected window was then 

split into 8x8 non-overlapping patches each with dimension of 256x256 pixels. Quality control on 

patch level was conducted using the following method. All patches with tissue percentage less than 

80% or with significant blurriness, pen marks or folded tissues were deleted. Color normalization 

was then performed to reduce batch effects across different data sources (Figure 1A). We 

performed Reinhard normalization to transform the color characteristics to a desired standard 

defined by the mean and standard deviations of target image (TCGA-AN-A0FK) from the cohort 

using Python library of HistomicsTK (Gutman, et al. 2017). Patients with more than one WSIs 

were treated as having one big WSI and can get more than 64 (8x8) patches depending on how 



many WSIs they have, but 64 qualified patches were randomly chosen to prevent over-representing 

those patients. Overall, after deleting all unqualified patches, we obtained median of 51 (IQR: 32, 

61) qualified patches for each patient that to be used for transfer learning.  

 

Transfer Learning: 

(1) Feature Extraction: 

Instead of training CNN architectures from scratch, we used commonly used pre-trained models 

as feature extractors. We passed all patches (256x256 pixels) of each patient through Densenet-

121, Densenet-169, Densenet-201 (Huang, et al. 2017, DOI: 10.1109/CVPR.2017.243), Xception 

(Chollet 2017) and Resnet-50 (He, Zhang, et al., Deep Residual Learning for Image Recognition 

2016, DOI: 10.1109/CVPR.2016.90) networks that were pre-trained on ImageNet (Deng, et al. 

2009) without top layers. Then we got a set of feature vectors for every patient with dimensions 

of m*n where m denotes number of patches of one patient and n implies number of features 

according to specific architecture that was used. For example, we got matrix of 32*1,024 for patch 

features with the patient who has 32 patches by using Densenet-121. To adapt patch level features 

to patient level labels and reduce the noise generated by intra-tumor heterogeneity, we applied a 

max-pooling layer on top of patch features and got patient level features with the same dimension 

for all patients (Figure 1B) (Courtiol, et al. 2018). 

 

(2) Train Fully Connected Layers: 

The whole cohort was randomly divided into training and validation set (n=858 patients, 85%) and 

hold-out testing set (n=152, 15%) without any overlap for both patients and images. Then the 858 

patients were further split into training (730, 85%) and validation (128, 15%) set for tuning 

hyperparameters. We implemented several fully connected layers to take patient level features 

extracted by each of the CNN architectures mentioned above as input respectively (Figure 1C). 

Therefore, output by each model will be a prediction probability of high CIN class patient. Our 

model used binary cross-entropy loss function. We initialized the weights of fully connected layers 

with He initialization (He, Zhang, et al., Delving Deep into Rectifiers: Surpassing Human-Level 

Performance on ImageNet Classification 2015). Adam optimizer was used for the training network 

weights with learning rate of 0.00001. Training was stopped early (Prechelt 2012) if validation 

loss was not improving within 200 epochs. Epoch numbers were selected as per lowest validation 



loss. Then model performance metrics including ROC curve and AUC, balanced accuracy, 

sensitivity and specificity were calculated in the hold-out test set for the final evaluation (Figure 

1D).  

  

Visualization of predicted patches: 

The trained fully connected layers from last step can be fed with both combined patches (patient 

level features) and individual patches (patch level features) for hierarchical predictions. We 

predicted both patient level and patch level high CIN probabilities and visualized the predictions 

to demonstrate the existence of intra-tumor heterogeneity (Figure 1E).  

 

Pathological, Genomic and Transcriptomic scoring of CIN: 

We define predicted CIN-high fraction score as the percentage of predicted high CIN patches based 

on each pathology slide image. CIN-max, CIN-95th and CIN-75th are defined as maximum, 95th 

percentile and 75th percentile of patch predictions within each slide, respectively. Genomic CIN 

score was calculated by fraction genome altered as mentioned earlier (Ali Hassan and Mokhtar 

2014). CIN23 gene signature (Bakhom 2018) score was computed using single sample Gene Set 

Enrichment Analysis (ssGSEA) to indicate transcriptional CIN score from RNA expression data 

of the same cohort.  

 

Transcriptome analysis: 

We examined differentially expressed genes of primary tumor between high CIN and low CIN 

patients using Limma R package (Ritchie, et al. 2015). Differential expressed genes and samples 

shown in heatmap were clustered using Euclidean distance. Gene set enrichment analysis was 

conducted using fgsea (Korotkevich, et al. 2019, DOI: https://doi.org/10.1101/060012) R package 

and Reactome pathway database (https://reactome.org). 

 

Mitosis events inspection: 

Among all the patients who have agreed predicted CIN and genomic CIN status, top five extreme 

high CIN and low CIN patients were selected according to genomic CIN score. Several tumor 

patches of one patient with dimension of 1,024x1,024 on 40x magnification were randomly 

inspected and atypical mitosis events number in each patch were recorded.  



 

Nuclear segmentation and Tumor ploidy: 

We performed nuclear instance segmentation for all the patches from test dataset and classified 

the nuclei into five categories (neoplastic cell, non-neoplastic epithelia, inflammatory cell, 

connective cell and dead cell) automatically using Hover-Net model (Graham, et al. 2019) which 

was pretrained in PanNuke dataset (Gamper, Koohbanani and Benet, et al. 2019, Gamper, 

Koohbanani and Benes, et al. 2020) that consists of 205,343 labeled nuclei from 19 different tissue 

types. The average size of neoplastic cell nucleus was calculated for each patch using the total 

number of pixels of neoplastic cell nuclei divided by the instance number of neoplastic cell nuclei. 

Tumor ploidy data in which the estimations were obtained from ABSOLUTE (Carter, et al. 2012) 

was downloaded from Pan-Cancer Atlas (https://gdc.cancer.gov/about-

data/publications/pancanatlas) (Weinstein, et al. 2013).  

 

Statistical analysis and Software: 

Training of our DNN method was performed on local computer powered by one NVIDIA GeForce 

GT 640M GPU with 512 MB memory and one 2.7-GHz Quad-Core Intel Core i5 CPU. All 

statistical and bioinformatics analyses were performed in R, version 3.6.2. Image preprocessing 

and neural network training were conducted in Python, version 3.7.4. ROC curves were compared 

using DeLong’s method by R package of pROC. Chi-square test was conducted to test the 

independency between cancer subtypes with genomic CIN status. Spearman’s rank-order 

correlation test was performed for the correlation analysis without distribution assumption. 

Wilconxon rank sum test was used to compare the average size of neoplastic cell nucleus between 

high CIN and low CIN patches as well as tumor ploidy between slides with high and low fraction 

of predicted CIN-High patches. Log rank test was used for comparing Kaplan-Meier survival 

curves between different genome and predicted CIN groups. Time to any new tumor events and 

mortality was used as composite survival events and the data was censored at 5 years. Maximally 

selected rank statistics (Lausen, et al. 2004, Hothorn and Lausen 2003) was used to determine the 

optimal prognostic cutoff points for CIN biomarkers including predicted CIN, predicted CIN-High 

fraction, CIN-max, CIN-95th and CIN-75th. Generalized estimating equation (GEE) of Poisson 

regression model was used to compare atypical mitosis event number between CIN high and CIN 

low groups. All statistical tests were two sided with p<0.05 indicated significant. OpenSlide 



python was used for reading and tiling whole-slide images. TensorFlow2 were used for building 

and training neural networks.  
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