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Abstract: The objective of the current study is to analyze numerically the effect of the temperature-
jump boundary condition on heterogeneous microfluidic immunosensors under electrothermal force.
A three-dimensional simulation using the finite element method on the binding reaction kinetics
of C-reactive protein (CRP) was performed. The kinetic reaction rate was calculated with coupled
Laplace, Navier−Stokes, energy, and mass diffusion equations. Two types of reaction surfaces were
studied: one in the form of a disc surrounded by two electrodes and the other in the form of a circular
ring, one electrode is located inside the ring and the other outside. The numerical results reveal that
the performance of a microfluidic biosensor is enhanced by using the second design of the sensing
area (circular ring) coupled with the electrothermal force. The improvement factor under the applied
ac field 15 Vrms was about 1.2 for the first geometry and 3.6 for the second geometry. Furthermore,
the effect of temperature jump on heat transfer rise and response time was studied. The effect of two
crucial parameters, viz. Knudsen number (Kn) and thermal accommodation coefficient (σT) with and
without electrothermal effect, were analyzed for the two configurations.

Keywords: biosensors; electrothermal force; immunoassay; microfluidic; temperature jump

1. Introduction

There has been a manifest development of nanofluidic devices during the last decades.
The exceptional characteristics of these devices have attracted the increasing interest of
researchers in several fields such as engineering, microelectronics, biomechanics, and
biomedical applications [1–5]. In the biomedical field, many biochemical processes such
as mixing [6] and sensing [7,8] can be integrated into a single chip. Biosensors represent
powerful tools used in several applications such as drug discovery, medical diagnostics,
and security and defense [9]. The interest of microfluidic biosensors is that they offer several
advantages such as lower cost, higher sensitivity, faster response time, and lower sample
consumption [10]. Immunosensors represent important analytical tools for monitoring
antibody–antigen interactions for the detection of appropriate analytes by coupling the
immunochemical reaction to the transducer [11–16].

Immunosensors can be divided into three classes depending on the type of transducer
used: optical, piezoelectric, and electrochemical. Based on the presence or absence of a
separation step there are two types of immunoassays: homogeneous immunoassay, where
the interaction between antibodies and antigens is made in solution, and the separation step
is not required, or heterogeneous immunoassays, where the interaction is made between
antibodies immobilized on a solid membrane and the antigen present at the boundary layer
that requires the separation of antibody-bound label from the free label before measuring
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the signal [17,18]. In heterogeneous immunoassays, the concentration of the antigen–
antibody complex at the binding surface has a crucial effect. The principal advantage of
the heterogeneous immunoassay is its aptitude to concentrate molecules on a reaction
surface for easy detection. The reaction rate and the transport phenomena rate by diffusion
and convection occurring in heterogeneous immunosensors are related by the Damköhler
number, Da. When Da is higher, mass transport is limited, while association kinetic is lower
for low Da values [19]. For the microfluidic biosensors, the ratio of the diffusion velocity of
molecules to the reaction surface is comparatively small, which causes the development of
a diffusion boundary layer limiting the efficiency of biosensors [20,21]. Several methods
ranging from passive to active have been developed in order to improve the phenomenon
of transport of the analytes to the transducer such as microfluidic confinement [22] and
electrothermal effect [23–26]. When Da is high, mass transport is limited, while association
kinetic is not prevailing for low Da values [19]. The effect of Damköhler number has also
been analyzed by Selmi et al. [27].

In our previous studies, many approaches were adopted to enhance the reaction
rate. The first approach consists of the insertion of a cylindrical or rectangular obstacle
within the microchannel near the reaction surface [28–30]. The obstacle provokes the
modification of the flow near the reaction surface and brings more analyte to it. This leads
to an important enhancement in the detection time. The second approach takes advantage
of the modification of flow topology generated by flow confinement [27,31]. Some studies
benefit from the flow modification induced by the electrothermal force, which leads to an
improvement of the biosensor efficiency [28,32,33]. However, these numerical simulations
have been done only for two-dimensional configurations and should be extended to 3D
geometry. This extension is one of the objectives intended in the present study.

In a recent study, Selmi and Belmabrouk [34] have analyzed the effect of the fluid slip
velocity using the Helmholtz–Smoluchowski relationship on the microfluidic biosensor.
They have shown that it has an effect on the chemical reaction kinetics. In another recent
study, Echouchene et al. performed a simulation of the slip velocity effect in a microfluidic
channel under the ac electrothermal effect [35]. The authors have shown that shear stress
is intensified by the increase of the applied voltage and the slip length. The influence
of the slip velocity will be ignored in the present study since it will focus mainly on the
effect of the new proposed geometry as well as the impact of the temperature jump at the
fluid–solid interface.

In summary, in the current study, the investigated configuration is a three-dimensional
geometry. The influence of the shape of the detection surface, as well as the electrother-
mal effect on the microfluidic biosensor performance, are analyzed. The impact of the
temperature-jump condition at the fluid–solid interface is also investigated.

2. Device Geometry and Mathematical Formulation
2.1. Device Geometry

To enhance biosensor performance, several strategies may be adopted. In previous
papers, we used the flow confinement [27], the insertion of a circular or rectangular obsta-
cle [28–30], the electrothermal force [32,33], or a magnetic force [5] in 2D configurations.

In the present work, a new geometry of reaction surface and electrodes is proposed.
The device is considered to be a 3D parallelepiped (Figure 1). The microchannel used in
this study is 50 µm wide, 40 µm high, and 250 µm long. The detection surface and the
electrodes are situated in the bottom wall and at a distance X = 100 µm from the inlet.

At the device inlet, a small concentration of an analyte is mixed with water. Antibody
ligands are fixed on the detection surface. A binding reaction between the antibody and the
antigen takes place. The principal aim of this work is to improve the device performance.
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Figure 1. Sketch of two types of 3D models of a microfluidic biosensor. The channel dimensions (length, width, and height)
are respectively 250, 50, and 40 µm: (a) First configuration: the detection surface is a disk; (b) second configuration: the
detection surface is a ring.

Two configurations are proposed. They differ from each other by the shape of the
detection surface and the electrodes. Figure 1a presents the first configuration. The
detection surface is a disk with a radius Rs = 16 µm. The electrodes are opposite circular
crown arches. Their common inner radius is Rint = 20 µm whereas their external radius
is Rext = 25 µm. The aperture angles of the cathode (positive electrode) and the anode
(negative electrode) are respectively denoted by α and θ. These angles are adjustable and
several values varying in the range from 40◦ to 160◦ will be tested.

Figure 1b presents the second geometry. The detection surface is a circular crown
surrounded by the electrodes. Its inner radius is Rs,int = 15 µm, and its outer radius
is Rs,ext = 22 µm. The positive electrode is a disk having a radius Rc = 10 µm. The
negative electrode is a circular crown. Its inner radius is Ra,int = 25 µm, and its outer
radius is Ra,ext = 30 µm.

In both models of biosensors, the area of the reaction surface is taken equal to
SR = 800 µm2.

2.2. Transport Equations and Adsorption Model

The flow velocity field in the microchannel is calculated by the continuity and Navier–
Stokes equations. In this study, the fluid is assumed to be Newtonian and incompressible.
The flow is laminar and steady but is not isotherm. The continuity and motion equations
can be written as follows: {

∇.
→
U = 0

ρ
→
U.∇

→
U = −∇p + µ∇2

→
U +

→
F e

(1)
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where
→
U is the velocity, ρ is the density, p is the pressure and µ is the dynamic viscosity.

The application of a non-uniform AC electric field,
→
E , on a fluid provokes a tem-

perature gradient due to the Joule effect. The latter essentially depends on the electrical
conductivity of the solution (fluid) and on the amplitude of the electric field. Therefore,
local variations of the electrical conductivity, σ, and the permittivity, ε, occur. This leads to
an additional force applied to the fluid. This force is given by [28,32,33]:

→
F e = −1

2


(
∇σ

σ
− ∇ε

ε

)
.
→
E

ε
→
E

1 + ω2ε2/σ2 +
1
2

∣∣∣∣→E ∣∣∣∣2∇ε

 (2)

where ω is the angular frequency of the AC electric field. This force will have an impor-
tant role and may modify substantially the flow and, hence, the biosensor features. The
fluid investigated is supposed to possess the same properties as water. In the range of
temperatures close to 300 K, we have [36] ∇ε/ε = −0.04 ∇T and ∇σ/σ = 0.02 ∇T.

The energy equation is given by

ρCp
→
U.∇T = k∇2T + σ

∣∣∣∣→E ∣∣∣∣2 (3)

where k is the thermal conductivity and Cp is specific the heat capacity. In addition to
terms due to heat convection and diffusion, the above equation contains a source term
due to the Joule effect. The above equations are coupled and should be solved together
iteratively.

The electric field is computed by solving Poisson–Laplace equation.
The equation of the transport of the antigen in the bulk liquid phase is given by

∂C
∂t

+
→
U.∇C = D∇2C (4)

C is the bulk concentration (mol/m3), D is the diffusion coefficient of the antigen, and
t is the time. This equation contains a cumulative transient term, a convection term, and a
diffusion term. However, no source term is involved. Indeed, the binding reaction takes
place only on the sensitive membrane that is located in a boundary of the microchannel.

Many models are available in the literature to represent the adsorption of the analyte A.
This process may be monolayer or multilayer. It may be due to physical forces or chemical
covalent binding. The models may be empirical or based on statistical physics [37,38].
In this study, the first-order Langmuir model is employed to characterize the adsorption
reaction between the antibody B fixed at the reaction surface and the suspended target
analyte A. Figure 2 illustrates the process of the binding reaction between the analyte and
the ligand.

The formed complex is designated by AB. In this study, the CRP protein is considered
as an analyte for the analysis of the binding kinetics with FITC-conjugated monoclonal
sheep anti-human C-reactive protein (CRP) antibody. The anti-CRP (ligand) is immobilized
onto a plain silicon nitride waveguide with diffraction grating. After flow cell attachment,
CRP (analyte) is introduced and binding monitored by fluorescence-based evanescent field
detection [22].

The binding force may have physical or chemical origins. The activation energy may
vary in a wide range. The rate of adsorption and desorption involved in the above equation
are denoted by k1 and k2, respectively. The number of active sites available in the sensitive
membrane is an important parameter. In addition, in microfluidic applications, the fluid
topology may also play an important role to enhance the adsorption reaction. This property
is exploited in the present study.
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For the adopted Langmuir model, the concentration [AB] of the antigen–antibody
complex is given by

∂[AB]
∂t

= k1[A]sur f ([B0]− [AB])− k2[AB] (5)

where [A]sur f denotes the analyte concentration on the surface and [B0] represents the
concentration of free antibodies. It is related to the total number of active sites accessible
on the sensor surface. Obviously, the complex AB is confined on the sensor surface.

2.3. Boundary Conditions

For the dynamic field, the following boundary conditions are adopted.

• At the inlet, a parabolic profile is adopted.
• At the channel exit, a fully developed flow condition is adopted.
• At lateral walls, a no-slip condition is adopted.

In a previous publication, the influence of the slip velocity has been investigated in an
AC electrothermal micropump [35]. However, in the present work, the impact of the slip
velocity will be ignored.

In the matter of the energy equation, the conduction heat flux is zero at the inlet
and outlet boundaries. An insulation condition is applied to the lateral walls (except the
electrodes). The electrodes are maintained at a constant temperature or a temperature-jump
condition is applied as will be explained hereafter.

Concerning the electrical field, all the walls except the electrodes are assumed to be
electrically insulated. However, an AC voltage is applied to the electrodes. The rms (root
mean square) voltages are ±Vrms.

Concerning the analyte transport equation, the concentration, C0, of the analyte at the
inlet is maintained constant. At the outlet, the diffusion is equal to zero. The lateral walls
except the reaction surface are impermeable. No reaction occurs between these walls and
the analyte. Finally, at the reaction surface, an equilibrium occurs between the diffusion
flux on one hand and adsorption and desorption rates on the other hand. This boundary
condition links Equations (4) and (5).

2.4. Numerical Method and Algorithm

The numerical method used to discretize the above equations and perform the simula-
tions is the finite element method. The application of the well-known Galerkin method
enables to transform the governing equations into a linear or nonlinear matrix form:

KX = Q or H
dX
dt

+ KX = Q (6)
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where K is the stiffness matrix, X and Q are the unknown and load vectors, and H is
the damping matrix. Poisson–Laplace, Navier–Stokes, and energy equations are time-
independent. To obtain the solution X, only a matrix inversion algorithm is required.
However, the antigen transport equation and the Langmuir model should be solved in the
transient regime. Therefore, a scheme to discretize the time derivative should be used.

The computation domain is split into an unstructured mesh containing triangular
elements. Particular care is paid to the areas of the binding surface and the electrodes.
Indeed, mesh refinement is undertaken to ensure a satisfactory convergence of the solution.

The algorithm followed to solve the governing is as follows:

• Solve the Poisson–Laplace equation to obtain the voltage and the electrical field,
→
E .

• Simultaneously solve Navier–Stokes and energy equations to deduce the dynamic

and thermal fields, i.e.,
→
U and T.

• Solve the antigen transport equation and the Langmuir model to obtain the temporal
evolution of the concentrations, C and [AB]. These equations are time dependent.

Table 1 summarizes the values of the physicochemical parameters required for the
computation of the different quantities. They are similar to those available in the litera-
ture [21,39,40]. The kinetic parameters of monoclonal native pentameric pCRP/Anti-CRP
given by [40] are used in this work.

Table 1. Numerical values of the parameters used in the current simulations [21,39,40].

Parameter Unit Value

k1 m3/(mol.s) 104

k2 s−1 2.6× 10−2

B0 mol/m2 1.4× 10−8

D m2/s 2.175× 10−11

C0 µmol/m3 6.4
k W/(K.m) 0.6
ρ kg/m3 1000
µ Pa.s 1.08× 10−3

Cp kJ/(kg.K) 4.184
σ S/m 5.75× 10−2

εr 80.2

3. Results
3.1. Model Validation

The chemical binding kinetics of the analyte (anti-rabbit IgG) with the ligand (rabbit IgG)
at the reaction surface has been validated with experimental results of Hofmann et al. [22]
without confinement flow and ac applied voltage. For the immunoassay application,
rabbit IgG is immobilized to a circular detection area 4 mm in diameter and Cy-5-labeled
anti-rabbit IgG is introduced as analyte in the sample flow. The analyte solution was
10 nM anti-rabbit Cy5 IgG in 1% w/v Bovine Serum Albumin- phosphate-buffered saline
(BSA-PBS) while ∼3 pmol rabbit IgG in OptoDex matrix is immobilized on the sensitive
surface [22]. The association rate constant, k1, and dissociation rate constant, k2, for IgG-
anti-IgG binding interactions are 2.5 × 105 M−1/s and 3 × 10−4 s−1, respectively [21]. The
diffusion coefficient of IgG is 3 × 10−11 m2/s [21,22].

Figure 3 illustrates the numerical results of normalized complex concentration as a
function of time compared to the experimental data without confinement and for a sample
flow rate fixed at 66 µL/min. A good agreement is observed between the present results
and the experimental data of Hofmann et al. [22].
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compared to the experimental data reported by Hofmann et al. [22].

In order to optimize microfluidic biosensor performance, the effects of ac applied
voltage and thermal boundary conditions for two biosensor geometries were studied. The
numerical calculation is carried out in 3D.

3.2. Effect of Surface Reaction Shape

Figure 4 shows the transient evolution of the CRP complex for the two biosensors
proposed. The simulations are performed without and with an alternating applied voltage
at Vrms = 15 V and for an average inlet velocity uave = 100 µm/s. The aperture angles, θ
and α, characterizing the electrodes for the first biosensor model are taken to be equal
to 40◦. The other physical and geometric parameters used here are listed in Table 1. The
curves exhibit the average surface concentration of CRP-anti-CRP complexes [AB]sur f as
a function of time. This quantity is defined as the average spatial value over the reaction
surface area SR:

[AB]sur f =
1

SR

x

SR

[AB](x, y, z =)dxdy (7)

In the case of Vrms = 0 V (Figure 4a), the binding reaction rate related to the circular
reacting surface without electrothermal force is smaller than that related to the reaction
surface having the form of a circular ring.

In the case of Vrms = 15 V (Figure 4b), a significant improvement in the binding reaction
is observed for the second model compared to the first model. The electrothermal force
generated by the electrodes for the second model contributes effectively to the increase
of the reaction rate. The enhancement factor defined as the ratio of the slope of binding
reaction with ac applied voltage to that without ac applied voltage is about 1.2 for the first
model and 3.6 for the second model of the proposed biosensors. Therefore, the shapes of
the reaction surface and the electrode arrangement have an important role in improving
the biosensor response.



Sensors 2021, 21, 3502 8 of 15
Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

 Type 1

 Type 2

 

C
R

P 
co

m
pl

ex
 (m

ol
/m

2 )x
10

-8

Time(s)

(a)

 

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

 Type 1 α=θ=40°

(b)
 

 

 Type 2

C
R

P 
co

m
pl

ex
 (m

ol
/m

2 )x
10

-8

Time(s)

θ+

-

+
-

α

 
Figure 4. Transient evolution of the average surface concentration of CRP complex for the two 
types of biosensors for: (a) Vrms = 0 V and (b) Vrms = 15 V. 

In the case of Vrms = 0 V (Figure 4a), the binding reaction rate related to the circular 
reacting surface without electrothermal force is smaller than that related to the reaction 
surface having the form of a circular ring. 

In the case of Vrms = 15 V (Figure 4b), a significant improvement in the binding reac-
tion is observed for the second model compared to the first model. The electrothermal 
force generated by the electrodes for the second model contributes effectively to the in-
crease of the reaction rate. The enhancement factor defined as the ratio of the slope of 
binding reaction with ac applied voltage to that without ac applied voltage is about 1.2 
for the first model and 3.6 for the second model of the proposed biosensors. Therefore, the 
shapes of the reaction surface and the electrode arrangement have an important role in 
improving the biosensor response. 

In order to show the efficiency of our designs, we compare our results with those 
found by Huang et al. [40] in terms of initial slope (see Table 2) with and without applied 
voltage. 

Figure 4. Transient evolution of the average surface concentration of CRP complex for the two types
of biosensors for: (a) Vrms = 0 V and (b) Vrms = 15 V.

In order to show the efficiency of our designs, we compare our results with those found
by Huang et al. [40] in terms of initial slope (see Table 2) with and without applied voltage.

Table 2. Comparison of initial slope (×10−11) for our proposed models with the results of
Huang et al. [40].

Vrms = 0 V Vrms = 15 V

First model (θ = 40◦) 3.64 4.39
Second model 4.53 17.4

Huang et al. [40] (Type-4) 1.48 4.51

The results illustrated in the table show a considerable improvement in the chemical
binding kinetics using the second proposed biosensor model. The results achieved by our
second model without applied voltage is almost the same as that found by Huang et al. [40]
under Vrms = 15 V, keeping the same reaction surface area.

3.3. Effect of Thermal Boundary Conditions

The study of fluid flow and heat transfer in microsystems requires taking into account
the effect of rarefaction, which appears when the number of Knudsen, which is the ratio of
the mean free path to the hydraulic diameter, is between 10−3 and 10−1. The first-order
temperature-jump boundary condition [41–45] is widely used to solve the heat equation:

T − Tw =
2− σT

σT

2γ

γ + 1
1

Pr
Λ∇nT (8)
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where Tw is the wall temperature, σT is the energy accommodation coefficient, γ is the ratio
of the specific heat capacities, Pr = µCP/k is the Prandtl number, Λ is the mean free path,
and ∇nT is the temperature gradient normal to the surface.

In this subsection, the effect of the temperature-jump boundary condition at the wall is
considered in the simulation and compared with the results obtained without temperature
jump. Two cases are therefore considered. In the first case, no jump temperature is applied.
Therefore, the electrodes are maintained at a fixed temperature T = T0 = 300 K, whereas the
other walls of the micro-channel are insulated. In the second case, the temperature-jump
condition is applied to the electrodes only. However, the other walls are insulated.

3.3.1. Effect of Jump Temperature on Temperature Rise

Figures 5 and 6 show the temperature rise as a function of applied voltage with and
without temperature-jump boundary condition for both structures for Knudsen number
Kn = 0.02, uave = 100 µm/s, and f = 100 kHz. Knudsen number, Kn, is the ratio of the
molecular mean free path, Λ, to the characteristic geometric high of microchannel H.
Figure 5a,b is related to the first geometry with electrode aperture angles α = θ = 40◦

and α = θ = 160◦. Figure 6 is related to the second geometry.
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Three values of thermal accommodation coefficient, σT = 0.5, 0.7, and 1 are tested. This
coefficient represents the fraction of molecules which, after striking the wall, acquire an
average total energy identical to that of the molecules of the fluid at the wall temperature
Tw. In this study, the wall temperature is taken equal to 300 K.

The variation of the temperature due to the new boundary condition depends on the
geometry of the detection surface and the electrode shape. It depends also on the applied
voltage and the thermal accommodation coefficient, σT . When the applied voltage, the
temperature of the fluid increase with an amount of about 3 to 4 K when Vrms = 15 V. This
increase versus Vrms has a parabolic trend.

The quantity (2− σT)/σT present in Equation (8) takes the values 3, 1.9, and 1 when
the thermal accommodation coefficient is respectively equal to 0.5, 0.7, and 1. It is clear
that the temperature rise increases when the σT decreases. In other words, the boundary
condition will have an effect on the biosensor answer and should be taken into account to
simulate accurately the detection process. The influence of the temperature-jump condition,
through the thermal accommodation coefficient, is accentuated for high applied voltages.

In order to take into account the effect of the temperature-jump condition, our cal-
culation results were compared with the results from Huang et al. [40] in which the slip
condition was not taken into account.

It should be noted from the results of Table 3 that the energy exchange that occurs between
a molecule and a solid surface struck by this molecule, given by the accommodation coefficient,
is an essential and important parameter during the design of nanofluidic biosensors.

The above comments are valid for the two configurations and for any value of the
aperture angles, α and θ. Only the amplitude of the temperature rise varies slightly from
one configuration to another. The boundary conditions have an impact on the temperature
and consequently on the electrothermal force. This provokes a modification of the velocity
field near the detection surface.

Another parameter that is expected to impact the biosensor characteristics is the
Knudsen number, Kn. The effect of this number should be elucidated. Figures 7 and 8
illustrate the temperature rise versus the Knudsen number, Kn, for three values of the
thermal accommodation coefficient, σT = 0.5, 0.8, and 1. They correspond respectively to
the first geometry and the second geometry. Regarding the first geometry, two cases are
considered. Indeed, the electrode aperture angles are α = θ = 40◦ for Figure 7a and
α = θ = 160◦ for Figure 7b. According to these figures, two regimes can be observed
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based on the value of Kn. They are the slip flow (10−3 < Kn < 0.1) and continuum flow
regimes. This numerical result is in agreement with that reported by Yang et al. [45], who
took into account the effects of both temperature jump and slip velocity close to the wall.
The temperature jump on temperature rise has an insignificant effect, in the continuum
flow regime, and especially for σT = 1.

Table 3. Comparison of temperature rise with and without temperature jump with the results of
Huang et al. [40].

Applied Voltage (V) 5 10 15 20

Temperature rise (K) [40] 0.31 1.31 2.73 4.93

Temperature rise (K), first
model (θ = 160◦)

Isothermal 0.301 1.373 3.089 5.492

Jump temperature
σT = 1 0.374 1.499 3.383 6.063

Temperature rise (K) second
model

Isothermal 0.28 1.375 3.15 5.65

Jump temperature
σT = 1 0.33 1.42 3.22 5.83
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In the slip flow regime, the effect of temperature-jump condition on the temperature
rise becomes more important, particularly for σT = 0.5. We can conclude from these results
that taking into account the temperature jump is of capital importance for the analysis of
the heat transfer of nanofluids biosensors.

3.3.2. Effect of Jump Temperature on Response Time

The reaction surface shape, the temperature jump, and the Knudsen number also have
an impact on the response time, TR, of the biosensor. Many relations may be adopted to
define this parameter. Indeed, the response time may correspond to the time for which the
complex concentration, [AB], reaches its maximal value. This quantity is directly related to
the slope of the CRP complex concentration curves.

The equilibrium binding time, TR, as a function of the Knudsen number for θ = 40◦

and 160◦ is plotted in Figure 9 for two values of thermal accommodation coefficient, σT . It
is clear that the temperature jump has minor effect on response time, TR, in the continuum
flow regime. In slip flow regime, response time increases significantly especially for σT = 0.5.
The main factor controlling the response time, TR, is obviously the electrode aperture angles.
Indeed, the effect of the number σT is dominated by the electrode shape.
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Figure 10 presents the response time of biosensor versus the Knudsen number for
σT = 0.5 and 1 for the second geometry. Two regimes can be observed based on the value of
Kn. The thermal accommodation coefficient affects the start of slip flow. For σT = 1, the slip
regime is started for Kn > 10−3, then for σT = 0.5 this regime is started for Kn > 5 × 10−4.
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The answer time of the second geometry caries in the range 190 to 210 s according to
Knudsen number and the thermal accommodation coefficient, σT . It is significantly smaller
than that related to the first geometry.

4. Conclusions

A 3D numerical analysis was carried out to study the immunoassay in a biosensor for
two forms of reaction surface with and without temperature-jump boundary condition. The
effect of electrothermal force was analyzed. The effects of several important parameters
were discussed, namely, the applied voltage, the reaction surface shape, the thermal
accommodation coefficient, and the Knudsen number. From the numerical results found in
this work, several conclusions can be drawn:

• The performance of the microfluidic biosensor can be further enhanced by using the
second design of the sensing area (circular ring) coupled with the electrothermal force.

• Taking into account the temperature jump in the vicinity of the wall of the microchan-
nel is very important, especially in the slip flow regime (Kn > 10−3).

• Neglecting the temperature jump induces to overestimate temperature rise for biomed-
ical applications and response time for microfluidic biosensors.

• The effect of thermal accommodation coefficient appears in slip flow.

In conclusion, a reaction surface in the form of a circular ring improves the perfor-
mance of the biosensor. In addition, it is primordial to take into account the temperature
jump especially in the slip flow regime for medical application.
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