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Abstract: Nitroalkanes activated with polyphosphoric acid could serve as efficient electrophiles in
reactions with amines and hydrazines, enabling various cascade transformations toward heterocyclic
systems. This strategy was developed for an innovative synthetic protocol employing simultaneous
or sequential annulation of two different heterocyclic cores, affording [1,2,4]triazolo[4,3-a]quinolines
with 1,3,4-oxadiazole substituents.

Keywords: nitroalkanes; heterocycles; annulation; cascade transformations

1. Introduction

There is significant emphasis on the role of [1,2,4]triazolo[4,3-a]quinolines in
modern-day drug discovery and medicinal chemistry. This privileged scaffold was
utilized in the design of potent and selective aldosterone synthase inhibitors with anti-
hypertensive activity [1], as well as prospective antitumor [2,3], anticonvulsant [4–10],
anti-inflammatory [11,12], and antimicrobial [13,14] agents. It was also found that an
introduction of a heterocyclic substituent at C-5 could allow for the preparation of
chimeric scaffolds with improved biological activities. This strategy was employed in
the development of cytotoxic and antiviral agents [15], as well as analgesic and anti-
inflammatory drug candidates [16]. Recently, we described the preparation of novel
antitumor agents with in vitro differentiation activity against neuroblastoma cancer
cell lines [2]. These compounds were assembled via an unusual annulation reaction
between electrophilically activated nitroalkanes [17] and 2-hydrazinylquinolines. We
also reported on the cyclocondensation of nitroalkanes with acylhydrazides furnishing
1,3,4-oxadiazole rings [18,19]. With continuous SAR studies, we had a task of building
a focused library of perspective “chimeric” antitumor drug candidates possessing
both [1,2,4]triazolo[4,3-a]quinoline and 1,3,4-oxadiazole rings. An expeditious and
concise synthetic method was needed to allow for a highly efficient installation of both
heterocyclic cores in a single-pot fashion. In this report, we disclosed the results of
these synthetic studies.

2. Results and Discussion

As we previously reported, a highly electrophilic phosphorylated nitronate species
A is generated upon the interactions between nitroalkanes 1 and polyphosphoric acid
(PPA) (Scheme 1). These entities readily react with amines B to afford amidinium inter-
mediates C, which can be used for the highly efficient assembly of imidazoles or oxazoles
(D) [20,21], as well as imidazolines [22] and other nitrogen-based heterocycles [23,24]. Fur-

Molecules 2021, 26, 5692. https://doi.org/10.3390/molecules26185692 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6644-9949
https://orcid.org/0000-0001-8688-7201
https://orcid.org/0000-0001-8867-7988
https://orcid.org/0000-0002-1668-9311
https://doi.org/10.3390/molecules26185692
https://doi.org/10.3390/molecules26185692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26185692
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26185692?type=check_update&version=1


Molecules 2021, 26, 5692 2 of 14

thermore, the reaction with 2-hydrazinylpyridines H enacts formation of the correspond-
ing (hydrazineyl)alkaniminium species I, which was found to undergo intramolecular
cyclocondensations to obtain 1,2,4-triazolo[4,3-a]pyridines (J) (Scheme 1) [2]. Similarly,
a mechanistically related reaction with acylhydrazides E proved useful for cyclization
toward 1,3,4-oxadiazoles G. (Scheme 1) [18,19]. Remarkably, both latter reactions could
be carried out under similar reaction conditions. This prompted us to pursue the idea of
performing these reactions in a one-pot fashion en route to chimeric heterocyclic structures
3 (Scheme 1). To test the possibility of the simultaneous installation of these two hetero-
cyclic moieties, we carried out the reaction of 2-hydrazineylisonicotinohydrazide (2a) in
PPA in the presence of excess 1-nitropropane (1a, 4 equiv. used to compensate the loss due
to evaporation). Initial tests were performed in 80% PPA (which corresponds to H4P2O7
composition). The reaction was carried out at 130 ◦C for 30 min, when it notably slowed
down, most likely due to the loss of relatively volatile nitroalkane (bp 132 ◦C). Two more
equivalents of 1a was added, and the reaction was stirred for an additional 90 min to afford
the desired 2-ethyl-5-(3-ethyl-[1,2,4]triazolo [4,3-a]pyridin-7-yl)-1,3,4-oxadiazole (3aa) with
a 71% yield (Table 1, entry 1). To evaluate the influence of the medium, we also performed
the same reaction in 87% PPA, which corresponds to polymeric HPO3 with lowered acidity,
but enhanced anhydride activity. These parameters were modified aiming for an improved
reaction performance or lowering of the reaction temperature. Indeed, even at 120 ◦C the
yield of product 3aa was notably higher (entry 2), and it reached 84% at 130 ◦C (entry 3).
We also tested for the intermediate value of 85% P2O5 content in the reaction medium,
which was found to be optimal for the featured process. With the increase in reaction
temperature from 110–120 ◦C and then to 130 ◦C, the yield of 3aa improved from 52–79%
and then to 90%, respectively (entries 4–6). A further increase in temperature to 140 ◦C,
however, was found to be detrimental, as it caused partial decomposition of the product
(entry 7).
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Table 1. Optimization of the reaction conditions for a one-pot double-annulation toward a chimeric
product 3aa.
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With optimized reaction conditions in hand, we proceeded with the scope and lim-
itation studies, the results of which are shown in Scheme 2. Nitromethane (1c) reacted
smoothly, but the yields were somewhat lower due to partial loss of this reagent through
its high volatility. The addition of nitromethane (up to 7 equivalents) to compensate for
evaporation allowed for the isolation of polyheterocyclic products 3ac and 3dc in moderate
to high yields (Scheme 2). Reactions involving three homologous nitroalkanes with higher
boiling points, nitroethane (1g), 1-nitropropane (1a), and 1-nitrooctane (1b), proceeded
much more efficiently, generally providing notably higher yields (Scheme 2). Further-
more, we managed to carry out the reaction of ethyl 2-nitroacetate, efficiently generating
a bis-annulation product 3ae with two newly introduced ester functionalities (Scheme 2).
Moreover, p-tolyl(2-nitroethane) (1h) reacted smoothly, affording compound 3ch in excel-
lent yield (Scheme 2). A putative mechanistic rationale of the featured transformation is
depicted in Scheme 3. The reaction begins with two nucleophilic attacks by both hydrazine
and hydrazide groups of the substrate at two of the phosphorylated nitronate species A.
After subsequent elimination of the two molecules of ortho-phosphoric acid, the resulting
species 4 underwent a double-fold 5-endo-trig nucleophilic cyclization employing both N-
(1-hydrazineylalkylidene)-O-phosphonohydroxylammonium moieties. Next, tautomeric
form 5 would undergo re-protonation to produce heterocyclic intermediate 6. The latter
experiences an elimination of two equivalents of hydroxylamine O-phosphate to afford the
aromatic final product 3 (Scheme 3).

It should be pointed out that reactions involving α-nitrotoluene as a pro-electrophile
proceeded sluggishly affording the corresponding bis-phenylsubstituted products (such as
3ad) with disappointingly marginal yields (10% or below). This limitation, however, can be
addressed by substituting α-nitrotoluene with α-nitroacetophenones (1d or 1f, 3.0 equiv.).
This tactical trick was first presented in our original report on the preparation of benzimi-
dazoles and benzoxazoles in 2015 [20]. An updated version of this mechanistic rationale
adapted for the reaction with bifunctional substrate 2a is shown in Scheme 4. It is assumed
that the initial acid-assisted double-fold interaction of 2a with α-nitroacetophenone (1d)
leads to the formation of bis-1-(2-nitroethylidene)hydrazin-1-ium as an intermediate 7
(Scheme 3). The electron pairs for the heteroatoms of ketone and pyridine form an in-
tramolecular attack to afford two new five-membered rings as an intermediate 8. The latter
experiences a double-fold nucleofugal cleavage of nitromethane to produce molecule 3ad
(Scheme 4). Compounds 3cd, 3dd, and 3cf were formed in a similar manner with high
yields (Scheme 2).
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Scheme 4. Mechanistic rationale involving electrophilic nitroacetophenones.

In both discussed mechanistic rationales (Schemes 3 and 4), the initial nucleophilic
attack of the hydrazine groups and subsequent annulations are occurring at two different
sites. This would most likely take place independently with different kinetic rates, but for
the sake of a concise depiction they are shown here to proceed in parallel.

We also decided to take advantage of the reactivity of the electrophilically acti-
vated ethyl nitroacetate (1e) to design a sequential approach for [1,2,4]triazolo[4,3-
a]quinolines bearing 1,3,4-oxadiazole substituent at C-3 (shown in Scheme 5). To this
end, 2-hydrazinylquinolines 9 were first utilized in the featured annulation to obtain
triazoles 10 bearing an ester function at C-3. These compounds were taken without pu-
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rification and subjected to the hydrazinolysis reaction to provide heterocyclic products
11. The latter crude acylhydrazide moieties were transformed into 1,3,4-oxadiazole
rings this time employing 1-nitropropane (1a) as an electrophilic component. Two
compounds, 12a and 12b, were successfully synthesized via this approach with moder-
ate yields (43% and 47%, respectively) (Scheme 5). In principle, the same strategy can
potentially be employed for stepwise assembly of longer linear oligomeric chains with
repeating 1,3,4-oxadiazole units, provided that greater annulation efficiency could be
achieved at every step.
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Formation of triazole and oxadiazole cycles in both parallel and sequential modes of
the featured annulation was unambiguously confirmed by single-crystal X-ray diffraction
of compounds 3ba and 12a, respectively (Figure 1).
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Figure 1. ORTEP drawing of X-ray structures of (2-ethyl-5-(3-ethyl-[1,2,4]triazolo[4,3-a]pyridin-6-
yl)-1,3,4-oxadiazole) (3ba, CCDC #2092596) and 1-(5-ethyl-1,3,4-oxadiazol-2-yl)[1,2,4]triazolo[4,3-
a]quinoline (12a, CCDC #2093198). The thermal ellipsoids are shown at 50% probability.
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3. Materials and Methods
General

NMR spectra, 1H and 13C, were measured in solutions of CDCl3 or DMSO-d6 on Bruker
AVANCE-III HD instrument (at 400.40 or 100.61 MHz, respectively. Bruker, Billerica, MA,
USA). Residual solvent signals were used as internal standards, in DMSO-d6 (2.50 ppm
for 1H, and 40.45 ppm for 13C nuclei) or in CDCl3 (7.26 ppm for 1H, and 77.16 ppm
for 13C nuclei). HRMS spectra were measured on a Bruker maXis impact (electrospray
ionization, in MeCN solutions, employing HCO2Na–HCO2H for calibration). IR spectra
were measured on an FT-IR spectrometer Shimadzu IRAffinity-1S equipped with an ATR
sampling module. Reaction progress, purity of isolated compounds, and Rf values were
monitored with TLC on Silufol UV-254 plates. Column chromatography was performed on
silica gel (32–63 µm, 60 Å pore size). Melting points were measured with Stuart SMP30
apparatus. Polyphosphoric acid samples were prepared by dissolving precisely measured
amounts of P2O5 in 85% ortho-phosphoric acid. Ethyl 2-chloroquinoline-4-carboxylate,
ethyl 6-bromo-2-chloroquinoline-4-carboxylate [25], ethyl 2-chloroisonicotinate [26], and
ethyl 6-chloronicotinate [27] were synthesized according to the published methods. All
other reagents and solvents were purchased from commercial venders and used as received.

2-Hydrazinylpyridine-4-carbohydrazide (2a). Ethyl 2-chloroisonicotinate (740 mg,
4.00 mmol), hydrazine hydrate (88% solution in water, 2.3 mL, 40.0 mmol), and ethanol
(0.7 mL) were combined in a 30 mL G30 vial and covered with a septum. The vial was
placed in a Monowave 300 microwave reactor, and the mixture was heated to 160 ◦C
over the course of 5 min (power did not exceed 135 watts), after which this temperature
was maintained for 1.5 h (controlled by IR sensor, MW power within 10 watts, 10–15 bar
pressure). The resulting mixture was poured into water (40 mL) and filtrated. The resulting
precipitate was washed with water several times (2 × 30 mL). It was recrystallized from
ethanol to afford 2a as a pale-yellow solid, m.p. 171–172 ◦C (ethanol); yield 601 mg
(3.60 mmol, 90%). Rf 0.16, EtOAc/Et3N (20:0.1: v/v). 1H-NMR (400 MHz, DMSO-d6) δ 9.83
(br.s, NH, 1H), 8.03 (dd, J = 5.3, 0.8 Hz, 1H), 7.61 (br.s, NH, 1H), 7.07 (t, J = 1.1 Hz, 1H),
6.84 (dd, J = 5.2, 1.5 Hz, 1H), 4.51 (br.s, NH, 2H), 4.15 (br.s, NH, 2H). 13C-NMR (101 MHz,
DMSO) δ 164.9, 162.5, 147.9, 141.5, 109.4, 104.3. FTIR (ZnSe) ν (cm−1): 3232, 2925, 2858,
1739, 1652, 1619, 1556, 1462, 1250, 1103, 1055, 874. HRMS (ES TOF, m/z) calculated for
C6H9N5NaO+ ([M + Na]+): 190.0694, found: 190.0699 (2.9 ppm).

2-Hydrazinylquinoline-4-carbohydrazide (2c). Ethyl 2-chloroquinoline-4-carboxylate
(940 mg, 4.00 mmol), hydrazine hydrate (88% solution in water, 2.3 mL, 40.0 mmol), and
ethanol (0.7 mL) were combined and refluxed for 1 h. The resulting mixture was poured
into water (40 mL) and filtrated. The resulting precipitate was washed with water several
times (2 × 30 mL). It was recrystallized from ethanol to afford 2c as a brown solid, m.p.
219–220 ◦C (decomp.) (ethanol); yield 781 mg (3.60 mmol, 90%). Rf 0.43, EtOAc/Et3N
(20:0.1: v/v). 1H-NMR (400 MHz, DMSO-d6) δ 9.78 (br.s, NH, 1H), 8.24 (s, 1H), 7.84–7.76
(m, 1H), 7.59–7.49 (m, 2H), 7.18 (d, J = 1.5 Hz, 1H), 6.83 (br.s, NH, 1H), 4.60 (br.s, NH, 2H),
4.36 (br.s, NH, 2H). 13C-NMR (101 MHz, DMSO) δ 166.4, 147.9, 141.7, 129.5, 125.81, 125.30,
121.7, 120.1, 109.5. FTIR (ZnSe) ν (cm−1): 3691, 3253, 3183, 1775, 1612, 1511, 1245, 972, 850.
HRMS (ES TOF, m/z) calculated for C10H11N5NaO+ ([M + Na]+): 240.0848, found: 240.0856
(3.4 ppm).

6-Bromo-2-hydrazinylquinoline-4-carbohydrazide (2d). This material was obtained
using the method described for preparation of compound 2a employing ethyl 6-bromo-2-
chloroquinoline-4-carboxylate (1252 mg, 4.00 mmol), and it was purified by recrystallization
from ethanol to afford 2d as a brown solid, m.p. = 215–216 ◦C (ethanol); yield 1065 g
(3.60 mmol, 90%). Rf = 0.56, EtOAc/Et3N (20:0.1: v/v). 1H-NMR (400 MHz, DMSO-d6) δ
9.86 (br.s, NH, 1H), 8.42 (s, 1H), 7.97 (d, J = 2.3 Hz, 1H), 7.62 (dd, J = 8.9, 2.4 Hz, 1H), 7.49
(d, J = 8.9 Hz, 1H), 6.89 (br.s, NH, 1H), 4.63 (br.s, NH, 2H), 4.40 (br.s, NH, 2H). 13C-NMR
(101 MHz, DMSO) δ 165.9, 158.9, 146.9, 140.6, 132.3, 128.0, 127.3, 121.5, 113.7, 110.5. FTIR
(ZnSe) ν (cm−1): 3325, 3205, 2935, 1665, 1633, 1520, 1380, 1245, 1043, 937, 756. HRMS (ES
TOF, m/z) calculated for C10H11BrN5O+ ([M – H]+): 296.0138, found: 296.0141 (1.2 ppm).
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[1,2,4]Triazolo[4,3-a]quinoline-1-carbohydrazide (11a). Hydrazine hydrate (88% so-
lution in water, 0.58 mL, 10.0 mmol) was added dropwise to a solution of the ethyl
[1,2,4]triazolo[4,3-a]quinoline-1-carboxylate (241 mg, 1.00 mmol) in ethanol (5 mL), cooled
to −10 ◦C. It was stirred at room temperature for 1 h, and then water (10 mL) was poured in.
The precipitate was filtered off and washed with cold water (2 × 5 mL). This material can
be used as is for the subsequent transformation. To obtain an analytical sample, the crude
material was recrystallized from ethanol to afford the titled compound as a pale-yellow
solid, m.p. = 205–206 ◦C (ethanol); yield 204 mg (90%). Rf 0.60, EtOAc/Et3N (20:0.1: v/v).
1H-NMR (400 MHz, DMSO-d6) δ 10.12 (br.s, NH, 1H), 8.41 (d, J = 8.5 Hz, 1H), 8.07 (dd,
J = 7.8, 1.6 Hz, 1H), 7.93 (d, J = 9.5 Hz, 1H), 7.85–7.71 (m, 2H), 7.66 (td, J = 7.6, 1.1 Hz, 1H),
4.97 (br.s, NH, 2H). 13C-NMR (101 MHz, DMSO) δ 158.5, 149.0, 143.3, 131.0, 130.5, 129.9,
129.5, 126.9, 124.0, 117.8, 114.1. FTIR (ZnSe) ν (cm−1): 3219, 2824, 1677, 1619, 1539, 1409,
1250, 1216, 1172, 1089, 944. HRMS (ES TOF, m/z) calculated for C11H9N5NaO+ ([M + Na]+):
250.0692, found: 250.0699 (2.9 ppm).

5-Methyl-[1,2,4]triazolo[4,3-a]quinoline-1-carbohydrazide (11b). This material
was obtained by the method described for compound 2e employing ethyl 5-methyl-
[1,2,4]triazolo[4,3-a]quinoline-1-carboxylate (255 mg, 1.00 mmol). This material can be
used as is for the subsequent transformation. To obtain an analytical sample, the crude
material was recrystallized from ethanol to afford the titled compound as a pale-brown
solid, m.p. = 214–215 ◦C (ethanol); yield 219 mg (91%). Rf 0.26, EtOAc/Et3N (20:0.1:
v/v). 1H-NMR (400 MHz, DMSO) δ 10.47 (bs, 1H), 8.43 (dd, J = 8.4, 1.2 Hz, 1H), 8.09
(dd, J = 8.1, 1.6 Hz, 1H), 7.77 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.72–7.66 (m, 2H), 5.00
(bs, NH, 2H), 2.64 (s, 3H). 13C-NMR (101 MHz, DMSO) δ 158.6, 148.9, 143.0, 138.1,
130.3, 129.9, 126.8, 126.2, 124.3, 118.0, 112.9, 19.0. FTIR (ZnSe) ν (cm−1): 3296, 3209,
1674, 1522, 1414, 1375, 1303, 1248, 1168, 1091, 1036. HRMS (ES TOF, m/z) calculated for
C12H11N5NaO+ ([M + Na]+): 264.0858, found: 264.0858 (−0.8 ppm).

General method A (employing nitroalkanes). A 10 mL Erlenmeyer flask equipped
with reflux condenser and magnetic stirrer was charged with 85% polyphosphoric acid
(2.00 g), 2-hydrazinilisonicotinohydrazide 2 (1.00 equiv.), and nitroalkane 1 (4.00 equiv.).
The mixture was placed in an oil bath that was preheated to 130 ◦C and stirred for 30 min.
Then, another 2.00 equiv. of nitro compound 1 was added, followed by stirring for an
additional 1.5 h. Then, the mixture was poured into cold H2O (5 mL), neutralized with
aqueous ammonia to a pH 6–7, and extracted with EtOAc (4 × 5 mL). The combined
extracts were concentrated under vacuum, and the residue was purified by preparative
column chromatography on silica gel, eluting with a mixture of acetone and hexane.

Method B with α-nitroacetophenone. A 10 mL Erlenmeyer flask equipped with a
magnetic stirrer and a reflux condenser was charged with 2-hydrazinilisonicotinohydrazide
(1.00 equiv.) 2, polyphosphoric acid (85% P2O5, 2 g), and α-nitroacetophenone 1d (3.00
equiv.). The flask was placed in an oil bath and heated to 130 ◦C while being stirred. The
mixture was heated for 1.5–2 h; when TLC analysis showed the reaction was completed,
the reaction mixture was cooled. Water was added (5 mL), neutralized with 25% aqueous
ammonia solution (4 mL) to pH = 8–9 and extracted with EtOAc (4 × 5 mL). The combined
organic phases were concentrated and the crude product was purified by preparative
column chromatography eluting with acetone and hexane.

Method C with ethyl nitroacetate. In a 10 mL Erlenmeyer flask equipped with a
magnetic stirrer and a reflux condenser, 2-hydrazinilisonicotinohydrazide (1.00 equiv.)
2, PPA 85% (1 g), H3PO3 (1 g), and ethyl nitroacetate 1e (3.0 equiv.) were loaded. The
flask was placed in an oil bath and heated to 130 ◦C while being stirred for 1 h. Then,
another 2 equiv. of nitroacetic ether 1e was added and heated for another hour; when TLC
analysis showed the reaction was completed, the reaction mixture was cooled. Water was
added (5 mL), before neutralizing with 25% aqueous ammonia solution (4 mL) to pH = 8–9
and extracting with EtOAc (4 × 5 mL). The combined organic phases were concentrated,
and the crude product was purified by preparative column chromatography eluting with
acetone and hexane.
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2-Ethyl-5-(3-ethyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,3,4-oxadiazole (3aa): This com-
pound was obtained via Method A employing 2-hydrazinylisonicotinohydrazide (2a) (167 mg,
1.00 mmol) and 1-nitropropane (1a) (534 mg, 6.00 mmol), purifying by silica gel column chro-
matography (EtOAc/hexane, gradient 1:1–2:1, v/v). White powder, m.p. 230–232 ◦C (EtOAc),
Rf 0.63, acetone/hexane (2:1, v/v). Yield: 218 mg (0.90 mmol, 90%). 1H-NMR (400 MHz,
CDCl3) δ 8.23 (q, J = 1.4 Hz, 1H), 8.01 (d, J = 7.2 Hz, 1H), 7.52 (dt, J = 7.2, 1.8 Hz, 1H), 3.11
(qd, J = 7.6, 1.4 Hz, 2H), 2.96 (qd, J = 7.6, 1.5 Hz, 2H), 1.50 (td, J = 7.6, 1.6 Hz, 3H), 1.42 (td,
J = 7.6, 1.5 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 168.9, 162.6, 149.2, 149.0, 122.8, 122.5, 115.0,
111.1, 19.3, 18.2, 10.9, 10.8. FTIR (ZnSe) ν (cm−1): 3740, 2997, 1561, 1525, 1433, 1371, 1192, 1021,
951, 867. HRMS (ES TOF, m/z) calculated for C12H13NaN5O+ ([M + Na]+): 266.1011, found:
266.1012 (0.4 ppm).

2-([1,2,4]Triazolo[4,3-a]pyridin-7-yl)-1,3,4-oxadiazole (3ac): This compound was ob-
tained via Method A employing 2-hydrazinylisonicotinohydrazide (2a) (167 mg, 1.00 mmol)
and 1-nitromethane (1c) (427 mg, 7.00 mmol), purifying by silica gel column chromatography
(gradient acetone/hexane 1:1, v/v–acetone). Pale brown solid, m.p. > 300 ◦C (acetone), Rf

0.40, acetone. Yield: 103 mg (0.55 mmol, 55%). 1H-NMR (400 MHz, DMSO-d6) δ 9.35 (s, 1H),
8.66 (dt, J = 7.2, 1.3 Hz, 1H), 7.94 (s, 1H), 7.55 (s, 1H), 7.38 (dt, J = 7.3, 1.6 Hz, 1H). 13C-NMR
(101 MHz, DMSO) δ 164.5, 155.5, 148.1, 137.3, 126.2, 123.5, 110.4, 110.1. FTIR (ZnSe) ν (cm−1):
3614, 3085, 1743, 1689, 1532, 1505, 1469, 1414, 1245, 1166, 1101, 1040, 970. HRMS (ES TOF, m/z)
calculated for C8H5N5NaO+ ([M + Na]+): 210.0392, found: 210.0386 (−2.8 ppm).

2-Phenyl-5-(3-phenyl-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,3,4-oxadiazole (3ad): This
compound was obtained via Method B employing 2-hydrazinylisonicotinohydrazide (2a)
(167 mg, 1.00 mmol) and α-nitroacetophenone (1d) (495 mg, 3.00 mmol), purifying by silica
gel column chromatography (benzene/Et3N, 20:1, v/v). Light-green solid, m.p. 225–226 ◦C
(EtOAc), Rf 0.63, acetone/hexane (1:1, v/v). Yield: 298 mg, 88%. 1H-NMR (400 MHz, CDCl3)
δ 9.04 (dd, J = 7.5, 0.8 Hz, 1H), 8.49 (dd, J = 1.8, 0.8 Hz, 1H), 8.48–8.42 (m, 2H), 8.23–8.19 (m,
2H), 7.93 (dd, J = 7.6, 1.8 Hz, 1H), 7.65–7.59 (m, 3H), 7.55–7.52 (m, 3H). 13C-NMR (101 MHz,
CDCl3) δ 165.8, 162.4, 149.9, 147.2, 132.6, 131.0, 129.7 (2C), 129.5 (2C), 128.5 (2C), 127.4 (2C),
125.9, 123.7, 123.3, 123.2, 115.3, 112.2. FTIR (ZnSe) ν (cm−1): 3315, 3070, 1672, 1657, 1604,
1578, 1549, 1455, 1383, 1281, 1180, 1077, 1028, 930. HRMS (ES TOF, m/z) calculated for
C20H13NaN5O+ ([M + Na]+): 362.1003, found: 362.1012 (2.6 ppm).

2-Ethyl-5-(3-ethyl-[1,2,4]triazolo[4,3-a]pyridin-6-yl)-1,3,4-oxadiazole (3ba): This com-
pound was obtained via Method A employing 6-hydrazinylnicotinohydrazide (2b) (167 mg,
1.00 mmol) and 1-nitropropane (1a) (534 mg, 6.00 mmol), purifying by silica gel column
chromatography (gradient acetone/hexane, 1:1, v/v–acetone). Pale-brown solid, m.p. 116–
117 ◦C (EtOAc), Rf 0.23, acetone/hexane (1:1, v/v). Yield: 298 mg (0.88 mmol, 88%). 1H-NMR
(400 MHz, CDCl3) δ 8.60 (d, J = 1.5 Hz, 1H), 7.82 (dd, J = 4.1, 1.3 Hz, 2H), 3.15 (q, J = 7.5 Hz,
2H), 2.96 (q, J = 7.6 Hz, 2H), 1.53 (t, J = 7.5 Hz, 3H), 1.43 (t, J = 7.6 Hz, 3H). 13C-NMR (101 MHz,
CDCl3) δ 172.0, 168.2, 161.7, 149.1, 124.4, 121.7, 117.5, 112.4, 19.3, 18.3, 10.91, 10.85. FTIR
(ZnSe) ν (cm−1): 3325, 3205, 2935, 1665, 1633, 1520, 138, 1245, 1043, 937. HRMS (ES TOF, m/z)
calculated for C12H13NaN5O+ ([M + Na]+): 266.1004, found: 266.1014 (2.9 ppm).

1-Ethyl-5-(5-ethyl-1,3,4-oxadiazol-2-yl)[1,2,4]triazolo[4,3-a]quinoline (3ca): This com-
pound was obtained via Method A employing 2-hydrazinylquinoline-4-carbohydrazide (2c)
(217 mg, 1.00 mmol) and 1-nitropropane (1a) (534 mg, 6.00 mmol), purifying by silica gel
column chromatography (acetone/hexane, gradient 1:2–1:1–2:1, v/v). Colorless powder, m.p.
235–236 ◦C (acetone), Rf 0.50, acetone/hexane (1:1, v/v). Yield: 254 mg (0.87 mmol, 87%).
1H-NMR (400 MHz, CDCl3) δ 9.47 (dd, J = 8.3, 1.6 Hz, 1H), 8.35 (s, 1H), 8.28 (dd, J = 8.6, 1.2 Hz,
1H), 7.79 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.68 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 3.55 (q, J = 7.4 Hz,
2H), 3.05 (q, J = 7.6 Hz, 2H), 1.69 (t, J = 7.3 Hz, 3H), 1.50 (t, J = 7.6 Hz, 3H). 13C-NMR (101 MHz,
CDCl3) δ 168.2, 162.5, 152.0, 148.9, 132.6, 130.3, 129.3, 126.8, 122.0, 121.7, 117.6, 116.4, 23.5, 19.3,
11.5, 10.9. FTIR (ZnSe) ν (cm−1): 2930, 2862, 1737, 1657, 1561, 1440, 1380, 1240, 1180, 1055,
997, 879. HRMS (ES TOF, m/z) calculated for C16H15NaN5O+ ([M + Na]+): 316.1166, found:
316.1169 (1.0 ppm).
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2-Heptyl-5-(1-heptyl-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-1,3,4-oxadiazole (3cb): This com-
pound was obtained via Method A employing 2-hydrazinylquinoline-4-carbohydrazide (2c)
(217 mg, 1.00 mmol) and 1-nitrooctane (1b) (636 mg, 4.00 mmol), purifying by silica gel
column chromatography (EtOAc/hexane, gradient 1:3–1:2–1:1, v/v). Dark brown solid, m.p.
198–200 ◦C (EtOAc), Rf 0.73, acetone/hexane (2:1, v/v). Yield: 355 mg (0.82 mmol, 82%).
1H-NMR (400 MHz, CDCl3-d) δ 9.48 (d, J = 8.1 Hz, 1H), 8.33 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H),
7.79 (t, J = 7.7 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 3.50 (t, J = 7.6 Hz, 2H), 3.01 (t, J = 7.5 Hz, 2H),
2.08 (quint, J = 7.7 Hz, 2H), 1.91 (quint, J = 7.4 Hz, 2H), 1.62–1.54 (m, 3H), 1.32 (ddt, J = 10.4, 7.4,
3.6 Hz, 13H), 0.89 (t, J = 6.7 Hz, 6H). 13C-NMR (101 MHz, CDCl3) δ 167.5, 162.5, 151.1, 148.9,
132.7, 130.3, 129.3, 126.8, 121.9, 120.8, 117.7, 116.4, 31.8, 31.7, 29.8, 29.5, 29.2, 29.1, 28.9, 26.8,
26.7, 25.53, 22.8, 22.7, 14.22, 14.19. FTIR (ZnSe) ν (cm−1): 3026, 2935, 2848, 1869, 1727, 1566,
1469, 1399, 1243, 1166, 997, 946. HRMS (ES TOF, m/z) calcd for C26H35NaN5O+ ([M + Na]+):
456.2728, found: 456.2734 (1.4 ppm).

2-Phenyl-5-(1-phenyl-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-1,3,4-oxadiazole (3cd): This
compound was obtained via Method B employing 2-hydrazinylquinoline-4-carbohydrazide
(2c) (217 mg, 1.00 mmol) and α-nitroacetophenone (1d) (495 mg, 3.00 mmol), purifying by
silica gel column chromatography (EtOAc/hexane, gradient 1:1– 3:1, v/v). Pale-brown solid,
m.p. 243–245 ◦C (acetone), Rf 0.53, EtOAc/hexane (3:1, v/v). Yield: 350 mg (0.90 mmol,
90%). 1H-NMR (400 MHz, CDCl3) δ 9.57 (dd, J = 8.3, 1.5 Hz, 1H), 8.68 (s, 1H), 8.28–8.21
(m, 2H), 7.75 (dd, J = 8.1, 1.5 Hz, 3H), 7.72–7.58 (m, 7H), 7.54–7.49 (m, 1H). 13C-NMR
(101 MHz, CDCl3) δ 165.0, 162.2, 149.9, 148.3, 137.0, 132.7, 132.0, 131.3, 130.3, 130.11 (2C),
129.52 (4C), 129.4, 128.7, 127.52 (3C), 123.3, 120.9, 117.3, 116.8. FTIR (ZnSe) ν (cm−1): 3335,
3195, 2988, 1783, 1761, 1655, 1554, 1375, 1243, 1050, 937. HRMS (ES TOF, m/z) calculated for
C24H15NaN5O+ ([M + Na]+): 412.1177, found: 412.1169 (−2.1 ppm).

2-(p-Tolyl)-5-(1-(p-tolyl)-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-1,3,4-oxadiazole (3cf): This
compound was obtained via Method B employing 2-hydrazinylquinoline-4-carbohydrazide
(2c) (217 mg, 1.00 mmol) and 1-(4-methylphenyl)-2-nitroethan-1-one (1f) [28] (394 mg,
2.2 mmol), purifying by silica gel column chromatography (ACETONE/hexane, gradient
1:3–1:2, v/v). Pale-brown solid, m.p. 190–191 ◦C (acetone), Rf 0.53, acetone/hexane (1:1, v/v).
Yield: 304 mg (0.73 mmol, 73%). 1H-NMR (400 MHz, CDCl3) δ 9.50 (d, J = 9.3 Hz, 1H), 8.56
(s, 1H), 8.10 (d, J = 8.2 Hz, 2H), 7.79–7.76 (m, 1H), 7.62 (d, J = 8.1 Hz, 3H), 7.50–7.46 (m, 1H),
7.42 (dd, J = 13.7, 7.9 Hz, 4H), 2.53 (s, 3H), 2.48 (s, 3H). 13C-NMR (101 MHz, CDCl3) δ 165.0,
162.1, 150.2, 148.8, 143.3, 141.3, 132.2, 130.2 (2C), 130.1 (2C), 129.90 (2C), 129.88, 129.2, 127.4
(2C), 127.1, 126.1, 122.4, 120.8, 120.5, 117.4, 117.2, 21.9, 21.8. FTIR (ZnSe) ν (cm−1): 2920, 2858,
1713, 1614, 1554,1513, 1465, 1380, 1250, 1180, 1016, 951. HRMS (ES TOF, m/z) calculated for
C26H19NaN5O+ ([M + Na]+): 440.1470, found: 440.1482 (−2.7 ppm).

2-Methyl-5-(1-methyl-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-1,3,4-oxadiazole (3cg): This
compound was obtained via Method B employing 2-hydrazinylquinoline-4-carbohydrazide (2c)
(217 mg, 1.00 mmol) and nitroethane (1g) (225 mg, 3.00 mmol), purifying by silica gel column
chromatography (acetone/hexane, gradient 1:1–acetone, v/v). White solid, m.p. 250–251 ◦C
(acetone), Rf 0.29, acetone. Yield: 219 mg (0.83 mmol, 83%). 1H-NMR (400 MHz, CDCl3) δ 9.46
(dd, J = 8.3, 1.5 Hz, 1H), 8.32 (dd, J = 8.5, 1.2 Hz, 1H), 8.29 (s, 1H), 7.78 (ddd, J = 8.6, 7.2, 1.5 Hz,
1H), 7.68 (ddd, J = 8.3, 7.2, 1.2 Hz, 1H), 3.21 (s, 3H), 2.72 (s, 3H). 13C-NMR (101 MHz, CDCl3)
δ 164.1, 162.7, 148.8, 147.3, 132.7, 130.4, 129.3, 126.9, 121.9, 120.6, 117.5, 116.1, 16.4, 11.3. FTIR
(ZnSe) ν (cm−1): 2925, 2853, 1703, 1652, 1614, 1578, 1508, 1472, 1395, 12540, 1180, 1161, 1055, 939.
HRMS (ES TOF, m/z) calculated for C14H11NaN5O+ ([M + Na]+): 288.0849, found: 288.0856
(2.5 ppm).

2-(4-Methylbenzyl)-5-(1-(4-methylbenzyl)-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-1,3,4-
oxadiazole (3ch): This compound was obtained via Method B employing 2-hydrazinyl-
quinoline-4-carbohydrazide (2c) (217 mg, 1.00 mmol) and 1-methyl-4-(2-nitroethyl)benzene
(1h) [29] (330 mg, 2.00 mmol), purifying by silica gel column chromatography (acetone/ hex-
ane, gradient 1:3–1:2, v/v). White solid, m.p. 214–215 ◦C (acetone), Rf 0.49, acetone/hexane
(1:2, v/v). Yield: 187 mg (0.42 mmol, 42%). 1H-NMR (400 MHz, CDCl3) δ 9.38 (dd, J = 6.4,
3.5 Hz, 1H), 8.30 (s, 1H), 8.10 (dd, J = 6.4, 3.4 Hz, 1H), 7.58 (dd, J = 6.4, 3.4 Hz, 2H), 7.31–7.28
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(m, 2H), 7.20 (d, J = 7.8 Hz, 2H), 7.13–7.06 (m, 4H), 4.90 (s, 2H), 4.32 (s, 2H), 2.36 (s, 3H), 2.29
(s, 3H). 13C-NMR (101 MHz, CDCl3) δ 165.9, 162.9, 149.2, 149.1, 137.8, 137.3, 132.0, 131.7,
130.4, 130.3, 130.0 (3C), 130.0, 129.0 (3C), 128.1 (2C), 126.9, 122.1, 120.5, 117.7, 117.1, 34.5, 31.6,
21.3, 21.2. FTIR (ZnSe) ν (cm−1): 3672, 2930, 2858, 1744, 1718, 1684, 1652, 1558, 1508, 1457,
1428, 1243, 1168, 1055, 992. HRMS (ES TOF, m/z) calculated for C28H23NaN5O+ ([M + Na]+):
468.1802, found: 468.1795 (−1.6 ppm).

2-(7-Bromo-1-ethyl-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-5-ethyl-1,3,4-oxadiazole (3da):
This compound was obtained via Method A employing 6-bromo-2-hydrazinylquinoline-
4-carbohydrazide (2d) (295 mg, 1.00 mmol) and 1-nitropropane (1a) (534 mg, 6.00 mmol),
purifying by silica gel column chromatography (gradient acetone/hexane 1:1, v/v–acetone).
Light-brown solid, m.p. 320–322 ◦C (acetone), Rf 0.66, acetone. Yield: 218 mg (0.59 mmol,
59%). 1H-NMR (400 MHz, DMSO-d6) δ 10.65 (d, J = 1.3 Hz, 1H), 10.09 (d, J = 1.3 Hz, 1H),
8.47 (d, J = 2.3 Hz, 1H), 8.34 (d, J = 9.2 Hz, 1H), 7.98 (dd, J = 9.1, 2.4 Hz, 1H), 7.83 (s, 1H),
3.49 (q, J = 7.3 Hz, 2H), 2.26 (q, J = 7.6 Hz, 2H), 1.50 (t, J = 7.3 Hz, 3H), 1.11 (t, J = 7.6 Hz,
3H). 13C-NMR (101 MHz, DMSO-d6) δ 173.0, 165.5, 152.1, 148.2, 133.1, 132.7, 131.6, 129.7,
123.6, 119.9, 119.1, 116.0, 27.0, 22.7, 11.5, 10.1. FTIR (ZnSe) ν (cm−1): 3301, 3205, 2992, 2906,
2848, 1775, 1669, 1534, 1457, 1375, 1243, 1166, 1048, 932. HRMS (ES TOF, m/z) calculated for
C16H14BrNaN5O+ ([M + Na]+): 394.0270, found: 394.0274 (0.9 ppm).

2-(7-Bromo-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-1,3,4-oxadiazole (3dc): This compound
was obtained via Method A employing 6-bromo-2-hydrazinylquinoline-4-carbohydrazide (2d)
(295 mg, 1.00 mmol) and 1-nitromethane (1c) (427 mg, 7.00 mmol), purifying by silica gel
column chromatography (gradient acetone/hexane, 2:1, v/v–acetone). Colorless solid, m.p.
311–312 ◦C (acetone), Rf 0.67, acetone. Yield: 195 mg, 62%. 1H-NMR (400 MHz, DMSO-d6) δ
10.17 (d, J = 0.8 Hz, 1H), 9.59 (s, 1H), 9.36 (d, J = 2.2 Hz, 1H), 8.57 (d, J = 8.9 Hz, 1H), 8.51 (d,
J = 0.8 Hz, 1H), 8.15 (dd, J = 8.9, 2.2 Hz, 1H). 13C-NMR (101 MHz, DMSO) δ 161.5, 154.8, 146.1,
137.6, 133.4 (2C), 129.9, 129.8, 120.8, 120.4, 119.5, 118.3. FTIR (ZnSe) ν (cm−1): 3629, 3099, 1746,
1705, 1684, 1532, 1505, 1469, 1414, 1245, 1166, 1101, 1040, 970. HRMS (ES TOF, m/z) calculated
for C12H6BrN5NaO+ ([M + Na]+): 337.9652, found: 337.964 (−1.3 ppm).

2-(7-Bromo-1-phenyl-[1,2,4]triazolo[4,3-a]quinolin-5-yl)-5-phenyl-1,3,4-oxadiazole
(3dd): This compound was obtained via Method B employing 6-bromo-2-hydraziny-
lquinoline-4-carbohydrazide (2d) (295 mg, 1.00 mmol) and α-nitroacetophenone (1d)
(495 mg, 3.00 mmol), purifying by silica gel column chromatography (gradient acetone/
hexane, 1:1, v/v–acetone). Brown solid, m.p. 247–248 ◦C (acetone), Rf 0.51 (acetone/hexane,
1:1, v/v). Yield: 378 mg (0.68 mmol, 68%). 1H-NMR (400 MHz, chloroform-d) δ 9.78 (t,
J = 1.3 Hz, 1H), 8.64 (s, 1H), 8.24–8.21 (m, 2H), 7.74–7.62 (m, 8H), 7.59 (d, J = 1.3 Hz, 2H). 13C-
NMR (101 MHz, DMSO) δ 133.3, 132.8, 131.85, 131.4, 130.0 (5C), 129.7 (3C), 129.6 (5C), 127.5
(4C), 118.6, 117.91, 117.90. FTIR (ZnSe) ν (cm−1): 3613, 3080, 1747, 1675, 1601, 1568, 1557,
1457, 1373, 1282, 1114, 1077, 945. HRMS (ES TOF, m/z) calculated for C24H14BrN5NaO+

([M + Na]+): 490.0258, found: 490.0274 (3.3 ppm).
Ethyl 5-(3-(ethoxycarbonyl)-[1,2,4]triazolo[4,3-a]pyridin-7-yl)-1,3,4-oxadiazole-

2-carboxylate (3ae): This compound was obtained via Method C employing 2-hydraziny-
lisonicotinohydrazide (2a) (167 mg, 1.00 mmol) and ethyl 2-nitroacetate (1e) (400 mg,
3.00 mmol), purifying by silica gel column chromatography (acetone/hexane 1:4, v/v).
Colorless power, m.p. 199–200 ◦C (acetone), Rf 0.37, acetone/hexane (1:1, v/v). Yield:
215 mg, 65%. 1H-NMR (400 MHz, CDCl3) δ 9.33 (dd, J = 7.3, 1.1 Hz, 1H), 8.80–8.62 (m,
1H), 7.88 (dd, J = 7.3, 1.6 Hz, 1H), 4.61 (dq, J = 11.1, 7.1 Hz, 4H), 1.52 (dt, J = 10.6, 7.1 Hz,
6H). 13C-NMR (101 MHz, CDCl3) δ 163.6, 158.1, 157.3, 153.9, 150.5, 138.6, 127.0, 123.5,
116.4, 113.3, 64.1, 63.0, 14.3, 14.1. FTIR (ZnSe) ν (cm−1): 2925, 2848, 1739, 1698, 1563,
1532, 1462, 1387, 1313, 1255, 1187, 157, 1011, 934, 848. HRMS (ES TOF, m/z) calculated
for C14H13N5NaO5

+ ([M + Na]+): 354.0797, found: 354.0809 (3.4 ppm).
Ethyl [1,2,4]triazolo[4,3-a]quinoline-1-carboxylate (10a). This compound was ob-

tained via Method C (only PPA) employing 2-hydrazinylquinoline (159 mg, 1.00 mmol)
and ethyl 2-nitroacetate (2e) (400 mg, 3.00 mmol). This material can be used in the subse-
quent transformation in crude form. The sample for analytical purposes was purified by
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silica gel column chromatography (acetone/hexane 1:2, v/v) to obtain a pale-yellow solid,
m.p. 145–146 ◦C (acetone); yield: 140 mg, 58%. Rf 0.33, acetone/hexane (1:1, v/v). 1H-NMR
(400 MHz, CDCl3) δ 8.85 (dq, J = 8.7, 0.8 Hz, 1H), 7.84 (dd, J = 7.8, 1.6 Hz, 1H), 7.77–7.68
(m, 3H), 7.59 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 4.64 (q, J = 7.1 Hz, 2H), 1.55 (t, J = 7.2 Hz, 3H).
13C-NMR (101 MHz, CDCl3) δ 159.9, 151.2, 142.0, 132.0, 131.6, 129.9, 129.4, 127.3, 124.9,
119.4, 114.6, 63.4, 14.3. FTIR (ZnSe) ν (cm−1): 3325, 3243, 3002, 1761, 1677, 1527, 1443, 1375,
1248, 1091, 1055, 949. HRMS (ES TOF, m/z) calculated for C13H11N3NaO2

+ ([M + Na]+):
264.0739, found: 264.0743 (1.9 ppm).

1-(5-Ethyl-1,3,4-oxadiazol-2-yl)[1,2,4]triazolo[4,3-a]quinoline (12a). This compound
was obtained via Method A employing [1,2,4]triazolo[4,3-a]quinoline-1-carbohydrazide
(11a) (227 mg, 1.00 mmol) and 1-nitropropane (1a) (267 mg, 3.00 mmol), purifying by
silica gel column chromatography (acetone/hexane 1:2–1:1, v/v). Pale-brown solid, m.p.
160–161 ◦C (acetone); yield: 140 mg, 43%. Rf 0.37, acetone/hexane (1:1, v/v). 1H-NMR
(400 MHz, CDCl3) δ 9.56 (dq, J = 8.6, 0.8 Hz, 1H), 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.82–7.72
(m, 3H), 7.63 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 3.11 (q, J = 7.6 Hz, 2H), 1.54 (t, J = 7.6 Hz, 3H).
13C-NMR (101 MHz, CDCl3) δ 169.7, 157.2, 151.4, 136.8, 132.0, 131.8, 130.3, 129.4, 127.6,
124.9, 119.3, 114.6, 19.5, 10.9. FTIR (ZnSe) ν (cm−1): 3320, 3234, 2992, 1763, 1679, 1554, 1378,
1250, 1052, 937. HRMS (ES TOF, m/z) calculated for C14H11N5NaO+ ([M + Na]+): 288.0847,
found: 288.0856 (3.1 ppm).

2-Ethyl-5-(5-methyl-[1,2,4]triazolo[4,3-a]quinolin-1-yl)-1,3,4-oxadiazole (12b). This
compound was obtained via Method A employing 5-methyl-[1,2,4]triazolo[4,3-a]quinoline-
1-carbohydrazide (11b) (241 mg, 1.00 mmol) and 1-nitropropane (1a) (267 mg, 3.00 mmol),
purifying by silica gel column chromatography (acetone/hexane 1:2–1:1, v/v). Pale-yellow
solid, m.p. 147–149 ◦C (acetone); yield: 127 mg, 47%. Rf 0.40, acetone/hexane (1:1, v/v).
1H-NMR (400 MHz, CDCl3) δ 9.59 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 8.0, 1.5 Hz, 1H), 7.75
(ddd, J = 8.7, 7.3, 1.5 Hz, 1H), 7.70–7.62 (m, 2H), 3.10 (q, J = 7.6 Hz, 2H), 2.71 (s, 3H), 1.53 (t,
J = 7.6 Hz, 3H). 13C-NMR (101 MHz, CDCl3) δ 169.3, 157.9, 150.9, 139.3, 136.8, 132.0, 130.0,
127.5, 125.9, 125.4, 119.4, 113.7, 19.95, 19.4, 10.9. FTIR (ZnSe) ν (cm−1): 2930, 2858, 1746,
1648, 1566, 1460, 1385, 1243, 1163, 1115, 1062, 966, 848, 807. HRMS (ES TOF, m/z) calculated
for C15H13N5NaO+ ([M + Na]+): 302.1003, found: 302.1012 (3.1 ppm).

4. Conclusions

In conclusion, an efficient protocol for simultaneous parallel cyclization of [1,2,4]
triazolo[4,3-a]quinoline and 1,3,4-oxadiazole heterocyclic rings was developed. The fea-
tured transformation involved an unprecedented double-fold nucleophilic attack by two
different hydrazine moieties of 2-hydrazineylpyridinecarbohydrazide substrates on ni-
troalkanes electrophilically activated in a polyphosphoric acid medium. The method
provides an expeditious and direct access to [1,2,4]triazolo[4,3-a]quinolines bearing a 1,3,4-
oxadiazole substituent, which might be of interest for medicinal chemistry. Furthermore,
this research paves the road for development of other acid-mediated cascade transforma-
tions for preparation of complex heterocyclic compounds. Synthesis of a focused library
for biological studies is currently underway in our laboratories.

Supplementary Materials: Supporting Information data include NMR and HRMS spectral charts
and X-ray crystallography data.
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