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Abstract

Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of

growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis

(13C-MFA) was used to determine and quantify the metabolic pathways of primary metabo-

lism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole car-

bon source. Isotopic labeling patterns of compartment specific biomass derived metabolites

were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the

three subcellular compartments (cytosol, mitochondria and plastid) included in the model.

Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one

localized in the mitochondria and the other acting outside the mitochondria. Labeling pat-

terns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in syn-

thesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also

found that a majority of the malate flux is shuttled to the cytosol and plastid where it is con-

verted to oxaloacetate providing reducing equivalents to these compartments. When com-

pared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to

be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to pro-

duce ATP and reducing equivalents.

Introduction

Rising levels of carbon dioxide in the atmosphere have increased the need to develop more sus-

tainable sources of feedstocks traditionally supplied by petroleum. Although there are many

options for renewable energy, certain sectors (such as transportation) still require liquid fuels.

One of the more promising sources of liquid transportation fuel is algae derived biodiesel [1,

2], which has higher energy density than ethanol and does not compete with food or feed

supplies for resources, especially when brackish water can be used for cultivation. Despite

increased interest in the development of algal-derived fuels, there is a general lack of knowl-

edge of algal biology which has delayed attempts to engineer these organisms for increased

production of fuels. One of the most prominent model systems, Chlamydomonas reinhardtii,
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has long been used for photosynthesis and chloroplast biogenesis research [3, 4] and was one

of the first algal genomes sequenced [5]. Until recently, it was also the only green algae species

in which sophisticated metabolic engineering could be attempted due to a general lack of tools

for other species [6]. Despite the wealth of knowledge, much remains in order to understand

basal in vivo carbon fluxes, which is a first step in rational metabolic engineering.

The ability to quantify intracellular metabolic fluxes provides researchers a systems level

view of genetic and environmental effects on metabolism. Flux balance analysis (FBA) is a

mathematical modeling technique for predicting intracellular carbon fluxes using stoichiomet-

ric balances, uptake rates of nutrients as constraints and optimization principles such as maxi-

mizing the cellular growth rate to estimate intracellular fluxes. FBA has been applied to a

variety of model photosynthetic organisms, including (but not limited to) Synechocystis sp.

PCC 6803 [7–9], Synechococcus sp. PCC 7002 [10, 11], Cyanothece sp. ATCC 51142 [12], C.

reinhardtii [13–17], Chlorella sp. FC2 IITG [18], Chlorella protothecoides [19], and Arabidopsis
thaliana [20] to estimate fluxes and yields. However, despite its widespread use to predict

fluxes in large-scale networks, studies have shown that FBA is not always accurate in predict-

ing in vivo fluxes [21, 22]. A variety of modifications have been added to the classical formula-

tion of FBA to account for non-optimal growth [22–25], including thermodynamic and

regulatory constraints. Despite the development of these more complex FBA models, isotope

assisted metabolic flux analysis (MFA) is the standard technique used to quantify intracellular

fluxes because the additional data (in the form of isotopic labelling of metabolites and flux split

ratios) allows measurement of fluxes in the cell instead of assuming optimization of an objec-

tive function [26, 27]. 13C metabolic flux analysis (13C-MFA) is a powerful technique that uti-

lizes in vivo isotopic labeling patterns of metabolites and mathematical modeling to quantify

fluxes. MFA has been applied to a variety of organisms, including crops such as rice [28] and

soybean [29–31] and has been also used to distinguish various network topologies and quantify

the flux through parallel pathways in plants, such as the presence of glycolytic and pentose

phosphate (PPP) pathways in both the cytosol and plastid in Arabidopsis [32], Brassica napus
[33] and Maize [34–36]. More recently, 13C-MFA has been used to investigate heterotrophic

fluxes of the green alga Chlorella protothecoides in nitrogen replete and limited conditions [19,

37].

The main goal of this study is to investigate heterotrophic growth of C. reinhardtii with 13C

labeled acetate and employ 13C–MFA to answer key qualitative and quantitative questions

regarding acetate assimilation and utilization. As an acetate flagellate, the only carbon source

which can be metabolized by C. reinhardtii in the absence of light is acetate and other two car-

bon molecules; therefore, quantifying metabolic fluxes for growth on acetate is integral to

understanding heterotrophic carbon fluxes in C. reinhardtii. The exact mechanism of acetate

assimilation in C. reinhardtii is yet unknown, but is generally thought to be transported into

the mitochondrion, and assimilated via the glyoxylate shunt [4]. According to version 5.5 of

the Chlamydomonas genome draft at JGI [5], Chlamydomonas has three acetyl-CoA synthe-

tase genes (ACS1, ACS2, ACS3) and two acetate kinase genes (ACK1, ACK2) which encode the

enzymes responsible for initiating the conversion of acetate into Acetyl-CoA. The distributed

sub-cellular localization of these enzymes and experimental evidence indicates that acetate can

be transported into any of the three major compartments in the cell for assimilation (i.e. cyto-

sol, mitochondrion and the plastid). C. reinhardtii also possesses the genes for the glyoxylate

shunt, isocitrate lyase (ICL) and malate synthase (MAS1), which are critical for 2 carbon sub-

strate utilization and are both targeted to mitochondria. Blaby et al. report the activity of ICL

and MAS1 in Chlamydomonas grown in TAP medium, with dramatic increases when cells are

starved for nitrogen, a condition that results in increased triacylglycerol accumulation [38].

One of the first steps of AcCoA assimilation is the reaction between oxaloacetate and AcCoA

13C-MFA Chlamy
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to form citrate by citrate synthase; C. reinhardtii has two citrate synthase genes, CIS1 and CIS2.

CIS1 is predicted to be mitochondrial [39], while CIS2 is predicted to be non-mitochondrial

due to the presence of a different target peptide sequence [40]. We compared fluxes calculated

by 13C-MFA to those predicted by the previously reported FBA model developed by our lab

[13] to gain insight into cellular physiology and how fluxes deviate from optimal fluxes

distributions.

Materials and methods

Culture conditions

Chlamydomonas reinhardtii (CC-400 cw15 mt+) was obtained from the Chlamydomonas

Genetics Center (Duke University, Durham, NC). Cells were cultivated in a 1.5 L Bioflo 3000

from New Brunswick Scientific (Edison, NJ) with a working volume of 1.3 liters in Tris-ace-

tate-phosphate (TAP) medium [4]. The composition of TAP medium is given in Table 1. To

prevent light from penetrating into the reactor, the surface was covered with aluminum foil. A

mixture of labeled and unlabeled acetic acid (Sigma St. Louis, MO) was used in the medium in

the following ratio (w/w) 0.4 unlabeled acetic acid: 0.3 [1-13C] acetic acid: 0.3 [13C2] labeled

acetic acid. Cells were cultivated at 25˚C, 250 rpm and sparged with air at a rate of 1 vvm. Cells

were grown in pH-stat mode at pH 7.5, which was controlled using 20% NH4OH and 20% ace-

tic acid in the same isotopic ratio as the original media. Therefore, the concentration of acetate

in the reactor was maintained at a constant concentration and isotopic 13C ratio throughout

the growth period. Acetate uptake was monitored by tracking acetate addition to the reactor.

Cells were sampled in mid-exponential phase growth, as indicated in S1 Fig. Growth and yield

data are provided in S2 Table. The acetate uptake rate was 0.26 mmol/hr.

Sampling and extraction

Cells were sampled and processed in a modified procedure from that reported in Lee and

Fiehn [41]. Cells were harvested by injecting 15 ml of cell suspension from the reactor into 30

ml of -70˚C methanol kept in a dry ice/ethanol bath to maintain a temperature below -20˚C.

Samples were then centrifuged at 10,000 rpm for 10 minutes in a prechilled rotor at -20˚C.

The supernatant was removed and the cell pellet was flash frozen in liquid nitrogen. The frozen

cell pellet was then transferred to a ball mill MM 400 (Retsch GmbH & Co., Germany) with a

single stainless steel ball (i.d. = 5 mm). One ml of cold (-70˚C) methanol was added to the

grinder chamber which was then immersed in liquid nitrogen for approximately 1 minute.

The grinding chamber was then placed in the ball mill and the sample was processed for 3

minutes at 15 Hz. After removing the liquid in the chamber, an additional 1 ml of cold metha-

nol was used to rinse the chamber. The extracts and rinsing fluid were combined and then cen-

trifuged at 10,000 rpm for 10 minutes at -20˚C. The pellet was resuspended in 1 ml cold

Table 1. Brief overview of the macromolecule of interest and how each provides distinct information of compartment specific labelling.

Cellular Component Molecules Compartment(s)

Starch hexoses plastid

Cell Wall xylose, arabinose, galactose and mannose cytosol

Lipids palmitic and oleic acids plastid (acetyl-CoA)

Protein proline, threonine, leucine, isoleucine, phenylalanine plastid

glutamate mitochondria

alanine cytosol/plastid

aspartate mitochondria/plastid

https://doi.org/10.1371/journal.pone.0177292.t001

13C-MFA Chlamy
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methanol, spun down and the supernatant combined with the extract from the previous step.

The pellet was saved for further processing. The extract was dried in a centrivap (Labconco,

Kansas City, MO) and kept at -80˚C until analysis by GC/MS (to measure organic acids).

Starch and cell wall hydrolysate

Analysis of labeling in starch and cell wall hydrolysates was analyzed as described by Allen

et al. [31]. The pellet resulting from the methanol extraction was resuspended in 0.5 ml of 0.1

M acetate buffer, pH = 4.8. The solution was autoclaved for 1 hour, and allowed to cool to

room temperature. A 10 mg solution of amyloglucosidase and amylase in a 2:3 ratio (Sigma,

St. Louis) was added and incubated at 55˚C for 1 hour. One ml of ethanol was added and the

solution heated to 95˚C for 15 minutes to denature the enzymes. The solution was then centri-

fuged at 4000 rpm for 5 minutes and the supernatant fraction (starch) was saved. A second

extraction was performed by resuspending the pellet in 2 ml of 8% ethanol and pelleted again.

The supernatant was combined with that saved in the first step and dried in a centrivap. The

pellet was then resuspended in 500 μl 2 M trifluoroacetic acid and incubated at 120˚C for 2

hours. The solution was then centrifuged at 10,000 rpm for 5 minutes and the supernatant

removed. 500 μl 0.5 M NH4OH was then added to the supernatant and dried in a centrivap

and kept at -80˚C until analysis by GC/MS (to measure sugars present in starch and the cell

wall).

Hydrolysis of proteins

Cell pellets resulting from the methanol extraction step was resuspended in 1 ml 6 M HCl and

heated at 120˚C for 24 hours under vacuum to hydrolyze the proteins to amino acids. The

solution was then dried in a centrivap and kept at -80˚C until analysis by GC/MS (to measure

amino acid composition and concentrations).

Derivatization

Samples for organic acids, amino acids and sugars were derivatized for GC/MS analysis. First,

dried samples were resuspended in 100 μl methoxyamine HCl in pyridine (20 mg/ml) and

placed in a heating block at 40˚C for 90 minutes. Immediately following this, 100 μl of either

trimethylsilane (TMS) or t-butyldimethylsilyl (TBDMS) was added; samples were vortexed

and then, placed in a heating block at 40˚C for 30 minutes. For the analysis of sugars and

organic acids, the derivatization agent used was TMS; for the analysis of amino acids, TBDMS

was used. The TMS derivatized sugars produced characteristic fragment ions that contain

information on positional labeling of the carbon atoms [42].

Fatty acids

Dried methanol extracts were resuspended in 600 μl hexane to which 500 μl butylamide was

added. The reaction was allowed to proceed for one hour at 40˚C, after which the reaction was

quenched by drop-wise addition of 4M HCl. The samples were then vortexed, the organic

layer was removed and the aqueous layer was extracted again with 500 μl hexane. After vortex-

ing, the organic layer was removed and combined with the first extract and dried. The dried

butylamide derivitaives were then resuspended in 300 μl hexane and analyzed with GC/MS.

Analytical methods

GC-MS analysis was carried out on an Agilent 7890A gas chromatograph coupled to an Agi-

lent 5975C inert MSD quadrupole mass spectrometer. The GC was equipped with a HP-5MS

13C-MFA Chlamy
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column (0.25mm x 30m x 0.25μm, Agilent, Santa Clara, CA) with helium as the carrier gas.

Interface and ion source temperatures were both 230˚C. Amino acids were analyzed with a

split-less 1μl injection. Oven temperature was initially held at 135˚C for 3 minutes followed

by a ramp of 2.5˚C/minute up to a temperature of 280˚C for 2 minutes. Sugars in cell wall

hydrolysate and starch samples were analyzed with a 1μl injection 10:1 split ratio. The oven

temperature was initially held at 150˚C for 1 minute followed by a ramp of 5˚C/minute up to a

temperature of 175˚C followed by a ramp of 3˚C /minute up to a temperature of 240˚C where

it was held for 2 minutes followed by a final ramp of 10˚C /minute up to 250˚C. Fatty acids

were analyzed with a split-less 1μl injection. Oven temperature was initially held at 80˚C for 3

minutes followed by a 30˚C/min ramp up to 200˚C where it was held for 2 minutes followed

by another ramp of 6˚C/min up to 305˚C. Labeling patterns of metabolites, amino acids, fatty

acids and sugars used in the model are given in the supplementary material, S3–S7 Tables.

Mathematical modeling

Flux balance analysis. The previously reported stoichiometric model for C. reinhardtii
[13] was used to predict intracellular fluxes for two objective functions. The yield measured

during pH-stat growth for this experiment, 16.6 g DW per mole acetate, differed from that pre-

viously reported from a batch growth study and thus the maintenance cost was adjusted to fit

the model to the experimental yield. The maintenance cost, in terms of ATP, increased from

29.9 mmol ATP/g biomass to 140 mmol ATP/g biomass. Maximum biomass for heterotrophic

growth was simulated as previously described [13]. The objective function of maximum ATP

production was performed by maximizing the sum of fluxes through ATP hydrolysis reactions

(ν167, ν168, ν169). Acetate uptake was constrained to the same value used for 13C-MFA calcu-

lations, 0.26 mmol/hr. Starch and lipids were allowed to accumulate in both simulations. The

coefficients for precursors required to produce 1 kg biomass are given in S8 Table.

Flux evaluation with isotopomer balancing. In general, the process is to identify the set

of reactions and corresponding fluxes that are best supported by the 13C labeling data. The

evaluation of alternative network topologies was performed first followed by parameter opti-

mization (see Fig 1). Flux evaluation was performed using isotopomer modeling similar to pre-

viously reported models [26, 27, 43, 44]. The set of isotopomer balances were solved to obtain

isotopomer distribution vectors (IDV). The isotopomer modeling strategy is given in supple-

mentary S3 Fig. The total size of the isotopomer balance was 854, and the model consisted of

44 independent parameters, of which 10 were independent fluxes, the remaining were

exchange coefficients and G parameter (fractional biomass dilution parameter). There were

112 mass distribution vectors (MDVs) from MS measurements utilized in the fitting proce-

dure. The concept of G parameter was first introduced by Antoniewicz et al. [45] to account

for the dilution of the observed biomass labeling patterns due to presence of the original unla-

beled biomass in batch culture. Thus G represents the fractional contribution of the actual

labeled biomass towards the observed labeling patterns and 1-G is the fractional contribution

of the unlabeled biomass (from inoculation) towards the observed labeling patterns. The G

parameters were solved for along with the fluxes in the optimization framework described in

Fig 1. Further it should be noted that for the comparison for network topologies a single G

parameter was used for the entire biomass. However for the final reported flux map, different

G parameters were assigned to different biomass components (lipids, cell wall, plastidic sugars

and proteins). Multiple MDVs belonging to the same metabolite will have the same G parame-

ter associated with it (as shown below). Where MDVexp_m is the experimentally observed

MDV for a metabolite, MDVcalculated is the calculated MDV, derived from solving the

13C-MFA Chlamy
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isotopomer balances, and MDVnatural is the natural abundance.

MDVexp m ¼ MDVcalculated � Gm þMDVnatural � ð1 � GmÞ ð1Þ

The IDVs were used to calculate the MDVs, and the calculated MDVs were used for least

square optimization. The objective function was minimization of the sum of the square of the

difference between the experimentally observed and simulated MDVs (see Eq 1).

Obj ¼
Pn

i¼0
ðMDVcal � MDVexpÞ

2

i ð2Þ

Where N is total number of species, MDVcal was the calculated MDV and MDVexp was the

experimental value of a particular species. The optimization was performed in MATLAB

R2009b (MathWorks, Natick, MA, USA) using fmincon that implements optimization for

constrained non-linear functions. Further, since the results from non-linear optimization are

dependent on initial flux estimates, different estimates were tested for obtaining the best solu-

tion. The flux model variance and 95% confidence intervals were determined with the method

of Antoniewicz et al. [46]. Since we did not have replicates, the chi-square statistic could not be

used for estimation of the confidence interval, instead F-statistic was used for determining the

confidence intervals as described in Antoniewicz et al., 2006.

Fig 1. Schematic of the overall modeling strategy. All the cases were evaluated independently and were

evaluated by including dilution due to existing unlabeled biomass and unlabeled CO2 from air. The case that

gave the best statistical fit was selected as the final flux map for heterotrophic growth on acetate.

https://doi.org/10.1371/journal.pone.0177292.g001

13C-MFA Chlamy
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Since this was a non-weighted least squares optimization, the goodness of fit was evaluated

by plot of the residual vs. MDV (see supplementary material S2 Fig). It was found that the

residual vs. MDV plot was randomly distributed. The norm plot of the residues could be

approximated as a normal distribution with μ = -.0774 and σ = 1.85, indicated that the residu-

als were normally distributed (with some deviation, as it is non-weighted). The average mean

difference for the fitted MDVs observed was 1.3%. The high average mean difference could be

attributed to biological experimental variation as increasing number of independent variables

or flux network topology did not change the average difference (data not shown).

Compartment specific labeling information

We obtained information on compartment specific labeling patterns based on methods

described by Allen et al. [31]. The table below gives a brief overview of the source, molecule of

interest and what compartment. Some metabolites can have labelling from more than one

compartment, and thus an additional parameter which describes the fractional contribution

from each of these compartments was included, and determined by optimization along with

flux analysis. Further, for each amino acid, multiple fragments were included as described in

Antoniewicz et al. [45] (see supplementary material).

Comparison of different network topologies using F statistics

The comparison of models was done in terms of F statistics [46]. To evaluate whether inclusion

or exclusion of certain model parameter has a statistically significant effect, the following equa-

tion is used for evaluating the F value.

F ¼
R1 � R2

n2 � n1

� �

R2

p� n2

� �

2

4

3

5 ð3Þ

Here, R1 is the residual (sum of square difference between experimental and simulated val-

ues) for the original model and R2 is the residual for the new model to be tested, (e.g. inclusion

of G parameter, or inclusion/exclusion of reaction). The degrees of freedom for the original

model and the new model are represented by n1 and n2 respectively. The number of experi-

mental observations, which are the MDVs in our case, is represented by p. It should be noted

that the F statistic value accounts for increase in degrees of freedom, and thus precludes

improvement in fits as a result of overfitting. Once the F value is calculated, it is compared

against critical F value, at a specified confidence level (90–99%), for testing the null hypothesis.

If the calculated F value is greater than the critical value at a given confidence, it implies that

the model is statistically different and fits the data better at the desired confidence level.

Effect of dilution due to CO2 on labeling patterns

In this study, dissolved CO2 or HCO3
- are lumped and modeled as CO2. Intracellular CO2 pro-

duced by metabolic reactions was considered to be freely transported across compartments,

and thus assumed to be at isotopic equilibrium inside the cell. The exchange of extracellular

and intracellular CO2 from air was also included in the model. The CO2 transport was mod-

eled as a reversible reaction and was characterized using an exchange coefficient; which is a

parameter that gives a degree of reversibility for the transport. We used the method of Wei-

chert and de Graaf for exchange coefficients [47].

13C-MFA Chlamy
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Results

Network construction for heterotrophic growth

Previously reported network reconstructions of C. reinhardtii [13, 14] [15–17], included hun-

dreds of metabolic and transport reactions. The goal of this work was to identify fluxes in pri-

mary metabolism, therefore, we simplified the metabolic network reconstruction first reported

by Boyle and Morgan [13] to be used as the basis for 13C-metabolic flux analysis (13C-MFA)

(see Fig 2). Reactions were lumped based on published models for plant systems [29, 33] and

on the analysis of compartment specific labeling information, which was used to distinguish

compartment-specific reactions [31]. The simplified 13C-MFA model included three compart-

ments: cytosol, plastid and mitochondria. There are two main enzymatic routes for acetate

assimilation in Chlamydomonas; the first is through acetyl-CoA synthetase and the second is

the coordinated effort of acetate kinase and phosphate acyltransferase; however, it is not

Fig 2. Simplified metabolic network for MFA of Chlamydomonas reinhardtii. The network consists of plastidic and cytosolic glycolysis and pentose

phosphate pathway. The acetate imported (v69) can be metabolized through acetyl CoA synthetase (v17), cytosolic citrate synthase (v70) and plastidic acetyl

CoA synthetase/acetate kinase (v68). Possible pathway for plastidic gluconeogenesis (-.-). Biomass fluxes are represented by (—). Metabolite abbreviations:

G6P: glucose-6-phosphate, F6P: fructose-6-phosphate, T3P: Dihydroxyacetone phosphate and 3-phosphoglycerate, P5P: Pentose Phosphates: Ribulose-

5-phosphate, Xylulose-5-phosphate, AcCoA: Acetyl-coA, PEP: phosphoenol pyruvate, Pyr: pyruvate, CIT: Citrate, ICT: isocitrate, AKG: alpha-ketoglutarate,

SUC: succinate, MAL: Malate, OAA: oxaloacetate, GOX: glyoxylate, E4P: erythrose-4-phosphate, S7P:sedoheptulose-7-phosphate.

https://doi.org/10.1371/journal.pone.0177292.g002
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possible to distinguish these from one another from isotopic labeling; therefore these steps

were lumped together in the simplified model. The Chlamydomonas genome encodes two cit-

rate synthases, CIS1 and CIS2. CIS1 is predicted to be mitochondrial [39], and CIS2, which

possesses a different targeting sequence is predicted to be non-mitochondrial and perhaps

glyoxysomal based on sequence homology to plants [40]. However, the presence of glyoxy-

somes in Chlamydomonas is still uncertain [48]. Moreover, there is no evidence of a chloro-

plast targeting peptide in CIS2 [49] and citrate synthase activity in C. reinhardtii was reported

only in cytosolic fractions [50]. Therefore, this non-mitochondrial citrate synthase was local-

ized to the cytosol in the mathematical model.

Gluconeogenesis is necessary for growth on acetate; therefore, we also closely examined the

localization of enzymes in this pathway. Two splice variants of phosphoenolpyruvate carboxy-

kinase, PCK1a and PCK1b, have been reported in C. reinhardtii. PCK1b is predicted by Tar-

getP to be targeted to the cytosol [49] and the signal peptide for PCK1a is not definitive and

may be chloroplastic or mitochondrial according to TargetP and iPSORT [51]. Enzymes for a

second gluconeogenic pathway, located in the plastid, are also encoded in the genome [40].

This pathway includes the conversion of malate to pyruvate by malic enzyme (MME4) fol-

lowed by the conversion of pyruvate to PEP catalyzed by pyruvate phosphate dikinase. Two

isoforms of pyruvate phosphate dikinase, PPD1 and PPD2 have been reported in C. reinhard-
tii, of which PPD2 is most likely chloroplastic based on homology to Flaveria pringlei and Tar-

getP predictions [40, 49]. In either case, these two alternative routes in the plastid result in the

same carbon atom transitions and hence are indistinguishable by 13C tracing and hence are

represented by one reaction in the model. Due to strong evidence for the presence of these

reactions in the plastid, plastidic gluconeogenesis was also included in the model. Other reac-

tions included in the simplified network include: glycolysis and pentose phosphate pathways

in both the cytoplasm and plastid, TCA cycle and glyoxylate shunt in mitochondria, transport

of hexoses, pentoses, trioses and select TCA cycle intermediates across compartments [13].

CO2 fixation by RuBisCO was not included because the culture was grown heterotrophically

(without light on acetate) and therefore RuBisCO would not be active [52].

Metabolic flux analysis

The ability to accurately model isotopic labeling patterns depends on the selected network

topology and the fluxes through these networks. Compartment-specific labeling data was

obtained based on the method developed by Allen et al. [31]. Different network topologies (i.e.

the presence of a non-mitochondrial citrate synthase, and the role of cytosolic vs. plastidic glu-

coneogenesis) were evaluated by comparing residues by F-statistics [46] in order to determine

which reactions should be included in the final network. The F-statistics were used as a basis

of comparison to minimize effects of differing degrees of freedom between the different net-

work topologies and to avoid overfitting (see methods). Fig 3 shows the different combinations

of network topologies tested and Table 1 summarizes the residues for each case.

Identification of metabolic pathways

Cytosolic gluconeogenesis. The importance of cytosolic gluconeogenesis was evaluated

by comparing the network topologies where it was included or excluded. Case A and Case E

differ in inclusion of cytosolic gluconeogenesis or its exclusion, respectively (Fig 3) and both

lack the cytosolic citrate synthase. In comparing the statistical fits with the same degrees of

freedom, we found the residual for Case A (4.9) was 30% less than Case E (7.0). Similarly, in

Case B and Case D, which both have the cytosolic citrate synthase but differ in the presence or

absence of cytosolic gluconeogenesis, Case B had a lower residual (4.8) than Case D (5.7) with

13C-MFA Chlamy
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Fig 3. Simplified diagram depicting the different network cases studied. (A) The ‘base case’ in which the network only includes

cytosolic gluconeogenesis. (B) This case, based on case A, also includes cytosolic citrate synthase, which was included based on

genomic and proteomic evidence. (C) This case is case B with the addition of plastidic gluconeogensis. (D) No cytosolic

gluconeogenesis was included, but cytosolic citrate synthase and plastidic gluconeogenesis are included. (E) Only plastidic

gluconeogenesis is included. The table in the bottom right hand corner gives the residuals (calculated by F-statistic) and degrees of

freedom for each case. Additional information about statistical significance is provided in supplemental info.

https://doi.org/10.1371/journal.pone.0177292.g003
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the same degrees of freedom. As expected, it was apparent that including flux through cytosolic

gluconeogenesis better matches the labeling pattern and therefore was selected.

Plastidic gluconeogenesis. In order to test whether plastidic gluconeogenesis should be

included in the final network topology, we compared residuals between Case B and C (Fig 3).

Inclusion of plastidic gluconeogenesis reactions (Case C) matched the labeling patterns with a

slightly lower residue (4.74) when compared to Case B (4.76). However, the residual was not

statistically different from Case B as determined by F-test due to the difference in the degrees

of freedom. Therefore, the inclusion of plastidic gluconeogenesis cannot definitively be ruled

out, but its inclusion did not significantly improve statistical fit to the data. The possibility that

PCK1a was localized to mitochondria was also evaluated, but there was no statistical improve-

ment in the fit to the data (data not shown).

Non-mitochondrial citrate synthase in acetate assimilation. Finally, the presence of a

non-mitochondrial citrate synthase was also evaluated. The inclusion of a non-mitochondrial

citrate synthase improved the statistical fit of the data in both Case B and D when compared to

Case A and E with 94% and 99% confidence respectively. This provides strong evidence that a

non-mitochondrial citrate synthase is indeed present and should be included in the final net-

work topology.

Final network topology. Based on statistical analysis of possible network topologies

derived from the Chlamydomonas genome, the optimal network topology which best

describes heterotrophic growth was found to be Case B, and thus all subsequent simulations

were based on this network topology.

Isotopic dilution due to unlabeled biomass and CO2 from air

Preliminary metabolic flux analysis simulations had high residual values in comparing the sim-

ulated against the experimental labeling patterns (Fig 4). In batch culture, one contributing

factor for deviations in observed labeling patterns is the unlabeled biomass from the inoculum,

which can be accounted for by the inclusion of the G parameter [45]. Another source for label

dilution comes from unlabeled CO2 found in the sparging gas used in the reactor. During het-

erotrophic growth conditions, a net transport of CO2 out of the cell is expected due to respira-

tion, however, CO2 can readily diffuse into the cell from the external media or can be actively

transported into the cell [53]. For each case described above, we evaluated the impact of in-

cluding the G parameter and CO2 exchange. As an example, Case B will be described. The base

case simulation excluded the G parameter and CO2 exchange, a second simulation included

CO2 exchange, which reduced the residual (Fig 4) by 60%. A third simulation included only

the G parameter, which reduced the residual 76% compared to the base case; finally, the last

simulation included both the G parameter and CO2 exchange which reduced the residual 78%

percent. All the reported improvements in fit were significant at 99% statistical confidence, as

determined by the F-test. It was also found that including both G parameter and dilution due

to CO2 were significant at 99% confidence, when compared to only the CO2 dilution or G

parameter included, respectively. Thus, incorporating both G parameter and dilution due to

CO2 exchange greatly enhanced the ability to accurately fit experimental data. At the conclu-

sion of pH-stat growth, the fraction of the original unlabeled biomass should be approximately

10% based upon growth measurements after isotopic labeling was initiated, which is close to the

calculated dilution of 8% found in this study. This estimate was found by comparing the amount

of biomass used for inoculation versus the amount of biomass resent when sampling (at 90 h).

At this time point, the ratio of total biomass to the initial was approximately 9.5 which results in

the % original biomass estimated at 10.5%. CO2 dilution from air had an exchange coefficient of

0.24 which corresponds to a dilution flux of 24% of the net outward CO2 flux.

13C-MFA Chlamy
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Fig 4. Effect of dilution due to CO2 and unlabeled biomass on the labeling patterns. (A) Comparison of

residual when dilution due to preexisting biomass (G parameter), and dilution from CO2 in air was not

included, and when either G or CO2 or both were included in the model; (B) Simulated vs. experimentally

13C-MFA Chlamy
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13C flux map for Chlamydomonas under heterotrophic conditions

The final flux map for acetate assimilation during heterotrophic growth conditions in C. rein-
hardtii is presented in Fig 5. This case gave us the best fit as judged from the lowest residuals

and comparison of the various cases against each other by F-test to determine the statistical

significance (Fig 4C). This model is based on Case B described above with the inclusion of

both the G parameter (separate parameters for each component of biomass was included–pro-

tein, lipids, cell wall and sugars) and CO2 exchange. 95% confidence intervals for each flux are

given in the supplementary material (S1 Table).

Utilization of acetate and tricarboxylic acid cycle fluxes. Based on the results of our
13C-MFA, we deduced that Chlamydomonas utilizes three pathways for acetate assimilation. A

measured mass distribution vectors (MDVs) for the case when dilution due to CO2 and G parameter was not

included in the model, (C) Simulated vs. experimentally measured MDVs for the case when dilution due to

CO2 and G parameter included in the model. All plots correspond to the Case B, which has cytosolic citrate

synthase and no plastidic gluconeogenesis.

https://doi.org/10.1371/journal.pone.0177292.g004

Fig 5. Fluxes calculated by 13C metabolic flux analysis for Case B (cytosolic citrate synthase and no plastidic gluconeogenesis). The fluxes are

normalized to uptake rate of acetate on a basis of 10. The 90% confidence intervals for the fluxes are also reported in the supplementary materials (S7

Table).

https://doi.org/10.1371/journal.pone.0177292.g005
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majority of the acetate taken up by the cell (53%) is converted to AcCoA by acetyl-coA synthe-

tase in the cytoplasm and condensed with oxaloacetate (OAA) into citrate by citrate synthase

before being transported across the mitochondrial membrane for entry into TCA cycle. The

second pathway of acetate assimilation, the transport of acetate directly into the mitochon-

drion, accounts for roughly one-third of the total acetate uptake (35.6%). In the mitochon-

drion, acetate is converted to AcCoA and proceeds through the TCA cycle, providing reducing

equivalents and biomass precursors. About 80% of the isocitrate flux in the mitochondrion is

diverted through isocitrate dehydrogenase while 20% is sent through the glyoxylate shunt (iso-

citrate lyase), which indicates that a large portion of the flux is diverted towards NAD(P)H

generation. The flux through mitochondrial malate dehydrogenase was 28% of the incoming

flux into malate, indicating a minor contribution towards the TCA cycle. This is a direct effect

of citrate being the major input into the TCA cycle. The majority, c.a. 72%, of the TCA cycle

flux through malate is exported to the cytosol and converted to oxaloacetate. As shown in Fig 5

about 82% of the flux from cytosolic OAA is diverted towards the non-mitochondrial citrate

synthase for acetate assimilation and to complete the TCA cycle, while the approximately 18%

of the flux from oxaloacetate in the cytosol is directed towards gluconeogenesis.

Plastidic and cytoplasmic fluxes. All of the cytosolic gluconeogenesis flux is directed

toward the production of cytosolic trioses; there is no flux through cytosolic pyruvate kinase

and pyruvate dehydrogenase. Most of the flux through the trioses in the cytosol is directed

toward the plastid. Overall, the fluxes in the plastid and cytoplasm derived from cytosolic

gluconeogenesis account for roughly 11.5% of the acetate uptake flux. There is no evidence

of oxidative pentose phosphate pathway flux in either the cytosol or plastid.

Comparison of 13C-MFA fluxes to FBA predictions

Fluxes calculated by 13C-MFA were compared to predicted fluxes from flux balance analysis

(FBA) for two different objective functions, maximize biomass and maximize ATP. There are

two major differences between MFA and FBA; first, FBA includes balances on energy and re-

ducing equivalents, and second, FBA uses linear programming to determine the optimal solu-

tion for the underdetermined system. In comparison, MFA uses experimental measurements

to quantify in vivo fluxes. The FBA model originally reported by Boyle and Morgan [13] was

used in its entirety for the simulations. In using the objective function ‘maximize biomass’, the

Fig 6. Comparison of TCA cycle fluxes calculated by flux balance analysis with metabolic flux

analysis. (A) FBA fluxes with maximum biomass as the objective function. (B) 13C-MFA calculated fluxes. (C)

FBA fluxes with maximum ATP production as the objective function. The thickness of the arrow in panels A-C

depicts the amount of flux through the reaction.

https://doi.org/10.1371/journal.pone.0177292.g006
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model requires the cell to balance the need of substrate for biomass synthesis and the oxidation

of substrate to produce energy in order to maximize biomass production. Due to our interest

in acetate assimilation pathways, we choose to focus on the fluxes associated with the TCA

cycle, shown in Fig 6A. In order to be carbon efficient, the model predicts 46% of the TCA

cycle flux will be sent through the glyoxylate shunt, which bypasses two TCA cycle reactions

that release carbon dioxide. In contrast to this, an objective function of maximum ATP forces

the model to oxidize as much carbon as possible to produce ATP. This is shown in Fig 6C

where almost all the carbon (96%) is directed through a complete TCA cycle; in this scheme,

the cell loses 2 carbons for every turn of the cycle but also produces 2 NADH and 1 ATP.

When these two conditions are compared to the in vivo fluxes calculated with 13C-MFA (Fig

6B), it appears that the actual objective function of the cell is a linear combination of both max-

imum biomass and maximum ATP.

Discussion

Glyoxylate shunt and TCA cycle

The glyoxlate shunt plays a key role in the utilization of acetate as it conserves the 2 carbons of

acetate, and the flux through the shunt is indicative of acetate assimilated into biomass. In con-

trast, the flux through isocitrate dehydrogenase results in loss of CO2 and the production of

NAD(P)H. We found that the split towards the glyoxylate shunt was only 20% of the incoming

flux from isocitrate. By comparison, Samejima and Myers have reported 26% acetate assimila-

tion to biomass in Chlorella pyrenoidosa in heterotrophic growth on acetate [54]. Flux analysis

studies of E. coli and S. cerevisiae grown on acetate have a split towards glyoxylate of 47% and

27% of the total incoming isocitrate flux respectively [55, 56]. The relatively large flux towards

isocitrate dehydrogenase observed in our case is indicative that the cell is producing copious

amounts of NAD(P)H. The fate of this NAD(P)H was further investigated and it we found that

approximately 28% would be necessary for biomass synthesis and gluconeogenesis, and the

remainder could be utilized for ATP synthesis. Approximately 20% of the ATP demand was

used for converting acetate to AcCoA. The demand for biomass synthesis from metabolite pre-

cursors and gluconeogenesis (calculated from the biomass synthesis equation) was found to

be 21%. The major ATP demand was for maintenance energy and was 58% of the total ATP

produced. Chen and Johns reported that inhibitory substrates such as acetate cause a large

increase in the maintenance energy in Chlamydomonas [57, 58]. Thus in the present study we

observe that the relatively large flux through isocitrate dehydrogenase is likely the result of a

high maintenance energy requirement. A high level of ATP generation for cellular mainte-

nance functions has also been reported in developing barley seeds [59] and for heterotrophic

Arabidopsis cell cultures [60].

The role of non-mitochondrial citrate synthase

We evaluated several different network topologies based on the presence of specific genes in the

Chlamydomonas genome using 13C-MFA to determine the best fit to our data. This analysis

resulted in improved fit with the inclusion of a cytosolic citrate synthase, indicating that there is

indeed activity of non-mitochondrial citrate synthase in heterotrophically grown Chlamydomo-

nas, which has been reported previously [50]. It is difficult to categorically state which citrate

synthase, the cytosolic or mitochondrial form, plays a larger role in acetate assimilation in Chla-

mydomonas because of the relatively large error bounds for these two reactions from 13C-MFA.

This problem could be addressed by obtaining more detailed compartment specific isotopic

labeling data; however, the premier method used in plant cells, non-aqueous fractionation [61,

62], has yet to be reported in any algae species.
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Plastidic fluxes

In our MFA calculations, no flux through the oxidative pentose phosphate pathway (oxPPP) was

found in the plastid. Low plastidic oxPPP was also observed in heterotrophic growth on glucose

for Arabidopsis suspension culture [32]. Many biosynthetic reactions occur in the plastid, which

need reducing equivalents. Hence reducing equivalents NADPH/NADH must be generated

from another pathway, within the plastid or translocated from the cytosol. One possible way is to

transport a portion of the malate flux to the plastid and then convert it to oxaloacetate for gener-

ating the required reducing equivalents in the plastid. Plastidic oxaloacetate can then be trans-

ported back to cytosol, where it is recycled back into the TCA cycle via cytosolic citrate synthase

(Fig 7). Redox independent plastidic malate dehydrogenase (MDH-NADH) has been shown to

play a critical role in heterotrophic growth in developing seed of Arabidopis [63], where a t-DNA

mutant had a severe growth restriction. Concomitant increase in expression of levels of an alter-

native NAD+-regenerating enzyme, NADH–GOGAT was also observed. A probable shuttle

mechanism for this type of transport into chloroplast would be malate-asparate type shuttle for

chloroplast; a chloroplastic oxoglutarate:malate translocater (OMT1) has been reported in C.

reinhardtii [40]. It should be noted that it is not possible to distinguish by isotopic labeling alone

if the cytosolic oxaloacetate comes directly from malate in the mitochondrion (Fig 7) or if a part

of it comes from malate in the plastid recycle as shown in Fig 7. The flux split around malate was

calculated based on NAD(P)H demand for fatty acid synthesis in plastids. The total reducing

equivalents required for gluconeogenesis and fatty acid synthesis combined was only 72% of that

produced in the cytosol. Thus, if there are additional NAD(P)H demands in plastid and cytosol,

it would affect the actual split of malate towards cytosol and plastid. Alternatively, the shuttling

of the reducing equivalents could involve transport of cytosolic, Glyceraldehyde-3-phosphate

(G3P) into plastid. G3P would be formed from reduction and phosphorylation of 3-phospho-

glycerate (3PG), formed from Phosphoenolpyruvate (PEP), which in turn would be formed

Fig 7. Simplified flux map depicting reducing equivalent shuttling to plastid for network case B. A flux

map where a part of the malate is shuttled to cytosol (shown by dotted arrow) and rest is shuttled towards

plastid for transferring reducing equivalents to plastid (shown by dash arrows). The resulting oxaloacetate in

plastid is shuttled back to the cytosol for utilization by citrate synthase. The arrow thickness corresponds to

actual fluxes and malate split towards plastid is estimated to be 35% of the malate flux into cytosol from

mitochondria.

https://doi.org/10.1371/journal.pone.0177292.g007
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from cytosolic gluconeogenesis. The translocated G3P can be converted back to 3PG, and trans-

located back to cytosol, hence providing the reducing equivalents to the plastid [64]. In this

study, a net transport of cytosolic T3P was observed towards plastid. Separate 3PG and G3P

pools were not included, as they are indistinguishable based on the measurements.

The overall fluxes in the plastid were relatively low and were mainly for providing precur-

sors for biomass. The main carbon source for plastidic biomass synthesis, aside from lipids,

was triose phosphates imported from the cytosol. Interestingly, we found that plastidic fatty

acid synthesis occurs via direct assimilation of acetate with no apparent contribution from

plastidic pyruvate. The direct assimilation of acetate to lipids was also observed in S. cerevisiae
grown on acetate [56]. Thus, under heterotrophic conditions in C. reinhardtii, there is no

direct competition between fatty acid synthesis and starch synthesis. A similar result was

reported by Li et al. for triacylglycerol (TAG) production in C. reinhardtii; when grown hetero-

trophically, there was no significant difference in the total amount of TAG between a starchless

mutant and its parent strain [65]. Labelling data indicates that malic enzyme (MME4) is not

active, which has also been reported in C. protothecoides for growth on glucose [19, 37]. We

also evaluated the possibility of plastidic and mitochondrial gluconeogenesis (in addition to

cytosolic gluconeogenesis), and found that inclusion of these pathways produced no statistical

improvement in the model. However, addition of these alternative routes could not be ruled

out by 13C labeling data alone. Thus, we could not definitively distinguish whether plastidic

gluconeogenesis in addition to the cytosolic gluconeogenesis is actually playing a physiological

role in heterotrophic growth.

FBA predictions

Fluxes obtained from 13C-MFA were compared with fluxes predicted using FBA with either

maximal growth or for maximal ATP production as objective functions. Although fluxes are

readily estimated for a variety of objective functions, they do not necessarily reflect what is

actually occurring in the cell, if the cell metabolism is suboptimal. Previous studies of E. coli
grown on acetate or succinate have shown that FBA can predict intracellular fluxes quite well

with an objective function of maximizing biomass [66]. This implies that E. coli grown under

these conditions operates at near optimal conditions. While the two objective functions we

evaluated are in no way an exhaustive search of the solution space, they are two of the most

widely used in trying to capture wild type growth. In this study, FBA is not able to accurately

capture intracellular fluxes (Fig 6) quantitatively or qualitatively by either of the objective func-

tions tested here, similar to a study on B. subtilis [21]. In comparing the two objective functions

for their ability to predict fluxes in C. reinhardtii, neither captures the in vivo fluxes, however

maximizing ATP captures the qualitative aspects of the fluxes. This implies that the heterotro-

phic growth of C. reinhardtii is actually suboptimal and that the actual cellular objective of the

cell cannot be captured simply by a single objective function. The higher flux through the TCA

cycle as determined from 13C-MFA shows that C. reinhardtii oxidizes a significant portion of

carbon for the production of ATP, which likely is caused by high maintenance demands.

Changes in carbon use efficiency were also observed under stress conditions in Arabidopsis

cell cultures [60]. Under suboptimal growth conditions, it becomes clear that MFA is a power-

ful technique to accurately capture the in vivo carbon fluxes in C. reinhardtii.

Conclusion

Using 13C-labeling and flux analysis, fluxes for C. reinhardtii under heterotrophic growth on ace-

tate were determined. We found that the first steps of acetate assimilation were distributed among

all three intracellular compartments. In particular, we found that a non-mitochondrial citrate
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synthase (modeled in the cytoplasm) plays an important role in acetate assimilation based on the

reduced residuals when included in the network topology. However, we are unable to definitively

determine the relative contribution of the cytosolic form over the mitochondrial form. These

fluxes could potentially be resolved with more detailed compartment specific isotope labeling

data, or improved methods for fast and specific subcellular fractionation in algae. The remaining

acetate is assimilated directly into fatty acids in the plastid and is determined mainly by the

demand for lipids in the biomass composition. Fluxes obtained from our 13C-MFA experiment

were compared to predictions made by FBA. We found that neither objective function of maxi-

mum biomass or maximum ATP could quantitatively predict intracellular fluxes; in fact, C. rein-
hardtii grew suboptimally, sacrificing carbon for energy production. Metabolic flux analysis using

isotopically labeled substrates can be further used for studying different growth modes, such as

autotrophic or mixotrophic growth with consideration of dynamic labeling patterns [67, 68],

which is of particular interest for the production of biodiesel in algae due to the higher TAG con-

tents reported in mixotrophic cultures [65]. An interesting application of this technique in future

studies would be to investigate fluxes during macronutrient starvation, due to the current interest

in algae biofuels and recent reports of C. reinhardtii accumulating lipids when starved for nitrogen

[69–72], sulfur [73] or trace nutrients [74].
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