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Abstract: Coronavirus disease 2019 (COVID-19) is a pandemic respiratory disease associated with
high morbidity and mortality. Although many patients recover, long-term sequelae after infection
have become increasingly recognized and concerning. Among other sequelae, the available data
indicate that many patients who recover from COVID-19 could develop fibrotic abnormalities over
time. To understand the basic pathophysiology underlying the development of long-term pulmonary
fibrosis in COVID-19, as well as the higher mortality rates in patients with pre-existing lung diseases,
we compared the transcriptomic fingerprints among patients with COVID-19, idiopathic pulmonary
fibrosis (IPF), and chronic obstructive pulmonary disease (COPD) using interactomic analysis. Pa-
tients who died of COVID-19 shared some of the molecular biological processes triggered in patients
with IPF, such as those related to immune response, airway remodeling, and wound healing, which
could explain the radiological images seen in some patients after discharge. However, other aspects of
this transcriptomic profile did not resemble the profile associated with irreversible fibrotic processes
in IPF. Our mathematical approach instead showed that the molecular processes that were altered in
COVID-19 patients more closely resembled those observed in COPD. These data indicate that patients
with COPD, who have overcome COVID-19, might experience a faster decline in lung function that
will undoubtedly affect global health.

Keywords: chronic lung disease; transcriptome; interactome; cluster analysis; bioinformatic analysis;
molecular pathway; inflammation

1. Introduction

COVID-19 is a pandemic respiratory disease, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which is associated with considerable morbidity
and mortality. Most patients improve over time but a significant number have lung function
and radiological alterations a year after discharge [1].

To date, available data indicate that more than a third of recovered COVID-19 pa-
tients will develop fibrotic-like abnormalities [2–4]. Furthermore, 47% have an altered
diffusing capacity of the lungs for carbon monoxide (DLCO) and 25% have a reduced total
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lung capacity [2]. There are serious doubts whether the observed fibrotic abnormalities
resolve fully, and indeed, there is evidence that a non-negligible percentage will develop
irreversible pulmonary fibrosis [5]. In a 15-year follow-up study of 71 survivors from
SARS-CoV-1 infection, the coronavirus that emerged in Southeast Asia in 2003, pulmonary
diffusion abnormalities were observed in approximately one-third of patients [6], and a
6-month follow-up study of computed tomography images for 40 SARS-CoV-1 patients
revealed long-term sequelae, such as air trapping, ground-glass opacities, reticulations,
and bronchial distortion, in more than half of the participants [7]. One-year follow-up
studies in COVID-19 patients showed that although the proportion of radiological abnor-
malities in the lung is very significant at 3 months after hospital discharge, similar to those
observed in SARS-CoV-1, radiological changes only persisted one year later in about 5–20%
of them [8–10]. Nonetheless, given the large number of people affected by COVID-19, there
is a real risk of a significant number of patients experiencing lung function issues in the
long term.

Early identification of the subpopulation that could develop pulmonary fibrosis is of
great importance if one wants to delay or diminish the development of lung injury [11].
Furthermore, even a relatively small degree of residual but non-progressive fibrosis could
result in considerable morbidity and mortality in older patients who have had COVID-19,
especially if they have pre-existing pulmonary conditions. The mechanisms by which SARS-
CoV-2 causes lung damage and/or induces fibrotic lesions are very poorly understood.
Potential triggers are the cytokine storm induced by the viral antigen and/or the high
airway pressure and hyperoxia during mechanical ventilation. If we could relate the
activation of molecular mechanisms with the development of pulmonary fibrosis, we could
perhaps have an opportunity to stop, or even reverse, the long-term fibrotic processes in
patients with COVID-19.

Using mathematical interactome-based cluster analysis, this study aimed to compare
the most important activated molecular pathways in the lungs of patients who died of
COVID-19, using the transcriptomic fingerprints of patients with irreversible pulmonary
fibrosis, as occurs in idiopathic pulmonary fibrosis (IPF). We also compared the molec-
ular pathways triggered in COVID-19 with those triggered in COPD, because although
IPF and COPD have different etiologies, both are chronic inflammatory diseases with a
fibrotic component [12]. Expanding on this topic, diagnoses of IPF or COPD represent
risk factors in COVID-19 [13,14], which may be because of synergism that aggravates the
disease. Therefore, comparison among the three diseases may help us to understand the
pathophysiology of COVID-19. Understanding the common molecular pathways will
facilitate better stratification of pulmonary risk during SARS-CoV-2 infection, will help
to implement preventive strategies, and will facilitate the longitudinal monitoring of pul-
monary responses to specific treatments, especially in patients with pre-existing chronic
lung diseases.

2. Methods
2.1. Expression Datasets

We analyzed data from three independent expression datasets: an IPF dataset, a
COVID-19 dataset, and a COPD dataset. To ensure that the three datasets were fully com-
parable, we restricted genes to only those present in the three experiments and transformed
all unofficial gene names to approved gene names, when possible, in accordance with the
HUGO Gene Nomenclature Committee (HGNC) resource (provided this did not generate
duplications or ambiguities).

2.1.1. COVID-19 Dataset

We used a study of biopsy samples from SARS-CoV-2-infected patients by Desai et al. [15],
which used RNA-seq, to form the COVID-19 dataset (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE150316, accessed on 20 July 2020). This included 24 lung biopsies
from infected patients (age, 32–89 years). Although these patients had pathologies prior
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to infection, none of these patients had a diagnosis of COPD or IPF. Raw counts were
transformed to logCPM values and normalized with the voom tool in the limma package.
Rows with zero counts for all columns were removed. Probes lacking a HGNC gene
name were discarded. Analysis of differential gene expression was performed using
the lmFit function in the limma package, and we considered a more relaxed differential
expression cut-off (|FC| > 1.5; p < 0.05) than for the IPF dataset. This was necessary
because we expected a sizable fraction of differentially expressed genes (DEGs) to be lost
due to interactome incompleteness and because we considered only those edges connecting
two DEGs.

2.1.2. IPF Dataset

We used data on IPF lung biopsies from the study by De Pianto et al. [16], which used
gene expression microarrays, to form the IPF dataset (https://www.ebi.ac.uk/arrayexpress/
experiments/E-GEOD-53845/, accessed on 9 March 2020). This included 40 patients and
8 controls (age, 18–80 years). Raw data from microarray files were extracted, background
corrected, and normalized with the voom tool in the limma R package. Values for within-
array replicated probes were replaced with their average and probes without a HGNC
gene name were discarded. Differential expression analysis was carried out with the lmFit
function from the limma package. Genes were differentially expressed if |FC| > 2 and
FDR-adjusted p < 0.05.

2.1.3. COPD Dataset

We used a study of respiratory tract samples of patients with and without COPD by
van Dyck et al. [17], which used gene expression microarrays, to form the COPD dataset
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1690/, accessed on 2 April
2020). The data included 21 patients with COPD and 14 healthy non-smoker controls.
Patients with head, neck, or lung cancer were excluded. Data from raw microarray files
were extracted, background corrected, and normalized with the voom tool in the limma
R package. Values for within-array replicated probes were replaced by averages. Probes
without a HGNC gene name were discarded. Differential expression analysis was carried
out with the lmFit function in the limma package, and genes were considered differentially
expressed with an |FC| > 2 and an FDR-adjusted p < 0.05.

2.2. Interactome Analysis
2.2.1. Data Sources

The human interactome contains information about functional connections between
genes (e.g., physical interactions between gene products, transcriptional regulation, metabolic
associations, etc.) mined from the literature. The study of the interactome has contributed to
the identification of disease mechanisms and disease-associated genes [18,19]. The human
interactome was built by combining two data sources: (1) data derived from a Reactome
database [version 022717] [19], removing any interactions labeled as predicted, and (2)
data derived from STRING database [version 11] [20], only considering interactions with
a score >700 (high-confidence interactions). The combined interactome had 17,517 nodes
(genes) and 471,401 edges (connections).

2.2.2. COVID-19, IPF, and COPD Interactomes

We built the interactome of each dataset by mapping DEGs onto the interactome,
while keeping only those edges connecting two DEGs. We next performed a clustering of
the interactome which identified densely interconnected groups of genes (named clusters).
Clusters usually contain functionally related genes, given that a high level of interconnect-
edness implies functional association between them [21,22]. Clustering was performed
with the Markov cluster algorithm, using 2 as an inflation parameter [23]. Only clusters
with ≥10 genes were considered. For the COVID-19 dataset, we removed clusters that did
not contain at least one differentially expressed gene.

https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-53845/
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-53845/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1690/
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2.3. Functional Characterization

The sources of functional annotation were the biological process and molecular function
ontologies of the Gene Ontology (GO) database [The Gene Ontology Consortium, 2019] [24].
Only annotations with experimental evidence codes were considered. Functional char-
acterization of clusters was performed using the BinoX software [25]. BinoX exploits the
information within the human interactome to evaluate the functional interactions between
a set of genes and a set of genes annotated with a particular function. This allows for
the identification of functional relationships that would go unnoticed with traditional
association tests (e.g., a Fisher’s exact test) [26,27]. Enrichment in GO terms was considered
significant with an FDR-adjusted p < 0.05. To facilitate visualization of the results, GO
terms were classified into 32 broad functional categories (listed in Table 1).

Table 1. Biological processes of the Gene Ontology (GO) database.

biological process GO:0002376 immune system process

biological process GO:0045087 innate immune response

biological process GO:0006954 inflammatory response

biological process GO:0019882 antigen processing and presentation

biological process GO:0009611 response to wounding

biological process GO:0048771 tissue remodeling

biological process GO:0001837 epithelial to mesenchymal transition

biological process GO:0043043 peptide biosynthetic process

biological process GO:0006766 vitamin metabolic process

biological process GO:0006935 chemotaxis

biological process GO:0001775 cell activation

biological process GO:0008283 cell population proliferation

biological process GO:0050900 leukocyte migration

biological process GO:0048870 cell motility

biological process GO:0051301 cell division

biological process GO:0000278 mitotic cell cycle

biological process GO:0016049 cell growth

biological process GO:0007155 cell adhesion

biological process GO:0007165 signal transduction

biological process GO:0007259 receptor signaling pathway via JAK-STAT

biological process GO:0000165 MAPK cascade

biological process GO:0014065 phosphatidylinositol 3-kinase signaling

molecular function GO:0003824 catalytic activity

molecular function GO:0008009 chemokine activity

molecular function GO:0005125 cytokine activity

molecular function GO:0005216 ion channel activity

molecular function GO:0019814 immunoglobulin complex

molecular function GO:0031012 extracellular matrix

molecular function GO:0008083 growth factor activity

molecular function GO:0003924 GTPase activity

molecular function GO:0016209 antioxidant activity

molecular function GO:0006508 proteolysis
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2.4. Functional Connectivity

For each disease, we calculated the functional connectivity value between clusters. This
allowed us to measure the functional similarity between clusters, where a high connectivity
implies high functional association between them (i.e., their gene sets contribute to the
same biological processes) [20,26]. After calculating the functional connectivity between
clusters, the global functional distance between diseases was calculated as the maximal
functional connectivity value between any cluster of one disease to any cluster of the other.

Connectivity between any two clusters, i and j, was measured in a three-step process.
(1) Firstly, we calculated the fraction of genes common to both clusters as:

ncommon= nij+nji (1)

where nij is the number of genes of cluster i present in cluster j, and nji is the number of
genes of cluster j present in cluster i. (2) For the genes unique to each cluster, we used the
interactomic data to check whether they were connected to genes in the other cluster. We
then calculated the overall connectivity as:

nconnected= eij+eji (2)

where eij is the number of genes of cluster i connected to any gene in cluster j, and eji is the
number of genes of cluster j connected to any gene in cluster i. (3) Lastly, the connectivity
between the two clusters was calculated as:

connectivity =
ncommon+nconnected

Ni+N j
(3)

where Ni is the number of genes in cluster i, and Nj is the number of genes present in cluster
j. Functional connectivity value will range from 0 (neither shared genes nor connections
between genes in the clusters) to 1 (all genes in one cluster are either present or connected to
at least one gene in the other cluster). This value can be interpreted as functional relatedness
between groups of genes [27–29].

Given that any pair of clusters has a functional connectivity value (both within and
between diseases), clusters could then be clustered according to their connectivity. This
would identify groups of clusters (i.e., clusters of clusters) that are functionally related. We
used the hclust function in R with a single-linkage method, and the optimal partition was
measured by Pearson’s gamma method, using the cluster.stats function of the fpc R package
(version 2.2-9) [29]. Dendrograms were plotted with the dendextend package in R [30].

The global functional distance between two diseases was calculated as the maximal
functional connectivity value between any cluster of one disease to any cluster on the other.

3. Results
3.1. Data Analysis

Figure 1 summarizes the differential expression results for the study datasets, with the
complete clusters provided in Supplementary Materials, Figures S1–S3 for the IPF, COPD,
and COVID-19 datasets, respectively.

3.2. Interactome Analysis

We mapped the DEGs onto the interactome to exploit that information to character-
ize them by function. The number of DEGs from the COVID-19 dataset present in the
interactome was 1678 (49.3% of all COVID-19 DEGs), and for the IPF dataset, this number
was 872 (75.8% of all IPF DEGs). Most DEGs not present in the interactome were either
non-protein-coding genes or genes without official names that did not contribute to the
functional characterization of the clusters (82.84% in the IPF dataset, 91.4% in the COVID-
19 dataset, and 66.93% in the COPD dataset). Figure 2 shows the overlap of DEGs for
COVID-19, IPF, and COPD. As shown, several IPF genes (n = 85; 11.5% of all) or COPD
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genes (n = 185; 11.5% of all) were shared exclusively with COVID-19 DEGs. Interactome
mapping and clustering found 24 clusters for COVID-19 DEGs, 11 clusters for IPF DEGs,
and 37 clusters for COPD DEGs (Supplementary Figures S1–S3).
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Figure 2. Representation of the number of differentially expressed genes (DEGs) for COVID-19, IPF,
and COPD. As shown, 123 (38 + 85) IPF genes (16.6%) and 223 (38 + 185) COPD genes (13.8%) are
shared with COVID-19.

3.3. Functional Characterization

Functional annotation and the main functional categories of the clusters are summa-
rized in Figures 3–5 for the COVID-19, IPF, and COPD datasets, respectively.
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Figure 4. Functional connectivity between COVID-19 and IPF clusters. COVID-19 clusters are
shown in orange, IPF clusters are shown in blue. (a) Connectivity represented as a network of
clusters. Node size is proportional to the number of genes and edge thicknesses are proportional to
the functional connectivity. Red boxes indicate clusters within the optimal partition. (b) Connectivity
represented as a dendrogram. (c) Main functional annotations. Dots show the significance of the
functional enrichment (dark red = adjusted p < 5 × 10−100; medium red = adjusted p < 5 × 10−50;
light red = adjusted p < 5 × 10−5).
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Figure 5. Functional connectivity between COVID-19 and COPD clusters. COVID-19 clusters are
shown in orange, COPD clusters are shown in grey. (a) Connectivity represented as a network
of clusters. Node size is as in Figure 4. Red boxes indicate clusters within the optimal partition.
(b) Connectivity represented as a dendrogram. (c) Main functional annotations. Colors are as in
Figure 4.

3.4. Network Comparisons

Figure 3 shows the functional similarity between COVID-19–IPF and COVID-19–
COPD, revealing greater functional proximity between COVID-19 and COPD than between
COVID-19 and IPF (p < 0.01; WMW test). Next, we measured the functional similarity
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between different disease clusters (COVID-19, IPF, and COPD). The two-to-two compar-
isons between diseases are shown in the dendrograms in Figures 4–6 for COVID-19–IPF,
COVID-19–COPD, and IPF–COPD, respectively.
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Figure 6. Functional connectivity between IPF and COPD clusters. IPF clusters are shown in blue,
COPD clusters are shown in grey. (a) Connectivity represented as a network of clusters. Node size is
as in Figure 4. Red boxes indicate clusters within the optimal partition. (b) Connectivity represented
as a dendrogram. (c) Main functional annotations. Colors are as in Figure 4.
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3.4.1. COVID-19–IPF Connectivity

The analysis of functional proximity between the IPF and COVID-19 clusters showed
closeness of three IPF clusters (clusters 1, 3, and 5) to five clusters of COVID-19 (clusters
19, 23, 12, 15, and 9) (see red boxes in Figure 4). The highest functional similarities were
between IPF cluster 1 and COVID-19 clusters 19 and 23, and between IPF cluster 3 and
COVID-19 clusters 12 and 15. The first group of functionally related clusters (IPF cluster
1, COVID-19 clusters 19 and 23) corresponds to activation of the chemokine subcategory
and its receptors, and is one of the most important categories (by number of genes) in
both pathologies. Most genes in these clusters were upregulated. The second group of
clusters (IPF cluster 3, COVID-19 clusters 12 and 15) represents a set of genes, receptors,
and immunoglobulins present in cells of the immune system (T and B cells) that participate
in signal transduction and dynamic regulation of the inflammatory response.

3.4.2. COVID-19–COPD Connectivity

Analysis of functional proximity between COVID-19 and COPD clusters showed
closeness between 10 COVID-19 clusters (1, 2, 3, 10, 12, 18, 19, 20, 21, and 22) and 16 COPD
clusters (15, 11, 31, 30, 18, 12, 37, 32, 6, 23, 8, 22, 28, 36, 35 and 21) (see red boxes in Figure 5).
The greatest functional similarity was present between clusters 10, 18, and 22 of COVID-19
with clusters 15, 6, and 21 of COPD, respectively. COVID-19 clusters 2, 12, and 19 also
maintained functional similarity with IPF and COPD. Genes belonging to clusters 15, 6,
and 21 in COPD participate in processes related to the immune response, but several
genes of COPD cluster 15 (COVID-19 cluster 10) are related to the thrombospondin and
metalloproteinase family, which have roles in connective tissue regulation, angiogenesis,
and mesenchymal cell migration. However, the genes upregulated in COPD were mostly
downregulated in COVID-19, indicating a functional divergence. The genes of COPD
cluster 21 (COVID-19 cluster 22), which were upregulated in both diseases, are receptors for
the histocompatibility system and have important functions in antigen presentation, while
the upregulated genes of clusters 6 and 32 (related to COVID-19 cluster 18) are related to
intracellular transport (vesicle and organelle movement) and cell cycle regulation. Other
related clusters, 1 and 3 of COVID-19 and 37 and 11 of COPD, are active in cell proliferation
through ubiquitin complex formation and protein synthesis, respectively.

3.4.3. IPF–COPD Connectivity

The analysis of functional proximity between IPF and COPD clusters revealed close-
ness between IPF clusters 10, 1, 3, 9, and 7 and COPD clusters 13, 23, 8, 4, and 3, respectively
(see red boxes in Figure 6). The expression profiles of these comparisons, less IPF cluster 1
with COPD cluster 23, were inversely related (upregulated in one and downregulated in
the other). For example, IPF cluster 10 and COPD cluster 1 showed the greatest homology,
but these were upregulated in IPF and downregulated in COPD. Representative genes
in this cluster were involved in Wnt signaling. These important genes, which were not
differentially expressed in COVID-19, are involved in tissue regeneration and fibroblast
proliferation. IPF cluster 1 and COPD cluster 23 are chemokine-related genes, many of
which are upregulated and show functional analogy, albeit with different participating
genes. COPD cluster 8 and IPF cluster 3, as in COVID-19, represent a set of genes, receptors,
and immunoglobulins of immune cells that participate in regulation of the inflammatory
response and are mainly downregulated in COPD and upregulated in IPF. Cluster 9 of IPF
and 4 of COPD represent a cytokine profile that is clearly pro-fibrotic in the case of IPF by
upregulating interleukin (IL)-11, IL-13, and IL23. Finally, IPF cluster 7 downregulated and
COPD cluster 3 upregulated genes related to P450 enzymes.

4. Discussion

The transcriptomic analysis in this work was performed to identify the core patho-
physiological mechanisms in patients with COVID-19 and to determine if they are similar
to pulmonary fibroproliferative processes in IPF. We showed that patients who died of
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COVID-19 shared some of the molecular biological processes triggered in IPF, with the
analysis of functional connectivity identifying processes related to the immune response,
airway remodeling, and wound healing that indicate active fibrogenic processes. However,
our mathematical approach showed a significantly large functional distance between the
two diseases, which implies that both entities have more molecular divergences than could
be radiologically suggested [2,31,32].

The highest functional association between COVID-19 and IPF was observed with IPF
cluster 1, which showed the greatest closeness with COVID-19 clusters 19 and 23. However,
only a few common genes from one were noted in the other. IPF cluster 1 includes a large
number of chemokines (CXCLXX and CCLXX type) and their receptors (CXCRXX), as well
as membrane G proteins and coupled proteins (e.g., GNG2, BDKBRB1, and BDKBRB2).
In fact, the huge number of chemokines in IPF suggests a great storm involved in the
recruitment of many inflammatory cell types and the perpetuation of an inflammatory
state [33]. In COVID-19 clusters 19 and 23, some upregulated homologous chemokines seen
in IPF cluster 1 were present, such as CXCL9, CXCL10, and CCL5, related to the regulation
of immune cell migration, differentiation, and/or activation. Increased expression of
other G proteins (GNG12) and coupled proteins, with downstream signaling functions
related to intracellular calcium, showed a similar functional relationship with those in IPF,
although differences in the isoforms could have been due to differences in the composition
of the inflammatory cell infiltration [33]. Therefore, although we observed a functional
analogy between the IPF and COVID-19 chemokine clusters, the differences in number
of genes and type of isoforms seem to maintain a functional distance that indicates these
are different fibrogenic responses. Consistent with the differences in fibrogenic responses,
the observed change in the cytokine profile in IPF (cluster 9) was related to pro-fibrotic
processes (e.g., increased expression of IL13, IL23, and IL11) [34], but was not observed
in COVID-19. By contrast, we saw a decrease in cytokines related to the remodeling of
the extracellular matrix in COVID-19 (e.g., decreased expression of IL24 and insulin-like
growth factor). Patients with COVID-19 also lacked activation of a pathway that has been
strongly related to IPF, such as the WNT signaling pathway in IPF (cluster 10), which
has been observed to be downregulated in COPD (cluster 1) [12,35]. Both dependent and
independent WNT/β-catenin pathways contribute to the cellular phenotypes that trigger
and facilitate fibrosis [36,37], so the non-activation of this pathway in COVID-19 could
suggest a less severe stage of pulmonary fibrosis.

IPF cluster 3 showed functional coincidence with clusters 12 and 15 of COVID-19. This
set of genes is related to receptors and immunoglobulins of B and T lymphocytes (e.g., CD3,
BLK, CD79, IGHXX) involved in the dynamic regulation of the inflammatory response and
the complement-mediated promotion of the humoral response to viral infection [38].

There was an interesting comparison between the main altered clusters in patients
with COVID-19 and those identified in patients with COPD, a disease that is etiologically
different from IPF but is also characterized by the presence of an inflammatory and vascular
fibrogenic component [12]. Many common genes were downregulated, with the greatest
proximity being between cluster 10 of COVID-19 and cluster 15 of COPD. These small
clusters group several proteins of the ADAMTS (a disintegrin and metalloproteinase
with thrombospondin motifs) family that have metalloproteinase functions, and in some
members, have been related to the inhibition of endothelial proliferation through vascular
endothelial growth factor sequestration [39,40]. They have attributed functions that are
necessary for normal growth and structural development, so their inhibition can have
negative consequences on organ development [41], as well as play a role in microvascular
hemostasis [42]. Another proximal relationship was found between cluster 21 of COVID-19
and clusters 28 and 30 of COPD. The main downregulated genes in these clusters were
related to mitogen-activated protein kinase (MAPK) and structural-related proteins, such as
lysyl oxidase (LOX) and fibulin (FBLN). Interestingly the downregulation of both LOX and
FBLN5 has been associated with remodeling of the vascular extracellular matrix (ECM),
induced by the inflammatory component [43]. LOX is central to ECM maturation and



Life 2022, 12, 887 13 of 16

seems to be crucial to preserving endothelial barrier function. Evidence suggests a role for
this enzyme in atherogenesis and endothelial dysfunction, triggered by atherosclerotic risk
factors and pro-inflammatory cytokines [43]. The alteration of LOX and fibulin fits well
with the concept that COVID-19 patients experience endothelial dysfunction.

As was seen with IPF, cluster 19 of COVID-19 grouped several important chemokines
related to upregulated and downregulated genes in cluster 23 of COPD. The roles of
several CXCLXX/CXCRXX axes have been reviewed in COPD pathophysiology [44]. The
CXCL9–CXCR3 axis, which was upregulated in COVID-19, is thought to be involved in
the recruitment of Th1 and CD8+ lymphocytes to sites of inflammation in COPD [45],
with the subsequent immune-mediated lung damage occurring through the production of
perforins and granzyme B [46]. Of additional interest is the relationship of upregulated
genes between clusters 2 and 18 of COVID-19 with clusters 31, 32, and 6 of COPD. Genes
from clusters 18, 32, and 6 are involved in regulating cell cycle, proliferation, cell division,
and apoptosis (e.g., via survivins, cyclins, and kinesins). Several of these genes have
been linked to vascular remodeling and pulmonary hypertension [47,48]. Cluster 2 of
COVID-19 and cluster 31 of COPD contain proteins related to lysosomal content (enzymes
and proteases) that are particularly relevant in the context of pulmonary disease due to
their ability to exert elastase activity, inactivate airway host defense proteins, induce ECM
remodeling, and alter mucus production [49].

Taken together, our findings have some important implications that warrant consider-
ation. Firstly, some studies have revealed that the images of organized fibrosis observed in
patients with COVID-19, although similar to those that found in patients with IPF, probably
suggest a persistent fibrotic lung entity other than IPF [11]. This may, therefore, result
in a more favorable long-term prognosis. Interestingly, recent studies have shown that a
significant proportion of patients with radiological abnormalities within 3 months after
hospital discharge improve considerably at 1-year follow-up [8–10]. Secondly, the fact
that several of the altered molecular pathways present in COPD overlap with those in
COVID-19 suggests that the impact on this subpopulation could be significant. Regretfully,
there is no long-term follow-up survey on lung function decline in patients with COPD
who have survived to SARS-CoV-1, SARS-CoV-2, or Middle East Respiratory Syndrome
to clarify this point. However, existing data indicate that patients with COPD are at in-
creased risk of severe pneumonia and poor outcomes if they develop COVID-19 [50,51].
Furthermore, active smoking, the main cause of COPD, is a recognized risk factor for
a complicated course of COVID-19 [52]. In a recent study of 110 patients admitted for
COVID-19 pneumonia who did not require admission to intensive care, 47% experienced
abnormalities in the DLCO without other ventilatory defects (e.g., in the FVC, FEV1, or
FEV1/FVC ratio), suggesting that this was due to involvement of the alveolocapillary
barrier rather than occupation of alveolar volume or airway involvement [52]. In another
study in Spain, it was shown that 11% of 850 patients admitted for COVID-19 presented a
mild obstructive alteration at discharge, and although some cases could have been due to
previous functional alteration (66% were smokers), a direct impact of infection could not be
ruled out [53]. Thus, patients with COPD who overcome COVID-19 can show long-term
sequelae that have a high impact on global health. It should also be considered that patients
with early COPD, or even heavy smokers with normal lung function (GOLD 0–1), could
experience accelerated lung function decline if additional lung damage was caused by
the infection.

This study has some technical limitations. Firstly, the microarray studies were carried
out in three different laboratories with different methodologies. Therefore, to avoid under-
mining the analysis of similarities and differences within databases, we did not compare
the levels of gene expression directly, and instead performed a meta-analysis of only DEGs.
Secondly, although the medical records of COVID-19-infected patients did not report a
chronic lung disease in any of them, the lack of lung function tests meant we could not
determine if these patients had a prior diagnosis of pulmonary pathology. Finally, a larger
number of individuals would make our conclusions more robust. However, emerging
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long-term studies on radiological fibrotic imaging seem to confirm those differences in the
transcriptomic profile between IPF and COVID-19 patients.

5. Conclusions

This study was developed to identify common molecular pathways, related to fibrotic
mechanisms, between COVID-19 and IPF. However, the lack of clear functional connectivity
between clusters indicated that a higher proportion of patients with COVID-19 will not
end up developing a fibroproliferative process similar to IPF. Instead, our findings suggest
that the images of organized fibrosis observed in patients with COVID-19, although similar
to those in patients with IPF, would fit with other fibrotic pneumopathies that have more
favorable prognoses, such as organized pneumonia or proliferative diffuse alveolar damage.
Surprisingly, there was marked functional proximity between the molecular pathways
altered in COVID-19 and those altered in COPD, suggesting that COPD patients who have
overcome COVID-19 could worsen their lung functional state. In addition, future research
could determine if there is a real increase in the prevalence of COPD after the COVID-19
pandemic and what impact this has on the health system.
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