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Chaos and oscillations continue to capture the interest of both the scientific and public domains. 
Yet despite the importance of these qualitative features, most attempts at constructing 
mathematical models of such phenomena have taken an indirect, quantitative approach, for 
example, by fitting models to a finite number of data points. Here we develop a qualitative 
inference framework that allows us to both reverse-engineer and design systems exhibiting 
these and other dynamical behaviours by directly specifying the desired characteristics of the 
underlying dynamical attractor. This change in perspective from quantitative to qualitative 
dynamics, provides fundamental and new insights into the properties of dynamical systems. 
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Mathematical modelling requires a combination of experi-
mentation, domain knowledge and, at times, a measure of 
luck. Beyond the intrinsic challenges of describing com-

plex and complicated phenomena, the difficulty resides at a very 
fundamental level with the diversity of models that could explain 
a given set of observations. This is a manifestation of the so-called 
inverse problem1, which is encountered whenever we aim to recon-
struct a model of the process from which data have been generated. 
Exploring the potential space of solutions computationally can be 
prohibitively expensive and will generally require sophisticated 
numerical approaches or search heuristics, as well as expert guid-
ance and manual interventions. Parameter estimation2, model infer-
ence3 and model selection4,5 all address aspects of this problem.

The inverse problem also applies in a different context: the design 
of systems with specified or desired outputs. Here again we have a 
multitude of different models—or, for sufficiently complicated mod-
els, a potentially vast range of parameters—that fulfil a given set of 
design objectives. Therefore, system design can be fraught with the 
same challenges as statistical inference or reverse-engineering tasks: 
in the former case, we want to learn the existing structure and prop-
erties of a system that has produced certain types of data, whereas in 
the latter we want to design constructible systems that will reliably 
and robustly exhibit certain types of behaviour.

These challenges are often further exacerbated by unsuitable or 
insufficient encoding of the behaviour that we observe (in natural 
systems) or would like to see (in designed systems). For example, 
if we aim to estimate parameters describing an oscillating system 
from a series of observations, it is possible to get good and even glo-
bally optimal fits to the data, without finding a qualitatively accept-
able solution. Various methods of qualitative inference have been 
developed to address this issue; the topology of bifurcation dia-
grams6,7, local stability properties of dynamically invariant sets8,9, 
symbolic sequences of chaotic systems10 and temporal logic con-
straints11,12 have variously been used to drive parameter searches, 
or for model checking. However, these methods are either limited 
in the complexity of behaviour they can detect, or by condition-
ing on surrogate data (for example, forcing solutions through a 
small number of points), they suffer in the same way as quantita-
tive approaches. The method proposed here extends the scope of 
the promising, but underdeveloped, class of qualitative parameter 
estimation algorithms13, allowing detection and control of the most 
complex and elusive dynamical behaviours, such as oscillations, 
chaos and hyperchaos.

We consider models of the general form 
d

d
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where y(t) denotes the n-dimensional state of the system at time t; 
f is the gradient field characterized by a parameter vector; θ, and 
y0 = y(0) are the initial conditions, which may also be unknown. 
Coaxing the solutions of such systems into exhibiting a desired 
dynamical behaviour is reliant on the ability to, first, encode the 
behaviour sufficiently as constraints on a set of model properties 
that may be conveniently evaluated, and second, to identify regions 
in parameter space for which these constraints are satisfied. Here we 
meet these challenges using a combination of statistical and dynam-
ical systems techniques. In particular, we pose the problem within a 
state–space framework, where the observation function corresponds 
to evaluating the type of attractor exhibited by the model with given 
parameters and initial conditions. We then exploit the flexibility and 
efficiency of the unscented Kalman filter (UKF) to systematically 
move in parameter space until the desired or expected dynami-
cal behaviour is exhibited. The approach, outlined in Figure 1 and 
developed fully in the Methods and Supplementary Information,  
is demonstrated below within different contexts, covering some  
classical dynamical model systems and electronic circuits that 

(1)(1)

exhibit oscillations, chaos and hyperchaos, and a biological regula-
tory system that exhibits oscillatory behaviour.

Results
Oscillations and chaos in electronic circuits. The elimination of 
chaos from a system, or conversely its ‘chaotification’, have potential 
applications to biological, medical, information processing and 
other technological systems14. Here we use a simple electric circuit15 
(shown in Fig. 2a), to illustrate how our method can be used to tune 
the system parameters such that the dynamics are driven into and 
out of chaos. The circuit model includes a parameter a, representing 
the scaled resistance of a variable resistor, R2, which we make the 
lone subject of the inference. In turn, we start the system in an 
oscillatory regime and tune the parameter according to the posterior 
predictions at each step of the UKF, until we enter a chaotic regime, 
and vice versa (see Fig. 2b). The two desired behaviours are encoded 
as constraints only on the target maximal Lyapunov exponent (LE), 
specifying, λ1 = 0, for oscillations, and, λ1 = d > δtol for chaos, where 
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Figure 1 | Encoding and inferring the desired dynamics. (a) LEs, λ0, … λn, 
characterize the contraction/expansion of an initially small perturbation, 
ε0, to the system. (b) The leading LE determines the principal dynamics 
and characteristics of the attractor of a dynamical system. For λ0 < 0, the 
attractor will be a stable fixed point; stable oscillating solutions will be 
obtained, if λ0 = 0; for λ0 > 0 we observe chaos and the system will exhibit 
a so-called strange attractor; if more than one LE is positive, then we 
speak of hyperchaos and the attractor will exhibit behaviour with similar 
statistical properties to white noise. (c) Key steps in the uKF for qualitative 
inference. At the kth iteration, the current prior parameter distribution is 
formed by perturbing the previous posterior, θk, with the process noise 
vk. The distribution of LEs for the model f induced by the prior parameter 
distribution is calculated via the LE estimation routine L and the unscented 
transform. Comparing the mean LE, l̂k , to the target LE, λtarget, the prior 
parameters are updated using the uKF update equations. As the filter 
proceeds, parameters are found that locally minimise the sum of squared 
error between target and estimated LEs.
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δtol is taken larger-than-the-expected error in the LE estimation 
procedure, as discussed in the Supplementary Information.

For systems of this size, the qualitative dynamical regimes can  
be explored exhaustively and in short time (finding the desired 
behaviour takes minutes even for moderate sized systems).

Detecting oscillations in immune signalling. Oscillations appear 
to be ubiquitous in nature, yet, for reasons noted above, they 
often remain elusive to quantitatively driven parameter infer-
ence techniques. Here we consider a dynamical system describ-
ing the expression levels of the transcription factor Hes1, which is 
involved in regulating the segmentation of vertebrate embryos16. 
Oscillations of Hes1 expression levels have been observed  
in vitro in mouse cell lines, and reproduced using various model-
ling approaches, including continuous deterministic delay16,17 and 
discrete stochastic delay models18. We investigate a simple three-
component ordinary differential equation (ODE) model of the 

regulatory dynamics with mRNA transcription modelled by a Hill 
function, 

M k M P Pdeg
h= − + +1 1 2 0/( ( / ) )

 
P k P M k Pdeg1 1 1 1= − + −n

 
P k P k Pdeg2 2 1 1= − + ,

 

where state variables M, P1 and P2, are the molecular concentrations 
of Hes1 mRNA, cytoplasmic and nuclear proteins, respectively. The 
parameter kdeg is the Hes1 protein degradation rate that we assume 
to be the same for both cytoplasmic and nuclear proteins; k1 is the 
rate of transport of Hes1 protein into the nucleus; P0 is the amount 
of Hes1 protein in the nucleus, when the rate of transcription of 
Hes1 mRNA is at half its maximal value; ν is the rate of translation 
of Hes1 mRNA, and h is the Hill coefficient. For the inference we 
take, kdeg, to be the experimentally determined value of 0.03 min − 1 
(ref. 19).

In Figure 2c, we show the results for the inference using our algo-
rithm on the model shown above. Note that the value inferred for 
parameter k1, is significantly lower than the range of values investi-
gated for the continuous deterministic delay model of Momiji and 
Monk17. Interestingly, repeating the inference with different initial 
parameter sets leads to similar values of k1 (k1 < 0.01), but to a broad 
range of values for the other parameters, all of which result in oscil-
latory behaviour. Our qualitative inference thus suggests that oscil-
lations of Hes1 protein and mRNA levels are strongly dependent on 
maintaining a low rate of transport of Hes1 protein into the nucleus, 
and that the dependence on other system parameters is less strong. 
As 1/k1 is the expected time Hes1 spends in the cytoplasm, this  
corresponds to the delay that had previously been posited to be  
necessary for such oscillations to occur17. Our approach read-
ily identifies a parameter regime exhibiting oscillatory dynamics  
without explicitly requiring (discrete) time delays.

Next, we used the qualitative inference result as the basis to esti-
mate the model parameters from the Hes1 data described below. An 
approximate Bayesian computation algorithm (ABC SMC20), capa-
ble of sampling from non-Gaussian and multimodal posteriors, was 
employed and Figure 2d shows the fits of simulated trajectories for 
20 parameters drawn randomly from the resulting posterior distri-
bution; these are in good agreement with the confidence intervals 
(the blue bands in Fig. 2d), which can be obtained from the time-
course data via a Bayesian nonparametric method21. It is worth  
noting that using the UKF alone, we could in principle consider the 
LEs and data together to infer parameters that are both qualitatively 
and quantitatively acceptable. However, by splitting the inference, 
we take advantage of the strengths of each algorithm within the 
Bayesian framework; first we exploit the efficiency of the UKF to 
work with a sophisticated encoding of the desired behaviour that 
is computationally expensive to calculate; subsequently we use this 
qualitative information to construct suitable priors for an ABC 
method capable of dealing with non-Gaussian posteriors.

Designing attractors. Although the maximal LE alone is sufficient 
to encode fixed points, limit cycles and strange attractors, we may 
include extra target exponents to design the complete Lyapunov 
spectrum (Fig. 3a), design the (Kaplan–Yorke) fractal dimension22 
(D k i

k
i k= + = +Σ 1 1l l/ | |, where k is the largest integer for which 

Σi
k

i= ≥1 0l ) of a system’s attractor (Fig. 3b), or drive models to 
behave hyper-chaotically (Fig. 3c).

The first two of these applications are illustrated with the Lorenz 
system23 which has become a canonical example of how sensitivity 
to initial conditions can give rise to unpredictable behaviour. The 
model is known to exhibit a chaotic regime with LEs,  = (0.906, 
0,  − 14.57), for parameter vector (σ, ρ, β) = (10, 28, 8/3). Here we 
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Figure 2 | Detecting and controlling chaos and oscillations. Plots show  
the estimated parameters at successive iterations of the uKF. snapshots 
of the developing attractor are shown above the plots. The sum of squared 
error (E) is indicated for different sections of the parameter trajectories.  
(a) Diagram of the circuit investigated. (b) The filter is able to drive the 
electric circuit between oscillations and chaos in less than 10 iterations.  
(c) Parameter trajectories for a simple model of the Hes1 regulatory system 
that yield oscillations. several regions in parameter space can be identified 
that exhibit oscillatory behaviour. (d) Examples of trajectories generated 
from a region in parameter space that was found using our approach. Here 
we used the qualitative inference procedure to elicit a prior to be used for 
parameter inference. Trajectories were sampled from the prior. Data are 
indicated by red circles and represent fold change in Hes1 mRnA; the blue 
strips indicate the confidence intervals obtained using Gaussian process 
regression, in which standard Gaussian noise is assumed, with maximum 
marginal likelihood estimates for the other hyperparameters21.
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infer back these parameters, starting with different prior means, by 
setting our target Lyapunov spectrum to . If we restrict the param-
eter search to the region [0, 30]3, as described in the Supplementary 
Information, we are able to do this reliably from random starting 
positions. The parameter trajectories and evolving attractor of a 
representative run of the inference algorithm is shown in Figure 
3a, where the sum of squared error between estimated and target 
LEs is less than 8×10 − 5 after the 100th iteration. Without constraints 
on the parameters, the inference algorithm converges to different 
parameter combinations that display indistinguishable LEs. This 
allows us to assess (for example) the robustness of chaotic dynam-
ics by mapping systematically the regions of parameter space that 
yield similar LEs. Figure 3b shows how the fractal dimension—a 
function of the LEs—may also be tuned (in this example, halved). 
Although computational difficulties have in the past precluded such 
investigations, our approach allows us to map attractor structures 
(and the range of parameters giving rise to similar attractors) very 
efficiently.

For the third application of driving a system into hyper-chaos, 
we investigate a four-dimensional system with six parameters, 
whose significance lies in having two very large LEs (λ1∈[10.7741, 
12.9798] and λ2∈[0.4145, 2.6669]) over a broad parameter range24. 
The resulting highly complex deterministic dynamics share statisti-
cal properties with white noise, making it attractive for engineer-
ing applications such as communication encryption and random 
number generation. By setting large target values of λ1 and λ2, we 
use our method to obtain parameters for which the system displays 
LEs that are over two times bigger than previously found for the 
system. Figure 3c shows the three-dimensional projections of the 
resulting hyper-chaotic attractor.

These are, of course, toy applications, but they demonstrate the 
flexibility and potential uses of this approach: we can really start to 
explore qualitative behaviour in a numerically efficient and speedy 

manner. For example, it becomes possible to map (or design) the 
qualitative characteristics of complex systems and to test robustness 
of qualitative system features systematically.

Discussion
We have demonstrated that it is possible to use statistical inference 
techniques to condition dynamical systems on observed (biological 
oscillations in Hes1) or desired qualitative characteristics (oscilla-
tions, chaos and hyper-chaos in natural and engineered systems). 
This provides us with unprecedented ability to probe the workings of 
dynamical systems. Here we have only used the approach for infer-
ence and design of the attractors of dynamical systems, as encoded 
by their LEs. This, however, has already been enough to show that it 
is not necessary to impose discrete time delays to explain the oscil-
lations in the Hes1 system16–18.

A focus on qualitative features has several advantages: first, it is 
notoriously difficult, for example, to ensure that parameter infer-
ence preferentially (let alone exclusively) explores regions in param-
eter space that correspond to the correct qualitative behaviour such 
as oscillations. This is the case for optimization as well as the more 
sophisticated estimation procedures. Arguably, however, solutions 
that display the correct qualitative behaviour are more interest-
ing than those that locally minimize some cost-function in light 
of some limited data. Obviously, in a design setting, ensuring the  
correct qualitative behaviour is equally important.

Second, the numerical performance of the current approach 
allows us to study fundamental aspects related to the robustness 
of qualitative behaviour. This allows us, for the first time, to ascer-
tain how likely a system is to produce a given Lyapunov spectrum 
(and hence attractor dimension) for different parameter values, θ. 
Our approach, coupled with means of covering large-dimensional 
parameter spaces, such as Latin-hypercube or Sobol sampling25, 
allows us to explore such qualitative robustness. Or more specifi-
cally, we can map out boundaries separating areas in phase space 
with different qualitative types of behaviour. We can also drive sys-
tems into regions with LEs of magnitudes not previously observed. 
The last aspect will have particular appeal to information and  
communication scientists as such hyper-chaos shares important 
properties with white noise and potential applications in crypto-
graphy and coding theory abound26.

Finally, our approach can also be used to condition dynamical 
systems on all manner of observed or desired qualitative dynam-
ics, such as threshold behaviour, bifurcations, robustness, tempo-
ral ordering and so on. To rule out that a mathematical model 
can exhibit a certain dynamical behaviour will, however, require 
exhaustive numerical sampling of the parameter space; but cou-
pled to ideas from probabilistic computing27; our procedure lends 
itself to such investigations. Both for inference and design prob-
lems, we foresee vast scope for applying this type of qualitative 
inference-based modelling. There is still a lack of understanding 
about the interplay between qualitative and quantitative features 
of dynamical systems28; this becomes more pressing to address 
as the systems we are considering become more complicated and 
the data collected more detailed. Flexibility in parameter estima-
tion—whether based on qualitative or quantitative system fea-
tures—will be an important feature for the analysis of such sys-
tem, as well as the design of synthetic systems in engineering and 
synthetic biology.

Methods
Encoding dynamics through Lyapunov exponents. Consider a continuous time 
dynamical system—similar results hold for the discrete case—described by, 

d
d
y
t

f yt
t= ( ),

 
where f is an n-dimensional gradient field. To study the sensitivity of f to initial 
conditions, we consider the evolution of an initially orthonormal axes of n vectors, 
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Figure 3 | Designing attractive models. (a) Inferring a complete spectrum. 
After only 22 iterations, the characteristic ‘butterfly’ strange attractor 
emerges. The final parameters and LEs are σ = 10.2, ρ = 29.2, β = 2.45 and 
(0.899, 2.74×10 − 4,  − 14.6). (b) A function of the LEs, the Kaplan–Yorke 
fractal dimension may also be used to specify the desired attractor. Here 
parameters for a target dimension of 1 are found for the Lorenz system 
within 20 iterations, giving rise to a limit cycle as required by the theory. 
(c) Three-dimensional projections of the hyperchaotic system with 
parameter vector (a, b, c, d, e, f) = (49.98, 35.86, 30.5, 1.35, 36.6, 33.8) and 
corresponding LEs (31.8, 16.8,  − 19.1,  − 71.4). Within a few iterations, our 
algorithm was able to drive the system towards an attractor characterized 
by LEs twice the size of any that had previously been reported.
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{ε1, ε2, …, εn}, in the tangent space at y0. At time t, each εi satisfies the linear  
equation, 

d
d
e ei

t it
Df y= ⋅( ) ,

 
where Df(yt) is the Jacobian of f evaluated along the orbit yt. Equations (5) and (6) 
describe the expansion/contraction of an n-dimensional ellipsoid in the tangent 
space at yt, and we denote the average exponential rate of growth over all t of the 
ith principal axis of the ellipsoid as λi. The quantities, λ1 ≥ λ2 ≥ … ≥ λn, are called  
the global LEs of f. In particular, the sign of the maximal LE, λ1, determines the fate 
of almost all small perturbations to the system’s state, and consequently, the nature 
of the underlying dynamical attractor. For λ1 < 0, all small perturbations die out and 
trajectories that start sufficiently close to each other converge to the same stable 
fixed point in state-space; for λ1 = 0, initially close orbits remain close but distinct, 
corresponding to oscillatory dynamics on a limit-cycle or torus (for tori,  
at least one other exponent must be zero); and finally for λ1 > 0, small perturbations 
grow exponentially, and the system evolves chaotically within the folded space  
of a so-called ‘strange attractor’ (for two or more positive definite LEs, we speak  
of ‘hyperchaos’).

In general, nonlinear system equations and the asymptotic nature of the LEs 
precludes any analytic evaluation. Instead, various methods of numerical approxi-
mation of these quantities, both directly from ODE models and from time-series 
data29–31 have been developed. In this paper, Lyapunov spectra are calculated using 
a Python implementation of a method proposed by Benettin et al.32 and Shimada 
and Nagashima33 (outlined in the Supplementary Information) for inference of LEs 
when the differential equations are known.

Lyapunov spectrum driven parameter estimation. Unlike in the case for linear 
systems, where identifying suitable parameters that produce observed or desired 
dynamics is trivial, inference for highly nonlinear systems is far from straightfor-
ward. Indeed, exact inferences are prohibitively expensive for even small systems, 
and so a host of different approximation methods have been proposed20,34,35. In our 
case, two further complications arise from using LEs to encode the desired be-
haviour. First, the form of the mapping between model parameters and LEs is not 
closed, making methods that rely on an approximation of the estimation routine 
or its derivatives, such as the extended Kalman filter, difficult to apply. Second, LEs 
are significantly more expensive to compute than more traditional cost functions, 
ruling out the use of approaches such as particle filtering or sequential Monte-
Carlo methods that require extensive sampling of regions of parameter space and 
calculation of the corresponding LEs at each iteration.

To overcome these challenges, we exploit the efficiency and flexibility of the 
UKF36–38, seeking here to infer the posterior distribution over parameters that give 
rise to the desired LEs. Typically, the UKF is applied for parameter estimation of 
a nonlinear mapping g(·) from a sequence of noisy measurements, yk, of the true 
states, xk, at discrete times k = t1, …, tN. A dynamical state-space model is defined, 

q qk k kv= +−1  

y g x uk k k k= +( , )q
 

where uk~N(0, Qk) represents the measurement noise, vk~N(0, Rk) is the artificial 
process noise driving the system, and g(·) is the mapping for which parameters 
θk are to be inferred. The UKF (described in full below) is then characterized by 
the iterative application of a two step, ‘predict’ and ‘update’, procedure. In the 
‘prediction step’ the current parameter estimate is perturbed by the driving process 
noise vk forming a priori estimates (which are conditional on all but the current 
observation) for the parameter mean and covariance. These we denote as q̂k

pr  and 
Pk

pr , respectively. The ‘update step’ then updates the a priori statistics using the 
further measurement, yk, to form a posteriori estimates, q̂k

po and Pk
po. After all 

observations have been processed, we arrive at the final parameter estimate, q̂tN

po  
(with covariance PtN

po).
A crucial step in the algorithm is the propagation of the a priori parameter 

distribution statistics through the model, g(·). Assuming linearity of this transfor-
mation, a closed form optimal filter may be derived (known as the Kalman filter). 
However, this assumption would make the algorithm inappropriate for use with  
the highly nonlinear systems and the choice of g(·) considered here. It is how  
the UKF copes with this challenge, namely its use of the ‘unscented transform’, 
that makes it particularly suitable for our method of qualitative feature-driven 
parameter estimation.

The unscented transform is motivated by the idea that probability distribu-
tions are easier to approximate than highly nonlinear functions39. In contrast 
to the Extended Kalman filter where nonlinear state transition and observation 
functions are approximated by their linearized forms, the UKF defines a set, Θk, 
of ‘sigma-points’—deterministically sampled particles from the current posterior 
parameter distribution (given by q̂k

po
−1 and Pk

po), that along with corresponding 
weights, { , }w wi

m
i
c

k, completely capture its mean and covariance. The sigma points 
can be propagated individually through the nonlinear observation function, and 
recombined to estimate the mean and covariance of the predicted observation, yk, 
to third-order accuracy in the Taylor expansion, using the equations given below. 
Under the approximate assumption of Gaussian prior and posterior distributions 
(higher order moments may be captured if desired at the cost of computational 
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efficiency), the deterministic and minimal sampling scheme at the heart of the 
filter requires relatively few LE evaluations at each iteration (2np + 1, where np is the 
number of parameters to be inferred). Further, the function that is the subject of 
the inference may be highly-nonlinear and can take any parametric form, such as a 
feed-forward neural network36, or as in our case, a routine for estimating the LEs of 
a model with a given parameter set.

With [X]i denoting the ith column of the matrix X, the UKF algorithm for 
parameter estimation is given by,
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Various schemes for sigma-point selection exist including those for minimal 
set size, higher than third-order accuracy and (as defined and used in this study) 
guaranteed positive-definiteness of the parameter covariance matrices39–42, which is 
necessary for the square roots obtained by Cholesky decomposition when calculat-
ing the sigma points. The scaled sigma-point scheme thus proceeds as, 
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where 

l a k= + −2( )L L  
and parameters κ, α and β may be chosen to control the positive definiteness  
of covariance matrices, spread of the sigma-points, and error in the kurtosis, 
respectively. Our choices for the UKF parameter and noise covariances are  
discussed in the Supplementary Information.

To apply to the UKF for qualitative inference, we amend the dynamical  
state-space model to, 

q qk k kv= +−1  
l qtarget = +L y f uk k( , ; ) ,0  

where L(·) maps parameters to the encoding of the dynamical behaviour (here a 
numerical routine to calculate the Lyapunov spectrum), λtarget is a constant target 
vector of LEs, y0 denotes the initial conditions, and f is the dynamical system under 
investigation (with unknown parameter vector θ, considered as a hidden state of 
the system and not subject to temporal dynamics). To see how equations (9) and 
(10) fit the state-space model format for UKF parameter estimation, it is helpful to 
consider the time series (λtarget, λtarget, λtarget, …) as the ‘observed’ data from which 
we learn the parameters of the nonlinear mapping L(·). Our use of the UKF is 
characterized by a repeated comparison of the simulated dynamics for each sigma 
point to the same (as specified) desired dynamical behaviour. In this respect, we 
use the UKF as a smoother; there is no temporal ordering of the data supplied to 
the filter because all information about the observed (target) dynamics is given at 
each iteration. From an optimization viewpoint, the filter aims to minimize the 
prediction-error function, 

E g y f Q g y f
i

k
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k( ) [ ( , ; ) ] ( ) [ ( , ; ) ],q q l q l= − −
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thus moving the parameters towards a set for which the system exhibits the desired 
dynamical regime.

Hes 1 quantitative real-time PCR. Dendritic cells were differentiated from bone 
marrow, as described previously43. Rat Jgd1/humanFc fusion protein (R&D Sys-
tems) or human IgG1 (Sigma Aldrich) (control samples) were immobilized onto 
tissue culture plates (10 µg ml − 1 in PBS) overnight at 4 °C. Dendritic cells were spun 
onto the plate and cells were collected at the appropriate time. Total RNA was iso-
lated using the Absolutely RNA micro prep kit (Stratagene). Complementary DNA 
was generated from 125 ng of total RNA using an archive kit (Applied Biosystems). 
1 µl of cDNA was used with PCR Mastermix and TaqMan primer and probes (both 
Applied Biosystems) and analysed on an Applied Biosystems 7500 PCR system. 
Cycle thresholds were normalized to 18S and calibrated to a PBS-treated control 
sample for relative quantification.

Computational implementation. All routines were implemented in Python using 
LSODE for integrating differential equations. ABC inference was performed using 
the ABC-SysBio package44. Code is available from the authors on request. 
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