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Abstract
The COVID-19 pandemic emerged in 2019, bringing with it the need for greater stores of effective antiviral drugs. This paper 
deals with the conformation-independent, QSAR model, developed by employing the Monte Carlo optimization method, as 
well as molecular graphs and the SMILES notation-based descriptors for the purpose of modeling the SARS-CoV-3CLpro 
enzyme inhibition. The main purpose was developing a reproducible model involving easy interpretation, utilized for a quick 
prediction of the inhibitory activity of SAR-CoV-3CLpro. The following statistical parameters were present in the best-
developed QSAR model: (training set) R2 = 0.9314, Q2 = 0.9271; (test set) R2 = 0.9243, Q2 = 0.8986. Molecular fragments, 
defined as SMILES notation descriptors, that have a positive and negative impact on 3CLpro inhibition were identified on 
the basis of the results obtained for structural indicators, and were applied to the computer-aided design of five new com-
pounds with (4-methoxyphenyl)[2-(methylsulfanyl)-6,7-dihydro-1H-[1,4]dioxino[2,3-f]benzimidazol-1-yl]methanone as a 
template molecule. Molecular docking studies were used to examine the potential inhibition effect of designed molecules 
on SARS-CoV-3CLpro enzyme inhibition and obtained results have high correlation with the QSAR modeling results. In 
addition, the interactions between the designed molecules and amino acids from the 3CLpro active site were determined, 
and the energies they yield were calculated.

Keywords  3CLpro inhibitors · COVID-19 therapy · QSAR · Molecular modeling · Drug design

Introduction

The period from the end of 2019 and the beginning of 2020 
will be remembered as the onset of the most hazardous 
pandemic in modern history, i.e. the COVID-19 outbreak. 
COVID-19 is caused by coronavirus 2 (SARS-CoV-2), or 
by the positive-sense single-stranded RNA virus (Chen 
et al. 2020; Guo et al. 2020; Kumar et al. 2020; Rothan 
and Byrareddy 2020). The Center for Disease Control and 

Prevention (CDC) first established the existence of this virus 
in Wuhan, China in the final days of 2019, and from then 
on, the virus has spread to other countries, posing a con-
siderable threat to global health (Lai et al. 2020; Pedersen 
and Ho 2020). The droplets produced when those infected 
exhale, cough or sneeze represent the main means of SARS-
CoV-2 distribution. the crucial factor in spreading the virus 
is the ease with which it is transmitted, since breathing in 
the proximity of someone who has COVID-19, or touch-
ing a virus contaminated surface before making contact 
with one’s mouth, eyes, or nose, constitute the main routs 
of infection (Peng et al. 2020; Singhal 2020; Sohrabi et al. 
2020). Conversely, the chief danger of contracting COVID-
19 lies in the possibility of an asymptomatic person spread-
ing the virus, since 10% of the infections originate from 
people who do not exhibit any symptoms whatsoever, in 
spite of the fact that COVID-19 is the most infectious once 
someone develops symptoms related to COVID-19 (Kampf 
et al. 2020; Xiao et al. 2020). The chief symptoms attrib-
uted to COVID-19 are the potential loss of smell, cough, or 
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taste, as well as the occurrence of fever, or having trouble 
breathing (Shang et al. 2020; Wu et al. 2020). Fortunately, to 
date, proper care and treatment usually lead to the recovery 
of most people infected with COVID-19 (Jiang et al. 2020; 
Sanders et al. 2020; Vellingiri et al. 2020). The WHO (World 
Health Organization) has determined two groups which pose 
a greater risk of suffering from severe illness and even mor-
tality caused by the SARS-CoV-2 infection—adults over 
60 years of age, and people whose immune systems are com-
promised by various health issues (Xiao et al. 2020, Kampf 
et al. 2020). Since SARS-CoV-2 is a recently discovered 
virus, a lot of its characteristics are still unknown.

One promising approach for COVID-19 treatment is 
blocking the replication of the virus by inhibiting viral 
protease (Lin et al. 2005; Hoffmann et al. 2020; Jin et al. 
2020). One of the key steps in viral replication, which also 
includes SARS-CoV-2, is the processing of replicase pol-
ypeptides 1a and 1ab into functional proteins, which is a 
process determined with 3C-like protease (3CLpro) (Chen 
et al. 2005; Deng et al. 2014; Ramajayam et al. 2010; Zhav-
oronkov et al. 2020). Two proteases, papain-like protease 
(PLpro) and main protease or 3-chymotrypsin-like protease 
(Mpro/3CLpro), are essential components for replication of 
SARS-CoV-2, whit main role related to cleaving the two 
polyproteins, i.e., PP1A and PP1AB into several functional 
components. In this process, N-terminal domain is split to 
viral precursor protein at the three sites by PLpro, while the 
C-terminal domain is split to precursor protein at the 11 
sites by 3CLpro (Akaji and Konno 2020). Targeting these 
enzymes had been used for the treatment of other pathogenic 
coronaviruses (i.e., MERS-CoV) (Amin and Jha 2020) and 
since the sequence homology of SARS-CoV-2 3CLpro is 
96% structurally closer to the SARS-CoV 3CLpro target-
ing SARS-CoV-2 3CLpro as a potential therapeutic target is 
quite a feasible approach for anti-CoVID-19 drug develop-
ment (Amin et al. 2021; Zhang et al 2020).

Chemoinformatics and computational chemistry have 
developed methodologies which have proven to be of great 
importance when designing potential therapeutics. When 
it comes to drug development research, the most signifi-
cant contributions made by these in silico methods are the 
search for new leading compounds, or the optimization of 
therapeutic activities (or pharmacokinetic properties) of the 
series of chemical compounds whose biological activities 
have already been determined (Ekins et al. 2007; Tabesh-
pour et al. 2018). Among the most used methodologies are 
the quantitative structure–activity relationship (QSAR) and 
molecular docking. The mathematical equation linking the 
biological activities of the studied molecules with their 
chemical characteristics, defined as molecular descriptors, 
represents one of the most widely used practices for QSAR 
model representation (Cherkasov et al. 2014). In current 
practice, the applied representation of molecule structure is 

used for the calculation of a considerable number of descrip-
tors, calculated in such fashion that could be further utilized 
for the development of a relevant QSAR model (Liu and 
Long 2009; Pérez González et al. 2008). A novel approach 
involves the use of conformation-independent optimal 
descriptors which are based on the constitutional and topo-
logical molecular features, and the descriptors based on the 
Simplified Molecular Input Line Entry System (SMILES) 
notation for QSAR model development, where the Monte 
Carlo optimization approach is used for this purpose. One 
of the recently suggested approaches to the manner of over-
coming issues related to mechanistic interpretation is the 
application of SMILES descriptors, since these have a physi-
cal meaning and can be associated with molecular fragments 
(Toropova et al. 2016; Veselinović et al. 2015; Zivkovic 
et al. 2020), which is why this type of QSAR modeling is 
conducted under the OECD (Organization for Economic Co-
operation and Development) guidelines for QSAR model 
development.

Several in silico methods were administered for the pur-
pose of revealing new compounds having a potential 3C-like 
protease (3CLpro) inhibition activity in the presented 
research. Since molecular descriptors based on the SMILES 
notation were used, along with local graph invariants, the 
developed QSAR models were conformation-independent. 
One of the chief aims of this study was to determine the 
structural requirements or molecular fragments responsible 
for the 3CLpro inhibition effect. Moreover, this research 
defined the structural attributes found in small molecules 
concerning ligand-receptor interactions, which could be 
used in designing and developing SARS-CoV infection 
treatment therapeutics. Since the SMILES notation is used 
for chemical representation by most of the currently uti-
lized chemical databases, this type of modeling could be 
employed by other scientists for screening purposes, as the 
results of the developed QSAR models have displayed con-
siderably good values for various validation metrics, both 
internal and external ones.

Experimental

Methods

Dataset selection

A group of 84 molecules encompassing a wide range of 
heterocyclic compound classes, with an established 3C-like 
protease inhibiting activity against the infectious bronchi-
tis virus (SARS-CoV virus), were selected from the bind-
ing database, according to “The Scripps Research Institute 
Molecular Screening Center” (Gilson et al. 2015), and used 
for QSAR model development. What needs to be specially 
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emphasized is that the 3CLpro protease of SARS-CoV-2 
has a sequence similarity greater than 95% when compared 
with that of the bronchitis virus (SARS-CoV virus), which 
was the main reason for the use of the surrogate enzyme 
for developing inhibitors against SAR-CoV-2 3CLpro (Liu 
et al. 2020). All the used molecules have an activity in IC50 
(nM) values, which was determined using the same bioassay 
protocol (QFRET-based dose–response biochemical high 
throughput screening assay) (Jacobs et al. 2013). The IC50 
values were converted to pIC50 (pIC50 = − logIC50) values 
as a studied activity. Afterwards, Open Babel was utilized 
to canonize the SMILES notations obtained from the above-
stated database. Table S1 in the Supplementary Material 

cites the SMILES notations of all the used molecules, with 
their pIC50. Furthermore, the obtained data set was divided 
randomly into the training set (63 compounds, 75%) and 
the test set (21 compounds, 25%) for three random splits. 
In addition, the published method was used to verify the 
normality of the activity distribution (Ojha and Roy 2011).

Descriptor calculation and QSAR model 
development

The Monte Carlo optimization method was applied as the 
main algorithm for the conformation-independent QSAR 
models development. A hybrid approach was employed 
for the selection of adequate molecular descriptors as this 
approach represents the combination of the best features 
both from the molecular graph and from the descriptors 
based on the SMILES notation.

Molecular graph-based descriptors were derived from 
local graph invariants, and the most elementary theoreti-
cal graph concepts, such as paths and walks, were used in 
this research. Literature contains detailed mathematical 
definitions and applications in QSAR model development 
(Stoičkov et al. 2018). The following local graph invari-
ants were applied for the purpose of defining the optimal 
descriptors used in conformation-independent QSAR mod-
els: Morgan extended connectivity indices of increasing 
orders (EC0), path numbers with the length of 2 and 3 (p2, 
p3), valence shells in the range of 2 and 3 (s2, s3), as well as 
the number of carbon atom neighbors (NumberOfCarbon), 
and the non-carbon atom neighbors (NumberofNonCarbon).

Medicinal chemists find descriptors with mechanistic 
interpretations very appealing, in addition to those that could 
be correlated with molecular fragments. Unfortunately, most 

molecular graph-based descriptors do not have this feature, 
and the SMILES notation was used as a highly convenient 
alternative to them. One of the key features of the SMILES 
notation-based descriptors is the possibility of relating them 
to the appropriate molecular fragment. Data concerning the 
detailed description of the SMILES notation, as well as its 
application for defining molecule structure can be found in 
literature (Toropova et al. 2016; Veselinović et al. 2015). The 
descriptors based on the SMILES notation need a numerical 
value that is to be used in further QSAR model development, 
as is the case with all molecular descriptors. The numerical 
value used for this purpose is defined as correlation weight. 
Its mathematical representation is the sum of all the defined 
SMILES descriptors, according to Eq. 1.

Z, x, y, t, α, β and γ can have the values of 1 (yes) or 
0 (no). These values represent coefficients based on which 
these descriptors are used in QSAR modeling, which is 
done by following a simple rule—if the coefficient is 1, the 
descriptor is used, and if it is 0, then it is discarded. In Eq. 1, 
the Sk symbol is related to the local descriptors which are 
associated with one SMILES notation symbol (or two that 
cannot be separated)—SMILES atoms. The new optimal 
descriptors, represented with the SSk and SSSk symbols, 
respectively, are defined by the linear combinations of two 
and three SMILES atoms. With the exception of the local 
ones used in the QSAR modeling, the global SMILES nota-
tion descriptors could be used. When compared to the local 
ones, the global descriptors differ since they are related to 
the global features of a studied molecule, not only its struc-
ture. The following global SMILES notation-based descrip-
tors were used in the presented research: NOSP, HALO, 
BOND, and ATOMPAIR. These are defined on the basis of 
the presence or absence of the following chemical elements: 
nitrogen, oxygen, sulfur and phosphorus (NOSP); fluorine, 
chlorine and bromine (HALO); double, triple, or stereo-
chemical bonds (BOND), as well as the presence of seven 
chemical elements: F, Cl, Br, N, O, S, and P (ATOMPAIR). 
The presence/absence of eight chemical elements (fluorine, 
chlorine, bromine, iodine, nitrogen, oxygen, sulfur and phos-
phorus) and different types of chemical bonds (stereo chemi-
cal bond, double bond and triple bond) is defined as with the 
HARD-index a global SMILES notation-based descriptor 
and represented as a line of eleven symbols. A combina-
tion of both SMILES notation (both local and global) and 
local graph invariant descriptors is utilized in the presented 
research for the QSAR model deDCW, and is defined as the 
sum of all the used optimal descriptors’ correlation weights, 
according to Eq. 2.

(1)
DCW(T,Nepoch) = zCW(ATOMPAIR) + xCW(NOSP) + yCW(BOND) + tCW(HALO)

+ rCW(HARD) + �ΣCW
(

Sk
)

+ �ΣCW
(

SSk
)

+ �ΣCW
(

SSSk
)
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where Sk is one SMILES symbol, defined as the SMILES 
atom, SSk and SSSk are the linear combinations of two or 
three neighbor SMILES atoms, EC0k is the Morgan connec-
tivity index of the zero order (a hydrogen suppressed graph 
was used in this research), PT2k and PT2k are paths in the 
length of 2 and 3, VS2k and VS3k are valence shell 2 and 3, 
and NNCk is Nearest Neighbors (Toropov et al. 2003).

The calculations of all the above mentioned molecular 
descriptors and the QSAR model development were con-
ducted with the use of the Monte Carlo optimization method 
and its algorithm, implemented in CORAL (CORrelation 
and Logic) (http://​www.​insil​ico.​eu/​coral) software. The 
Monte Carlo optimization method depends on two essential 
parameters for the QSAR model development—the thresh-
old (T), used for eliminating rare molecule features, and the 
number of epochs (Nepoch), which represents the number of 
iterative processes of the algorithm for the purpose of reach-
ing the top correlation coefficient value. Within the QSAR 
model developing process, the Monte Carlo optimization 
method matches molecular descriptors with their numerical 
values (CW) until CWs are determined. In this manner, the 
Least Squares method can calculate the DCW (T,Nepoch) for 
the training and test set compounds, as defined in Eq. 3. A 
systematic review of the applied method is described in the 
literature (Toropova et al. 2016; Veselinović et al. 2015). 
The search for the best combination of T and Nepoch in the 
presented research was performed within the values of 0–10 
for T, and 0–70 for Nepoch.

The quality of the developed QSAR model needs to be 
evaluated by employing different validation methods. The 
process should provide information on the benefits of the 
developed model and whether it could be used for future 
predictions of the studied activities. The methodology 
from the published paper was used entirely for this purpose 
(Veselinović et al. 2015; Ojha et al. 2011; Roy et al. 2008), 
which involved the calculation of various statistical param-
eter values, such as the regular and cross-validated correla-
tion coefficient, standard estimation error, mean absolute 
error (MAE), the Fischer ratio, root-mean-square error, Rm

2, 
and MAE-based metrics. What is more, the validation of 
the developed QSAR models in this research was achieved 
through data randomization (Y-scrambling test) and with the 
determination of concordance correlation coefficient (CCC), 
as well as the novel parameter, dubbed the index of ideality 

(2)DCW
(

T,Nepoch

)

=ΣCW
(

Sk
)

+ ΣCW
(

SSk
)

+ ΣCW
(

SSSk
)

+ ΣCW
(

EC0k
)

+ ΣCW(PT2k)

+ ΣCW(PT3k) + ΣCW(VS2k) + ΣCW(VS3k) + ΣCW(NNCk)

(3)Ac = C0 + C1 × DCW
(

T,Nepoch

)

of correlation (IIC) (Stoičkov et al. 2018; Toropov and Toro-
pova 2017; Veselinović et al. 2018).

Molecular docking

For molecular docking studies were applied the Molegro 
Virtual Docker (MVD) software. The studies molecules 
were drawn using the Marvin sketch (Marvin 6.1.0, 2013, 
ChemAxon), whereas the MMFF94 force field was utilized 
to gain their optimal 3D geometry. The protein databank 
provided the structure of the studied enzyme with the PDB 
id: 6lu7 (the crystal structure of COVID-19 main protease 
in a complex with an inhibitor N3) (Jin et al. 2020). The 
purpose of MVD was obtaining an adequate geometrical 
orientation of the flexible ligand within the active site of 
the studied enzyme, surrounded by rigid amino acids, as 
well as identifying the hydrogen bonds and hydrophobic 
interactions between them. Finally, MVD was also used 
to calculate the relevant binding energies, also defined as 
“scoring” functions (Thomsen and Christensen 2006). The 
use of these functions is assessing the studied molecules’ 
inhibitory effect, and the following “scoring” functions were 
calculated in this research—Hbond, NoHbond, VdW, Steric, 
Pose energy, MolDock, and Rerank Score. The energy from 
hydrogen and no hydrogen bond interactions were calcu-
lated with HBond and NoHbond90, respectively; the ener-
gies from the Van der Walls and Steric interactions were 
calculated with VdW and Steric “scoring” functions; the 
overall energy of the best-calculated pose was calculated 
with the Pose energy. MolDock Score and Rerank Score 
were calculated as the final estimators of ligand and amino 
acids from the enzyme’s active site interaction energies, 
and the whole molecular docking protocol was validated in 
accordance with the published methodology (Amin et al. 
2018, 2019; Jain et al. 2020; Zivkovic et al. 2020). All the 
crystallized water molecules were removed before the dock-
ing. The binding site was computed within spacing in such 
a way that it was well sampled with the grid resolution of 
0.3 Å. The MolDock SE was used as a search algorithm, 
with the set number of runs being up to 100. The docking 
procedure parameters were: population size − 50; maximum 
number of iterations − 1.500; energy threshold − 100.00, 
and the maximum number of steps − 300. The maximum 
number of poses to generate was increased to 10 from a 
default value of 5. Discovery Studio Client v20.1.0.19 was 
used for showing two-dimensional representations of the 
interactions between the studied molecules and the amino 
acids 3CLpro active site.

http://www.insilico.eu/coral
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Results and discussion

To consider any QSAR model for prediction purposes, its 
applicability domain (AD) should be defined prior to use 
(Gadaleta et al. 2016; Gramatica 2007). The methodol-
ogy described in the literature was used to define the AD 
for all the developed QSAR models in this study (Toro-
pova et al. 2016; Veselinović et al. 2015). Based on the 
results obtained, all the molecules fall within the defined 
AD, and there were no outliers. The numerical values for 
all the metrics used for the determination of the devel-
oped QSAR model’s quality are cited in Table 1. On the 
basis of the results presented, the Monte Carlo optimiza-
tion method was able to produce a QSAR model which 
exhibited good reproducibility, and a high predictability 
potential. When it comes to the 3CLpro inhibitory activity, 
the second split yielded the best QSAR model, developed 
with the T value of 1, whereas the best Nepoch value was 
20. Figure 1 presents the graphical representations of the 
best Monte Carlo optimization runs (the highest value for 
r2) for the developed QSAR models (all the three splits). 
Equation 4 contains the mathematical representation of 
the best-developed model. The reproducibility concord-
ance correlation coefficient (CCC) was used for the assess-
ment of the developed QSAR models, and the obtained 
numerical values for the CCC indicate that the presented 
QSAR models show high reproducibility values. The met-
rics results based on the MAE indicate a GOOD model, 
thus classifying the developed QSAR model as valid. The 
numerical values of the index of ideality of correlation 
(IIC) were calculated for the purpose of making a final 
estimation regarding the quality of the developed QSAR 
models, and the obtained results exhibit a high predictive 
potential for the developed QSAR models. The numerical 
values calculated for Y-randomization, in which the Y val-
ues were scrambled in 1000 trials in ten separate runs, are 
presented in Table 2, and these were used to evaluate the 
sturdiness of the developed QSAR models. The presented 
results indicate that the developed QSAR models were free 
from correlation by chance because the numerical value 
for CR2

p was higher than 0.5.

A QSAR model was developed by Kumar and Roy for 
the same activity, with the use of 2D molecular descriptors 
and the multiple linear regression (MLR) technique (Kumar 
and Roy 2020). When compared with this research, where 
the authors used 69 molecules (16 molecules with outlier 
behavior were omitted from the original database), all the 
molecules were used in the presented research as they all fall 
into the defined AD. The following validation parameters 

(4)pIC50 = −4.9496(± 0.0040) + 0.0096 × DCW(1, 20)
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were present in the QSAR model reported by Kumar and 
Roy: Internal validation) R2 = 0.764, Q2 = 0:627; External) 
Q2

F1 = 0,727, Q2
F2 = 0,652, Avgrm2 = 0.610, Δrm2 = 0.110, 

MAE = 0.127. In addition to the validation parameters cited 
in Table 1, the QSAR models developed with the application 
of the Monte Carlo optimization method had Avgrm2 and Δrm2 
values of 0.8966–0.6097 and 0.1885–0.0191, respectively. 
When comparing the two approaches, by applying solely the 
reported statistical parameters, in terms of predictability, the 

QSAR model developed with the application of the Monte 
Carlo optimization method is superior.

The determination of molecular fragments, defined as 
the SMILES notation optimal descriptors having a posi-
tive and negative impact on the studied activity, was one 
of the chief aims of this research (Halder 2018; Kumar 
et al. 2019; Manisha et al. 2019; Toropov et al. 2019). 
The full list of molecular descriptors, both based on the 
molecular graph and the SMILES notation, are shown in 
Table S2 (Supplementary material), while the selected 

Fig. 1   Graphical representation of the best Monte Carlo optimization runs (the highest value for r2) for the developed QSAR models

Table 2   Y-randomization of 
the best QSAR model (best 
optimization run) for three 
independent splits

C Rp
2 = R × (R2-Rr

2)1/2 should be > 0.5 (Ojha and Roy 2011)

Split 1 Split 2 Split 3

Training Test Training Test Training Test

0.9351 0.8862 0.9407 0.9317 0.9036 0.9298
1 0.0064 0.0340 0 0.0197 0 0.0726
2 0.0009 0.0019 0.0090 0.0202 0.0235 0.0823
3 0.0935 0.0152 0.0196 0.0042 0.0151 0.0708
4 0.0087 0.0193 0.0309 0.0281 0.0422 0.1384
5 0.0248 0.0008 0.0853 0.0098 0.0061 0.0009
6 0.0035 0.0028 0.0007 0 0.0207 0.0129
7 0.0051 0.0149 0.0004 0.0215 0.0041 0.0002
8 0.0020 0.0096 0.0006 0.0368 0.0145 0.0237
9 0.0061 0.0410 0.0015 0.0006 0.0103 0.0134
10 0.0040 0.1760 0.0246 0.0965 0.0684 0.0780
Rr

2 0.0155 0.0316 0.0173 0.0237 0.0205 0.0493
CRp

2 0.9274 0.8703 0.932 0.9198 0.8933 0.9048
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ones are detailed in Table 3. The calculation example 
is presented in Table S2, where molecular graph-based 
descriptors were omitted with the aim of achieving an 
easier interpretation.

The selected molecular fragments, defined as the 
SMILES notation descriptors which have a positive influ-
ence on the studied activity (a lower concentration of the 
compound is required to achieve IC50) are as follows: “(…
(…….”, “(…N…(…” and “(…O…(…”—additional branch-
ing in the molecule, and additional branching in the mol-
ecule realized by adding aliphatic nitrogen and oxygen 
atom; “ +  +  +  + CL–N =  =  = ”, “ +  +  +  + N–-O =  =  = ” 
and “ +  +  +  + O–-B2 =  = ”—the presence of chlorine and 
nitrogen atoms in the molecule, the presence of oxygen and 
nitrogen atoms in the molecule, and the presence of oxy-
gen and a double bond in the molecule; “BOND10000000”, 
“C…/…….”, and “C…/…C…”—double bond between 
two carbon atoms; “C…C…C…”—propyl group; 
“N…C…C…”—ethyl amine group; “O…1…….” oxygen 
atom inside the ring; “O…C…….”, “O…C…C…” and 
“C…O…C…”—methoxy, ethoxy and dimethoxy groups, 
respectively; “s…c…….” and “s………..”—aromatic sul-
fur atom; “c…c…….” and “c…c…c…”—aromatic carbon 
atoms. The same analysis may be performed for molecu-
lar fragments, defined as the SMILES notation descriptors 
with a negative impact on the studied activity. The selected 
molecular fragments are: “C…(…….”, “N…C…(…” and 

“N…(…….”—simple molecular branching on the carbon 
and nitrogen atom; “(…Br..(…” and “(…Cl..(…”—addi-
tional molecular branching with bromine and chlorine 
atoms; “C…2…(…” and “N…2…….”—second ring inside 
the molecule, and second ring inside the molecule with a 
nitrogen atom; “ = …1…….”—double bond within the 
ring; “N………..” and “– aliphatic nitrogen; “N… = …….”, 
“N… = …C…”, “O… = …….” and “O… = …C…”—the 
double bond between the nitrogen or oxygen atom and the 
carbon atom; “n…n…….”, “s…n…….” and “s…n…n…”—
aromatic nitrogen atoms and the presence of both aromatic 
nitrogen and sulfur atoms. The graphical representation of 
the impact of molecular fragments on the selected molecule 
activity is displayed in Fig. 2. The green color in Fig. 2 
indicates a positive influence, while red indicates a negative 
impact on the studied activity.

Identified molecular fragments were used for the com-
puter-aided design of novel 3CLpro inhibitors. The mol-
ecule with the highest inhibitory effect (compound 1 from 
the dataset) was used as a starting/template molecule for 
the purpose of producing molecules with a higher inhibition 
potential. Table 4 indicates the SMILES notation of all the 
designed molecules, along with their calculated values for 
the -pIC50, utilizing the best-developed QSAR model, while 
their chemical structures are presented in Fig. 3.

Added molecular fragments were identified as structural 
alerts that have a positive effect on the studied activity in 
all the designed molecules (A1-A5). Molecules A1-A3 
had the following molecular fragments added—the isopro-
pyl and cyclopropyl group on the different parts of tem-
plate molecule A. The groups are defined as the following 
SMILES notation descriptors, all promoters of the studied 
activity increase—“(…(…….”; “1………..”; “C………..”; 
“C…C…….”; “C…C…C…”. Molecules A4 and A5 
have added methyl ether group. They all have a positive 

Table 3   Selected promoters of inhibition activity increase/decrease

Promoters of inhibition activity increase Promoters of 
inhibition activity 
decrease

(…(…… (…Br..(…
(…N…(… (…Cl..(…
(…O…(…  = …1……
 +  +  +  + CL–N =  =  =  C…2…(…
 +  +  +  + N–-O =  =  =  N……….
 +  +  +  + O–-B2 =  =  N…2……
C…/…… N… = ……
C…/…C… N… = …C…
C…C…C… N…C…(…
C…O…C… N…C……
BOND10000000 N…1……
N…C…C… O… = ……
O…1…… O… = …C…
O…C…… O…C…N…
O…C…C… n…n……
s…c…… s…n……
s………. s…n…n…
c…c…… C…(……
c…c…c… N…(……

Fig. 2   Identified molecular fragments with their impact on 3CLpro 
inhibitory activity
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impact on the studied activity and are defined with the fol-
lowing SMILES notation descriptors – “C…O…C…”; 
“O…C…….”; “O…C…C…”; “O………..”.

The approach suggested in the literature was taken to 
assess the predictability of the developed QSAR model, 
and to further estimate inhibitory potential of designed 
molecules (Zivkovic et al. 2020). Within this approach all 
designed molecules and template molecule A were subjected 
to molecular docking studies with SARS-CoV-3CLpro 
enzyme to assess their binding potential and numerical val-
ues for all calculated “scoring” functions are presented in 
Table 5. One of assumption is that the more molecule is 
bounded to enzyme, indicated with higher binding energies 
between molecule and amino acids form active site and cal-
culated in regards to appropriate “scoring” functions, the 
higher inhibition would be, resulting to higher values of 

pIC50, smaller concentrations are needed to achieve inhibi-
tion. Also, different ligand-amino acids interactions could 
be associated with various scoring functions, so everything 
should be taken into consideration when performing the 
assessment of the inhibitory potency. Literature contains the 
detailed definitions of other “scoring” functions (Thomsen 
and Christensen 2006, Zivkovic et al. 2020). Calculated 
values for energies with the application of defined “scor-
ing functions” are much higher in comparison to real bind-
ing energies and most likely they are unrealistic. However, 
since same approach was used for all molecules, obtained 
values could be compared to assess the binding preferences, 
meaning the higher the binding energy, the higher binding 
preferences, leading to higher inhibitory potential. Accord-
ing to the obtained results for MolDock and ReRank, mol-
ecule A5 has the potentially highest inhibitory activity and 
molecule A the lowest. This result is in correlation with the 
results from the QSAR modeling since the calculated values 
for -pIC50 using the best QSAR model obtained with the 
Monte Carlo optimization method are the most preferable 
for molecule A5 and the least preferable for molecule A. All 
the interactions between the selected molecules and amino 
acids from the 3CLpro enzyme’s active site have been identi-
fied, and Figures S1-S6 in the Supplementary Information 
section present the 2D representation of hydrogen bonds, in 
addition to hydrophobic, and hydrophilic interactions inside 
the 3CLpro binding pocket. The best-calculated poses for 
all studied molecules inside the active site of 3CLpro are 
cited in Fig. 4.

It is of extreme importance to determine the studied com-
pounds’ drug-likeness when the aim is for them to become 

Table 4   The list of all designed 
molecules with their SMILES 
notation and calculated 
activities

Ac(calc.) calculated values for -pIC50 with the application of the best QSAR model

Molecule SMILES notation Ac(calc.)

A CSc1nc2c(n1C(=O)c1ccc(cc1)OC)cc1c(c2)OCCO1 − 3.0608
A1 CSc1nc2c(n1C(=O)c1ccc(cc1)OC(C)C)cc1c(c2)OCCO1 − 2.8396
A2 CSc1nc2c(n1C(=O)c1ccc(cc1)OCC1CC1)cc1c(c2)OCCO1 − 2.7599
A3 COc1ccc(cc1)C(=O)n1c(SC(C)C)nc2c1cc1OCCOc1c2 − 2.8704
A4 COCOc1ccc(cc1)C(=O)n1c(SC)nc2c1cc1OCCOc1c2 − 2.801
A5 COCSc1nc2c(n1C(=O)c1ccc(cc1)OC)cc1c(c2)OCCO1 − 2.791

Fig. 3   Chemical structures of all designed molecules

Table 5   Score values (kcal/mol) 
for studied molecules

Molecule HBond NoHBond
90

Steric VdW Energy MolDock
Score

Rerank
Score

A − 9.95391 − 12.2513 − 124.08 − 36.6289 − 126.41 − 120.905 − 100.528
A1 − 2.28481 − 2.28481 − 139.612 − 45.7151 − 134.173 − 125.953 − 108.021
A2 − 6.02484 − 6.80429 − 138.895 − 38.4165 − 134.373 − 127.337 − 103.769
A3 − 2.29903 − 2.29903 − 148.374 − 41.8895 − 138.963 − 130.133 − 113.401
A4 − 12.39 − 14.89 − 133.877 − 45.782 − 137.214 − 130.258 − 111.3548
A5 − 7.19636 − 7.7621 − 142.37 − 49.4728 − 145.603 − 137.197 − 122.4118
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therapeutics. Compounds should possess physical and chem-
ical parameters enabling them to be considered as potential 
medication. The application of Lipinski’s “Rule of Five” 
represents one of the extensively used approaches. These 
rules determine the absorption/permeation of the compound, 
and if the compound possesses a molecular weight higher 
than 500, logP over 5, and the number of hydrogen bond 
donors and acceptors is higher than 5 and 10, respectively, 
it will most likely have poor absorption/permeation. In addi-
tion, the number of rotatable bonds, associated with confor-
mational molecular flexibility, is used to assess the efficacy 
of binding to receptors/channels, as well as their bioavail-
ability. The molecule should have a satisfactory number of 
rotatable bonds, i.e. 10 or fewer (Lipinski et al. 2001). In 
addition to Lipinski’s “Rule of Five”, Veber proposed hav-
ing an additional set of rules for a molecule’s drug-likeness 
assessment (Veber et al. 2002), and they can be summa-
rized as acceptable when the oral bioavailability is more 

likely to occur when the molecule has 10 or fewer rotatable 
bonds, a polar surface area equal to or less than 140 Å2, and 
12 or fewer hydrogen donors and acceptors. For template 
molecule A and all the designed molecules, the physical 
and chemical parameters defined above are calculated using 
the Molinspiration Cheminformatics software (www.​molin​
spira​tion.​com), and presented in Table 6. In accordance with 
the obtained results, all the molecules were in accordance 
with Lipinski’s “Rule of Five”, and the Veber rules, which 
may be associated with their potentially good solubility and 
permeability through biological membranes, thus leading 
to satisfactory bioavailability, which is why they may be 
considered as potential therapeutics.

Conclusion

The present research demonstrates the development of new 
robust and reliable QSAR models for 3CLpro inhibition 
based on the Monte Carlo optimization method as the main 
model, and developed on the basis of optimal descriptors 
derived both from a local graph and the SMILES notation 
invariants. The assessment of the developed QSAR mod-
el’s robustness and its predictive potential was achieved by 
applying various statistical techniques and obtained numer-
ical values, used to validate the developed QSAR model, 
indicating that it has high applicability. The applied meth-
odology was able to determine the molecular fragments, 
used as the SMILES notation fragments in QSAR mode-
ling, which have a positive and negative impact on 3CLpro 
inhibition. They were used for the computer-aided design 
of novel 3CLpro inhibitors with a potentially higher activ-
ity when compared to template molecule A. To assess the 
developed QSAR models' predictability all designed mol-
ecules and template molecule A were subjected to molecular 
docking studies with 3CLpro. Their binding potential was 
assessed according to the comparison of numerical values 
for all calculated “scoring” functions, related to energies 
from the interactions between the molecules and the amino 

Fig. 4   The best-calculated poses for designed molecules (A1-A5) and 
template molecule A inside the active site of 3CLpro

Table 6   Calculated physico-
chemical properties of the 
designed molecules used for 
drug-likeness determination

miLogP octanol–water partition coefficient, TPSA molecular polar surface area, natoms number of atoms in 
molecule, MW molecular weight, nON number of nitrogen and oxygen atoms in molecule, nOHNH number 
of amino and hydroxyl groups, nviolations number of “Rule of five” violations, nrotb number of rotable 
bonds, volume volume of molecule

Molecule miLogP TPSA natoms MW nON nOHNH nviolations nrotb volume

A 3.43 62.6 25 356.4 6 0 0 3 300.61
A1 4.17 62.6 27 384.46 6 0 0 4 333.99
A2 4.3 62.6 28 396.47 6 0 0 5 340.44
A3 4.17 62.6 27 384.46 6 0 0 4 333.99
A4 3.4 71.83 27 386.43 7 0 0 5 326.39
A5 3.4 71.83 27 386.43 7 0 0 5 326.39

http://www.molinspiration.com
http://www.molinspiration.com
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acids within the active site of the 3CLpro, and calculated 
pIC50 from the best QSAR model developed with the Monte 
Carlo optimization method. Values for all defined “scoring” 
functions calculated for each designed molecule and calcu-
lated values for pIC50 show high inter-correlation. Also, all 
designed molecules have potentially good pharmacokinetic 
properties and possess drug-likeness. The methodology pre-
sented in this research paper can be applied in the search for 
novel therapeutics for the treatment of COVID-19 based on 
3CLpro inhibition.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11696-​022-​02170-8.
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