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Abstract: As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that
have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c
oxidase (CO). The enzyme generates a sodium-motive force (∆s) as high as −270 mV across the
bacterial plasma membrane. However, in these bacteria, operation of the possible ∆s consumers
has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic
cycle in these bacteria. The resulting motility was activated in the presence of the protonophore
2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and
was fully blocked by amiloride—an inhibitor of Na+-motive flagella. In immotile starving bacteria,
ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on
sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive
flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason
for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions
of soda lakes.

Keywords: flagellar motor; Na+-motive cytochrome oxidase; alkaliphiles; Na+ energetic cycle;
sodium-motive force

1. Introduction

Recent studies of new extreme habitats of living organisms have led to the discovery
of new subdivisions of bacteria and archaea, and significantly expanded knowledge of the
possible limits of life [1,2]. Following this, new data on the energetics [3–13] and biocataly-
sis [14–16] in organisms capable of living in extreme conditions have been disclosed. Soda
lakes belong to such areas, being characterized by a combination of several extremes [17].
Bacteria of the genus Thioalkalivibrio—belonging to the class Gammaproteobacteria, and
distantly related to anoxygenic purple sulfur bacteria of the genus Ectothiorhodospira—are
common inhabitants of soda lakes [18–25], and belong to the double-extremophilic bacte-
ria [26]. Among them is the strain Thioalkalivibrio versutus, which has adapted to thriving in
soda brines characterized by both strong alkalinity (pH up to 11) and high salinity, with
almost saturating salt concentrations (up to 4 M Na+) [27]. The strain is obligately aerobic,
as described earlier. A surprising adaptation of Thioalkalivibrio strains to life in extreme
alkaline conditions with saturating sodium concentrations is the use of a sodium pump at
the terminus of their respiratory chain (Na+-motive cytochrome-c oxidase) [28,29]. This
is the first Na+-motive oxygen-reducing enzyme proven to operate in living organisms.
Long before the discovery of these bacteria, the emergence of such a sodium pump was
predicted to counteract the low proton-motive force (∆p) on membranes of alkaliphiles in
alkaline media [30–32], but only 30 years later was the sodium pump discovered [29]. Our
data showed that, indeed, in T. versutus cells the ∆p is as low as −80 mV [33]. According
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to Guffanti and Krulwich, as was shown in alkaliphilic Bacillus strains, this value is not
enough to drive ATP synthesis [34,35]. At the same time, in T. versutus, operation of the
Na+-motive cytochrome-c oxidase enables the maintenance of a high negative electrical
potential on their membranes [33], which is even higher than that shown in many alka-
liphiles [35]. Direct methods have shown that the described sodium pump generates a high
sodium-motive force (∆s [36]) across the bacterial cytoplasmic membranes [29], and has
properties inherent in alkaliphilic proteins [37].

According to the genomic databases, in Thioalkalivibrio representatives, a possible
presence of ∆s consumers can be predicted; among such ∆s consumers are secondary
Na+-transporters and Na+-type flagella [38]. However, in T. versutus, the functioning of
the sodium energetic cycle composed of a ∆s generator and a ∆s consumer has not been
experimentally proven. Previously, we have undertaken the first steps towards achieving
bacterial motility [39]. In the present study, we describe the modified procedure for the
selection of stable motile bacterial cells suitable for the study of bioenergetic characteristics
and, using inhibitor analysis, experimentally ascertain the Na+ type of the flagellar motor.
Our findings allow us to verify in T. versutus the functioning of the sodium energetic cycle,
which consists of a ∆s generator and a ∆s consumer.

2. Results and Discussion

Previously, heme of types B, D, and O was found in the cells of several different
Thioalkalivibrio strains [40,41], indicating the possibility of induction of different types of
oxygen reductase enzymes in representatives of this genus under different conditions.
However, the membranes of the Thioalkalivibrio versutus strain grown in this work at the
optimal pH (pH 10.2) (Figure 1a) contained only cytochromes c and b—detected spectrally
as published earlier [29]—and heme B, according to the HPLC analysis (Figure 1b). Thus,
the heme and cytochrome composition of the membranes, as well as the presence of only
Na+-dependent components on respiration curves in the pH range 7.5–10.5, similar to that
shown earlier (see Figure 1 in [29]), indicated that under the conditions used the previously
described Na+-motive cbb3 oxidase [29] served as the main terminal oxidase in the strain.
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Figure 1. Thioalkalivibrio versutus batch culture characteristics: (a) pH profile for substrate con-
sumption by T. versutus measured in batch culture. Each point corresponds to independent culti-
vation at constant pH. The red circle depicts cultivation conditions used in the study, and for the 
isolation of T. versutus from a swimming culture. (b) Heme profile of the T. versutus membranes, 
isolated from the cells cultured at pH 10.2 under oxygen-limited conditions. A ruler with the elu-
tion times for standard heme D, B, A, and O is shown at the top of the graph. Elution was carried 
out with a gradient of acetonitrile in water containing 0.05% trifluoroacetic acid (dashed line). 

Figure 1. Thioalkalivibrio versutus batch culture characteristics: (a) pH profile for substrate consump-
tion by T. versutus measured in batch culture. Each point corresponds to independent cultivation at
constant pH. The red circle depicts cultivation conditions used in the study, and for the isolation of
T. versutus from a swimming culture. (b) Heme profile of the T. versutus membranes, isolated from the
cells cultured at pH 10.2 under oxygen-limited conditions. A ruler with the elution times for standard
heme D, B, A, and O is shown at the top of the graph. Elution was carried out with a gradient of
acetonitrile in water containing 0.05% trifluoroacetic acid (dashed line).

The T. versutus strain is obligately aerobic, and can derive energy from aerobic ox-
idation of reduced sulfur compounds [27]. In our experiments, thiosulfate was used as
an energy source. To activate motility of the cells that were initially motionless, we used
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a semi-liquid medium containing 0.3% agarose, placed in Petri dishes. Some time after
planting the inoculum in the center of the Petri dishes, expanding whitish swimming rings
appeared on the surface of the medium (Figure 2a–c).
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Figure 2. Formation of the bacterial swimming rings by the passaged T. versutus cells: (a–e) T. versutus
formed bacterial swimming rings (white arrow indicates such a ring on the left panel), seen as radially
widening whitish opalescent circles on the surface of the semi-liquid medium in Petri dishes (the
photos demonstrate a typical picture 23 h after inoculation). Visible as bright white dots in the center
of each Petri dish are unpassaged cells (for details, see Section 3).

Microscopic examination showed that the cells taken from the swimming rings became
motile. The ability of T. versutus cells to acquire motility in a semi-liquid medium depended
on the thiosulfate concentration in the medium (Figure 3a). The absence of a lag phase
before the start of movement was observed at 1.5 mM thiosulfate. An increase in the
thiosulfate concentration to 2.5 mM and 30 mM led to a progressive delay in the ability
of cells to move. Motile cells sampled from the periphery of the rings had monopolar
flagellation and a single flagellum (Figure 3b).
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Figure 3. Activation of T. versutus cell motility: (a) Dependence of the start of motility on the
concentration of the growth substrate. (b) Electron micrograph of a flagellum-bearing T. versutus cell
stained with 1% uranyl acetate.

To determine the type of flagellar motor, we used amiloride—an inhibitor of Na+/H+

antiporters and Na+ channels of many organisms [42], which is also known as a specific
inhibitor of the Na+-type flagellar motor [43]. According to Atsumi et al., at alkaline pH,
amiloride interfered with the growth of some Bacillus and Vibrio alkaliphilic species in solid
and semi-liquid media [44]. In our experiments, amiloride at concentrations no higher than
50 µM did not affect the growth of T. versutus culture, and was used in further experiments
at these low concentrations. Testing in semi-liquid media showed that amiloride at low
concentrations blocked the expansion of swimming rings (Figure 2c–e). Thus, it could be
assumed that T. versutus motility is provided by Na+-motive flagella. However, it was
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previously noted that, in contrast to semi-liquid media—in which amiloride in concentra-
tions of tens of micromoles can inhibit bacterial growth—liquid media make it possible
to study the effects of amiloride at higher concentrations [44]. For a more detailed study
of amiloride’s effects, we used microscopy to analyze the cell motility speed in a liquid
medium in a Goryaev chamber. For this, the cells selected for maximal swimming speed in
a semi-liquid medium were collected and studied when the substrate was washed out. The
motility was initiated by adding thiosulfate (Figure 4a) or a cytochrome oxidase substrate
(ascorbate) (Figure 4b). Thiosulfate-initiated cell respiration remained constant with increas-
ing amiloride concentration (Figure 4a, lower panel); this indicates that amiloride had no
effect on the oxygen-reducing ∆s generator cytochrome oxidase. On the other hand, in both
semi-liquid (Figure 4a, upper panel) and liquid media (Figure 4b), amiloride suppressed
bacterial motility, albeit with different efficiency. While the half-maximal inhibitory effect
was comparable in both variants—I50 25 µM and 30 µM, respectively—complete inhibition
of motility in a semi-liquid medium was achieved at a significantly lower concentration of
amiloride (50 µM, versus almost 1 mM in a liquid medium). In both cases, dimethyl sulfox-
ide (DMSO) free of amiloride (used as a solvent for amiloride in other experiments) did not
affect motility (Figures 2b and 4b). The picture of the dependence of T. versutus motility on
amiloride concentration in a liquid medium coincides with the previously published data
for Vibrio alginolyticus [45], and confirms that the cells use the sodium flagellar motor.
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Figure 4. Effect of amiloride on the motility of T. versutus cells: (a) Dependence of the swimming
rings’ diameter (upper panel) and cell respiratory rate (lower panel) on amiloride concentration. For
motility, a semi-liquid medium supplied with 1.5 mM thiosulfate as an energy substrate was used.
The diameters shown in the graph were recorded 19 h after the start of three independent experiments.
The results of each experiment are marked with closed red circles, closed green triangles, or open
blue diamonds. At the bottom of the upper panel, the level of inoculum spots’ diameter is indicated
(dashed line). (b) Dependence of the cell motility speed in a liquid medium on amiloride concentration
(closed green circles). The cell motility was examined in a Goryaev chamber, using transmitted light
microscopy. The liquid medium for motility experiments contained 100 mM Caps-KOH (pH 9.2),
0.6 M KCl, 10 mM NaCl, and 10 mM ascorbate as an energy substrate. The graph data are the average
of three independent experiments. In each independent experiment, the swimming speed value at
each indicated concentration of amiloride is the average of 40–45 individual measurements.

To verify the effect of sodium ions on cell motility, we used bacterial cells washed
to remove sodium and then placed in a liquid medium free of sodium and respiratory
substrates. After one day of starvation, such bacterial cells became motionless. The motility
of the cells was recovered upon the addition of NaCl, achieving final concentrations of
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1–20 mM in the presence of ascorbate in the medium (Figure 5). The effect of sodium
was specific to monovalent cations, since neither potassium chloride nor lithium chloride
restored bacterial motility—similar to findings for the alkaliphilic Bacillus YN-1 [46]. The
dependence of the motility and respiratory activity of T. versutus cells on sodium concen-
tration, as well as their sodium specificity, proved to be the same, which could indicate
that the Na+-motive cytochrome oxidase and Na+-type flagella operated in one and the
same mode of the Na+ energetic cycle. Interestingly, the effect of sodium chloride in nearly
the same concentration range was observed on the motility of Vibrio alginolyticus 1854,
Vibrio cholerae VIO5 [47], Vibrio alginolyticus Nap1 [48], Vibrio parahaemolyticus [45], and an
alkaliphilic Bacillus—B. firmus RAB [46].
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Figure 5. Motility recovery of the initially motionless T. versutus cells in a liquid medium; 10 mM
potassium ascorbate was used as a substrate. Concentration of sodium in the bacterial suspension
was varied by the addition of small aliquots of the incubation medium, containing 4 M NaCl (for
details, see Section 3).

However, such a flagellar motor could be started either directly by ∆s—generated by
means of a primary Na+ pump, as in Vibrio species at alkaline pH [49]—or indirectly, when
∆p, generated by a primary H+ pump at neutral pH, is converted into ∆s by a secondary
Na+-pumping mechanism—for example, a Na+/H+-antiporter [49]—as it also takes place
in alkaliphilic Bacillus species (for review, see [50]). In order to find out what kind of energy
transfer mechanism was used by the cells to initiate operation of the flagellar motor, we
investigated the effects of protonophores and some inhibitors.

Bacterial motility was preliminarily initiated by adding either thiosulfate or ascorbate
to the suspension of starved motionless cells in the presence of Na+ ions. Figure 6a,b show
the effects of the protonophores carbonyl cyanide m-chlorophenylhydrazone (CCCP) and
2-heptyl-4-hydroxyquinoline N-oxide (HQNO) on T. versutus motility. It can be seen that
CCCP had almost no effect, but HQNO increased motility quite strongly.
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Figure 6. Effects of protonophores CCCP (a) and HQNO (b), and the Na+/H+ ionophore monensin
(c), on bacterial cell motility. (a,b) Cell motility was started by the addition of either 1.5 mM thio-
sulfate (blue curves) or (a–c) 10 mM ascorbate (red curves) in the presence of 10 mM NaCl (final
concentrations indicated); (c) 50 µM monensin was added to the cell suspension supplied with 10 mM
potassium ascorbate in the presence of 10 mM NaCl and the protonophore HQNO (black circles).

Apparently, the favorable effect of HQNO on the motility of the studied bacteria may
be explained by the decrease in the electric potential (∆ψ) on bacterial membranes due to
the protonophorous action of HQNO. As we have shown previously, HQNO, in contrast to
CCCP, is an effective protonophore at alkaline pH [29]; this is why HQNO can transport
H+ from the outer medium to the negatively charged interior of bacteria; as a result, ∆ψ
decreases. This situation may be similar to the state of bacteria with a decrease in energy
resources, when cells became motile (Figure 3a). It is likely that, both in the presence of
HQNO and with a deficit of energy resources, a decrease in ∆ψ serves as a signal for the
acquisition of motility and the following migration of bacteria to more favorable conditions.

Another possibility arises due to the fact that, according to our data [33], the ∆ψ
level in respiring T. versutus can reach a value of −228 mV, which is higher than in other
bacteria and mitochondria. High ∆ψ is dangerous for biomembranes—especially for
mitochondrial membranes and mitochondrial metabolism—as has been shown using
planar membranes [51]. It cannot be ruled out that a certain high ∆ψ level in bacterial
membranes may be harmful due to increase in membrane permeability for Na+, which is
present at a very high concentration in the medium.

In the presence of the protonophore HQNO, not only does ∆ψ decrease, but ∆p
dissipates, and should an H+ pump be involved in the energization of the flagellar motor,
the motor would have to stop. However, this did not happen (Figure 6b); on the contrary,
the rate of cell motility increased 2–3.5 times in the presence of HQNO, which excludes
the secondary mechanism of energization of the flagellar motor when an H+ pump and
Na+/H+ antiporter are involved. It should be noted that in the first minutes upon the
addition of the respiratory substrate and HQNO to T. versutus cells, when ∆ψ and ∆p fall
to values close to zero, a 10-fold gradient of sodium ions is generated, corresponding to a
very high ∆pNa value of −220–−260 mV (see Figure 3A in [29]). The observed scenario
most closely matches the direct use of ∆s.

The above effect can be explained by the fact that the protonophore provides an
entry of H+ counterions into the cell in accordance with the law of electroneutrality, and
thereby prevents the electric field from controlling the operation of the Na+ pump. As
a result, the activity of the primary Na+ pump increases, followed by an increase in
∆pNa with the simultaneous dissipation of the electric potential on the membrane. The
stimulation effect of protonophore uncouplers on Na+ pumping has been described for a
number of ∆s-generating proteins [52], among which are Na+-pumping NADH-quinone
oxidoreductases [53], Na+-ATPases [54–58], recently described Na+-pumping cytochrome
oxidase [28,29], and Na+-proteorhodopsins [59,60]. Consistent with the above explanation
for the effect of HQNO, we showed that in the presence of HQNO, the Na+/H+ antiporter
monensin (dissipating transmembrane [Na+] and [H+] gradients) abolished the HQNO-
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induced stimulation of the motility rate (Figure 6c). Thus, the obtained data support
the direct use of ∆s generated by the primary Na+ pump, which could be represented in
T. versutus by the Na+-motive cbb3 oxidase and/or a Na+-motive ATPase.

To test possible mediation of ATPase as a generator of ∆s, we used the cells washed to
remove sodium and preincubated with or without 20 mM arsenate for a day. The motility
of such cells (both in the absence of arsenate when ATPase was functioning, and in the
presence of 20 mM arsenate when ATPase was blocked) was successfully triggered by
ascorbate in a sodium-dependent mode, and the speed of motility did not depend on the
presence of arsenate. These results excluded participation of ATPase in the energization of
flagella, and showed that the generation of ∆s by the Na+-motive cytochrome-cbb3 oxidase
triggers the Na+-type flagella motor. Thus, in T. versutus, a Na+ cycle operates that includes
a ∆s generator (Na+-motive cytochrome-cbb3 oxidase) and a ∆s consumer (a Na+-type
flagellar motor).

Previously, Chernyak et al. showed that the flagellar motor of marine V. alginolyticus is
powered by ∆s [61]. Later, Atsumi et al. found that, depending on the habitat, V. parahaemolyticus
can acquire two types of flagellar motor that differ in coupling ions, localization, and
functional specialization—namely, laterally located H+-motive flagella, and polar-located
Na+-motive flagella [45]. According to our study, the batch-cultured T. versutus strain bears
a single polar flagellum, which is clearly a Na+-motive flagellar motor.

To our knowledge, here we have demonstrated for the first time that the activation of
the ∆s generator by protonophores leads to stimulation of the ∆s consumer (the Na+-motive
flagellar motor). In particular, stimulation is manifested to a greater extent in the presence of
HQNO, and to a lesser extent in the presence of CCCP, which is consistent with the efficiency
of these protonophores at alkaline and weakly acidic/neutral pH, respectively [29]. The
reasons why activation of bacterial motility in the presence of protonophores has not been
previously described in the literature may be as follows: HQNO inhibits Na+-NADH-
CoQ-reductase (NQR) [53], the functional operon of which is lacking in the genome of
T. versutus. Considering the above, it can be assumed that in bacteria bearing NQR the
protonophore-stimulating effect of HQNO was leveled by its inhibitory counter-effect on
NQR activity [45,47], while CCCP was less effective as a protonophore at alkaline pH.

Being similar in architecture to the known cbb3 oxidases, the Na+-motive oxidase has
unique properties that open the way for favorable existence of natronophilic T. versutus
in soda lakes [37]. Having specific motifs in the amino acid sequence of the catalytic
subunit capable of binding Na+ ions, this CO shows a strongly negative redox potential of
the cytochrome-c-bearing subunits, which apparently promote energy conversion under
alkaline conditions [37]. Based on our previous studies of T. versutus cells, we can deduce
the ∆s value generated on their membranes in 5 min after substrate addition. The ∆s
is composed of ∆ψ (−228 mV) [33] and 60∆pNa (−42 mV) [29], resulting in an overall
−270 mV. It can be assumed that the previously demonstrated much lower 22Na+ leakage
across membranes in T. versutus compared to non-extremophilic Paracoccus denitrificans
(see Figure 3 in [29]) ensures the maintenance of such a high ∆s value. This high value
helps explain how extreme bacteria not only escape depression as a consequence of low
∆p, but flourish and offset the much higher energy costs they incur to survive in severe
extreme conditions.

The obtained data may also explain the ecological preferences of T. versutus. It is
known that these bacteria are confined to living in a narrow zone called the chemocline.
The sodium energetic cycle, formed by Na+-motive cytochrome oxidase and Na+-type
flagella, could serve as a mechanism by which the bacteria are retained in this zone in
the presence of sodium and a highly alkaline pH of the medium. Obviously, far from the
chemocline zone, the concentration of sulfur-containing substrates decreases and, according
to our results, activates the bacterial motility providing them with access to areas more rich
in nutrients. On the other hand, when bacteria approach the chemocline zone, which is
rich in sulfur-containing substrates, the speed of their motility should slow down, leading
to the retention of bacterial cells in this zone.
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3. Materials and Methods
3.1. Materials

Amiloride, monensin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2-heptyl-
4-hydroxyquinoline N-oxide (NQNO), KCl and KOH free of sodium were purchased from
Sigma-Aldrich (St. Louis, USA); dimethyl sulfoxide (DMSO) was purchased from Merck
(Darmstadt, Germany).

3.2. Bacteria Growth Conditions for the Experiments

The type strain Thioalkalivibrio versutus AL2 (T. versutus) was cultured in 25 mL of a
“soda” medium at pH 10.2, with thiosulfate as a growth substrate [27], under conditions of
limited aeration in 50 mL Falcon tubes on a Biosan ES-20 rotary shaker (Biosan, Riga, Latvia)
at 90 rpm and 30 ◦C until the stationary phase of growth. During that time, the tubes were
set at an angle of 120◦ relative to the horizon. The content of thiosulfate consumed in the
nutrient medium was estimated by the cyanolytic method, which allows for individual
quantitative determination of thiosulfate, tetrathionate, and trithionate [62].

3.3. Analysis of Hemes

The membranes of the grown bacterial cells were isolated as described previously [63],
with some modifications [37], and analyzed for heme content. For this purpose, heme
was extracted from the isolated cellular membranes, and the following heme analysis was
performed using HPLC as described previously [64], with some modifications [65]. Heme
was extracted and separated via reversed-phase chromatography on a Diasorb-C16 column
3 × 250 mm (Elsico, Moscow, Russia) at a flow rate of 1 mL/min, with detection at 406 nm
on a PU 4110 chromatograph (Philips Scientific (Pye Unicam), Cambridge, UK). To calibrate
the chromatographic column, the elution times of standard heme A and B isolated from
bovine heart cytochrome oxidase, and heme D and O isolated from E. coli, were determined
as described previously [65].

3.4. Selection of Motile Cells

For experiments on cell motility, the most motile bacterial cells were selected by
multiple passages. For this, the stationary cell culture was sedimented in a benchtop
Eppendorf centrifuge 5418 (5000 rpm, 5 min, 20 ◦C), and a thick bacterial suspension
withdrawn from the surface of the pellet (inoculum, 20 µL) was placed in the center of Petri
dishes filled with a semi-liquid medium containing 0.3% agarose and the “soda” medium
(pH 10.2), supplied with a growth substrate (2.5 mM thiosulfate) as described previously.
One minute after placing the inoculum of the passaged cells in the center of Petri dishes, an
inoculum of control cells (3 µL) that were not passaged was added (visible as a bright white
dot in the center of Petri dishes; Figure 2). To view Petri dishes inoculated with passaged
cells only (a total inoculum volume of 23 µL), see Figure S1. Upon inoculation, the agarose
plates were left on a flat surface at 20 ◦C, and after a few hours the cells began to form
swimming rings, as shown in Figure 3. The diameter of the swimming rings was measured
with a ruler. The cells that ran farthest from the center of the Petri dish were collected and
used for the next passage on a fresh Petri dish. After three successive passages, the most
motile cells were selected and used in microscopy experiments. Amiloride (an inhibitor
of Na+ channels) was used as a solution in dimethyl sulfoxide (DMSO). When used on
agarose plates, the following concentrations of amiloride were tested: 0.005 mM, 0.01 mM,
0.02 mM, 0.035 mM, 0.05 mM, 0.1 mM, and 0.2 mM. To achieve the indicated concentrations
of amiloride, small aliquots of the stock solution of amiloride in DMSO and, if necessary,
DMSO free of amiloride, were added to the cooling agarose medium to maintain a final
DMSO concentration of 0.25% (v/v).

3.5. Respiratory Activity

The respiratory activity of the cells was assessed as previously described at 25 ◦C [29]
by monitoring the oxygen consumption of the cell suspension in a thermostatically con-
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trolled semi-closed measuring chamber with a useful capacity of 0.75 mL. Oxygen con-
sumption was determined polarographically, using a Clark-type electrode (amperometric
oxygen sensor) housed in the measuring chamber and connected to an “Expert” milli-
voltmeter with a corrosometer function (Eco-Expert, Moscow, Russia). At the output, the
millivoltmeter was interfaced with a computer, and the resulting digital signals from the
millivoltmeter were continuously recorded in the form of a time-dependent graphic chart
using the PC software supplied by the manufacturer.

3.6. Evaluation of Swimming Speed in a Liquid Medium

The motility speed was evaluated in a Goryaev chamber filled with a liquid medium
of the composition specified in the Results section. The motility observations and speed
evaluation were performed using an Eclipse E200 microscope (Nikon, Tokyo, Japan) and
a stopwatch. The swimming speeds of the cells were measured for at least 40–45 cells
in each experimental condition and then averaged. In experiments to determine the ion
dependence of motility, the sodium concentration in the bacterial suspension was varied
by adding small aliquots of incubation medium containing 4 M NaCl and an appropriate
volume of 4 M KCl solution to maintain a constant ionic strength with each new desired
concentration of NaCl. The protonophores CCCP and HQNO, as well as the ionophore
monensin, were used as stock solutions in ethanol and added to the bacterial suspension
as small aliquots to achieve the required concentrations. The final ethanol concentrations
did not exceed 0.5% (v/v). The effects of each compound—CCCP or HQNO—as well
as monensin on the motility rate were determined 1 min after the addition of various
concentrations of these ionophores.

3.7. Electron Microscopy

For total electron microscopy, the cells were fixed with paraformaldehyde (4% w/v
final) for 1 h at 4 ◦C, and applied to a copper grid coated with collodium film for 5 min,
then stained for 30 s in 1% (w/v) uranyl acetate. The preparations were observed on a JEOL
100 transmission electron microscope (JEOL Ltd., Tokyo, Japan).

4. Conclusions

Natronophilic T. versutus bacteria are motile and equipped with polar flagella of the
Na+ type. The energetic strategy of the bacteria when they perform mechanical work such
as motility is to use the Na+ cycle, which includes operation of the Na+-motive cbb3 oxidase
and Na+-type flagella. The results are consistent with the hypothesis that Na+-motive
motility is an adaptive function in these bacteria that, under conditions of extreme alkalinity
and salinity, allows them to stay in a zone enriched with sulfur-containing nutrients.
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