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Background: Vibrio parahaemolyticus is a Gram-negative bacterium widely distributed in

marine environments and a well-recognized invertebrate pathogen frequently isolated

from seafood. V. parahaemolyticus may also spread into humans, via contaminated, raw, or

undercooked seafood, causing gastroenteritis and diarrhea.

Methods: A Nuclear Magnetic Resonance (NMR)-based detection system was used to detect

pathogenic levels of this microorganism (105 CFU/ml) with Molecular Mirroring using iron

nanoparticles coated with target-specific biomarkers capable of binding to DNA of the

target microorganism. The NMR system generates a signal (in milliseconds) by measuring

NMR spinespin relaxation time T2, which correlates with the amount of microorganism

DNA.

Results: Compared with conventional microbiology techniques such as real-time PCR

(qPCR), the NMR biosensor showed similar limits of detection (LOD) at different concen-

trations (105e108 CFU/ml) using two DNA extraction methods. In addition, the NMR

biosensor system can detect a wide range of microorganism DNAs in different matrices

within a short period of time.

Conclusion: NMR biosensor represents a potential tool for diagnostic and quality control to

ensure microbial pathogens such as V. parahaemolyticus are not the cause of infection. The

“hybrid” technology (NMR and nanoparticle application) opens a new platform for

detecting other microbial pathogens that have impacted human health, animal health and

food safety.
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At a glance of commentary

Scientific background on the subject

Vibrio parahaemolyticus is the leading cause of gastroin-

testinal illness following consumption of raw or under-

cooked seafood. This bacterium is also a significant

biohazard for the aquaculture industry, causing early

mortality syndrome in shrimp. Rapid detection of V.

parahaemolyticus and other pathogens is crucial to

ensuring food safety and public health.

What this study adds to the field

Conventional microbial detection techniques are costly,

time-consuming and require specialized equipment.

This research demonstrates a nuclear magnetic reso-

nance method for rapid, sensitive and highly specific

detection of V. parahaemolyticus in shrimp tissue, allow-

ing rapid response to public health concerns compared

to conventional detection techniques.
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Microbial infections in animals raised as food sources remain a

major challenge in public health and food safety. Overt and

latent microbial infections of animal species in aquafarms and

animal farms represent a biohazard for human health [1] and

cause interruption in foodproductionwithsubstantialeconomic

loss [2]. The FDAhas established several detectionmethods that

every food-related factory and industry must follow [3,4]. How-

ever, these detection methods are expensive and time-

consuming. A rapid, specific and affordable analytical system

todetectmicrobial pathogensbefore andafter foodprocessing is

desired to protect public health and ensure food safety [5].

Vibrio parahaemolyticus is a Gram-negative bacterium

widely distributed in marine environments and a well-

recognized invertebrate pathogen frequently isolated from

seafood [6e9]. V. parahaemolyticus may also spread into

humans, via contaminated, raw, or undercooked seafood,

causing gastroenteritis and diarrhea [10e12]. This bacterium

has recently become a biohazard for the aquaculture industry

being the origin of an emerging disease named early mortality

syndrome (EMS, also known as acute hepatopancreatic ne-

crosis disease, AHPND) [13,14].

A recently identified 70 kb plasmid (pVA-1) in EMS-causing

V. parahaemolyticus strains which contains the binary toxin

PirAB [15], responsible for EMS in shrimp was selected for this

study. Molecular diagnostic methods using these genes as

targets for PCR amplification and quantification are used

[16e18]. Bioassays to detect microbial pathogens in various

matrices (water, animal tissue, blood, saliva, etc.) using its core

Molecular Mirroring (M2) NMR technology are developed. In

brief, theM2 technology is a novel and patented approach that

uses iron nanoparticles coatedwith target-specific biomarkers

capable of binding to DNA of the target microorganism [U.S.

Patent No. 9,442,110 B2]. Custom-designed primers that bind

specific genomic regions such as toxin or virulence factor

genes present in the target microorganism are used for DNA
amplification. After mixing and incubating DNA with nano-

particles, a DNA-nanoparticle complex is formed which is

detected by nuclearmagnetic resonance (NMR) using the NMR

biosensor. The NMR biosensor generates a signal (in millisec-

onds) by measuring NMR spinespin relaxation time T2, which

is correlated with the amount of microorganism DNA.

The goal of the present study is to demonstrate a detection

system based on the combination of NMR and molecular

biology, for EMS-causing V. parahaemolyticus detection in

shrimp tissues in comparison with a current diagnostic

method, real-time PCR (qPCR).
Materials and methods

All experiments were carried out at Aquaculture Pathology

Laboratory, University of Arizona. Shrimp were kept in a 90-L

tank filled with artificial seawater at a salinity of 25 ppt and

equipped with a submerged biological filter [19]; water tem-

perature was maintained at 28 �C. A total of 15 specific-

pathogen free (SPF) Penaeus vannamei (mean weight: 8 g)

were stocked in the tanks and fed twice daily using a com-

mercial diet (Rangen Aquaculture feeds).

The EMS-pathogenic strain of V. parahaemolyticus 13-028/

A3 was cultured in TSBþ (Tryptic soy broth plus 2% NaCl) at

28e29 �Cwith gentle (100 rpm) shaking [14]. The pathogenicity

of EMS-strain was determined by laboratory infections

through immersions or per os feeding, followed by histological

examinations as previously described [14], and also confirmed

by PCR targeting toxin primers [18].

For the specificity test, one non-pathogenic V. para-

haemolyticus strain (13-028/A2) from Vietnam and two Vibrio

harveyi strains (15-235/C and 14-388/19) fromUSA and Ecuador

were used. Bacterial identifications were conducted using 16S

rRNA sequencing [20] and species-specific PCR [21e23].

As an internal control, the bacterium Lactobacillus planta-

rum (ATCC8014) was purchased from the American Type

Culture Collection (ATCC) and cultured in De Man, Rogosa,

and Sharpe (MRS) broth at 30 �C for 24 h.

Bacteria spiking in shrimp tissues and DNA extraction are

described as the following: Shrimp hepatopancreas was

collected, homogenized with 2.5% saline solution (at 100 mg/

ml) and spiked with the EMS-pathogenic V. parahaemolyticus

strain at two different concentrations (105 CFU/ml, 108 CFU/

ml) and L. plantarum (105 CFU/ml) as a control.

Two different DNA extraction methods were performed in

triplicate.

A. Universal Sample Prep (USP) protocol was developed by

this team:500ml of lysisbuffer and20ml ofproteinaseK (1mg/

ml)wereaddedtoapproximately 150ml of thesample,mixed,

heated at 95 �C for 5 min and frozen at �80 �C for 15 min.

Then, sampleswereheatedat95 �C for 1minandcentrifuged

at maximum speed for 5 min. The supernatant of each

sample was collected and mixed with a solution containing

300 ml ofmolecular gradewater, 354 ml of ammoniumacetate

(2.5M) and 400 ml of chloroform.After 5minof centrifugation

at maximum speed the upper phase was collected and

precipitated with isopropanol for 1 min at room tempera-

ture. After that, the tubes were centrifuged for 5 min, the
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Fig. 1 Detection of V. parahaemolyticus pathogenic strain at different doses (105, 108 CFU/ml) from DNA extracted with two

different protocols (USP, Maxwell®) by cycle threshold (Ct) from qPCR (A) and by NMR (B) measured in milliseconds (ms). X-axis

shows the concentration of spiked bacteria in homogenized shrimp hepatopancreas.
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Fig. 2 Specificity of the assay was tested against a non-

pathogenic V. parahaemolyticus strain (13-028/A2) and 2

strains of V. harveyi (15-235/C, 14-388/19). The negative

control corresponds to the hepatopancreas spiked with the

internal control only. Abbreviations used: EMS: early

mortality syndrome; Lb: Lactobacillus as control.

b i om e d i c a l j o u r n a l 4 2 ( 2 0 1 9 ) 1 8 7e1 9 2 189
supernatant was discarded, and the pellet was washed with

1 ml of 75% ethanol solution. After repeating the centrifu-

gation step and discarding the supernatant, the pellet was

resuspended in 100 ml of 0.1� TriseEDTA (TE) buffer.

B. Maxwell® protocol was obtained from commercial sup-

plier: DNA extraction was performed using a Maxwell-16®

Cell LEV DNA purification kit (Promega), following manu-

facturer instructions.

To conduct a specificity test, the shrimp tissue was

collected, homogenized with saline solution (2.5%) and spiked

with the internal control (L. plantarum) at 105 CFU/ml. Each

homogenate was then spiked with one of three Vibrio strains

at 108 CFU/ml: Non-pathogenic V. parahaemolyticus (13-028/

A2), V. harveyi (15-235/C), or V. harveyi (14-388/19). DNA was

extracted using the USP protocol.

Next, bioassays were performed as the following: Seven SPF

experimental shrimpwere transferred to each tea jar (3-L) filled

with seawater at a salinity of 25 ppt and stocked with aeration.

The EMS pathogenic V. parahaemolyticus strain 13-028 A/3 was

inoculated to TSBþ (Tryptic soy broth plus 2% NaCl2), grown

overnight to 1� 109 CFU/ml andmixedwith shrimp feedat a 1:1

ratio for 10 min. For infection, six experimental shrimp were

fed with bacteria-mixed shrimp feed at 10% body weight and

the negative control shrimp was fed with normal feed. On the

next day, the hepatopancreas was collected from the shrimp

and DNA was extracted by USP method.

Biotinylated primers for PCR amplification were purchased

from IDT, specific for the EMS pathogenic V. parahaemolyticus

(M1693: 50-TG CGG CAA AAG ATG ATT ACA-30, M1694: 50-AT
GCA CAT CAG AAT CGG TGA-3) and L. plantarum (M1699: 50-
TGG CTG ACA CCA CAA AAT GT-30, M1700: 50-GGC GCT AAG

CTG TAA TCG AC-30). PCR master mix for target amplification

contained 0.3 mM of each biotinylated primer, 2 mM of MgCl2,

200 mM of dNTPs, 5 ml of polymerase buffer, 5 ml of template

and 2 U of polymerase in a total of 25 ml. PCR settings were

40 s at 98 �C, 38 cycles of 6 s at 98 �C and 5 s at 60 �C, and a 4 �C
final step in a Bioer thermal cycler.

Nanoparticle addition and NMR detection were then con-

ducted. A mixture of 3.5 ml of 20 ng/ml 200 nm streptavidin-

coated iron beads (Ademtech), 24 ml of 1� PBS (phosphate-

buffer saline) and 6 ml of the PCR product was measured in the

NMR system (baseline T2 signal). Tubeswere incubated at room

temperature for 10 min, vortexed and measured again in the

NMR system (final T2 signal). The resultingDT2was obtained by
subtracting thebaseline signal fromeachfinal T2measurement

and was used for the plots and statistics. All measurements

(baseline and final) were performed in duplicate. The NMR

system used in this study is described in the United States

Patent Application Publications [U.S. Patent No. 9,442,110 B2].

For quantification of EMS plasmid, a qPCR assay was per-

formed as previously described [16]. Extracted DNAwas added

to a qPCRmixture containing 0.3 mMof each primer and 0.1 mM

TaqMan probe to a final volume of 10 mL. The qPCR profile

consisted of 20 s at 95 �C followed by 40 cycles of 3 s at 95 �C
and 30 s at 60 �C. Amplification detection and data analysis for

qPCR assays were performed with a StepOnePlus PCR system

(Life Technologies).

All experiments were performed in triplicate. Statistical

analyses of the average, standard error and t-Test analysis

were calculated by Microsoft Office Excel 2007.
Results

USP vs automated DNA extraction method

In order to demonstrate that USP method works as well as

other DNA extraction methods, USP DNA extraction method

was compared with the automated Maxwell® system.
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Fig. 3 Infected specimen detection carried out by qPCR (A) and NMR biosensor system (B); plasmid quantification was obtained

from the dose response curve of the positive control by qPCR.
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After DNA extractions following the two different

methods, EMS-causing V. parahaemolyticus were detected

either by qPCR (Fig. 1A) or by performing a standard PCR fol-

lowed by incubation with nanoparticles and detection with

the NMR system (Fig. 1B). The NMR biosensor systemwas able

to detect EMS pathogenic V. parahaemolyticus following the

two different DNA extraction methods. The NMR system

generated a higher signal (1189 ms) at higher bacterial con-

centration (108 CFU/ml) and a lower signal (978 ms) at lower

target bacterium dose (105 CFU/ml) when USP was used for

DNA extraction compared with the Maxwell® method.

Furthermore, the signals detected were significantly different

between the two bacterium concentrations (p ¼ 0.015). Data
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suggests that the DNA extraction method per USP was as

successful as the automatedMaxwell® system, one of the DNA

extraction methods commercially available.

Fig. 1A shows the cycle threshold (Ct) at which EMS-

causing V. parahaemolyticus was detected after qPCR reac-

tion. In that case, Ct values were the same using both DNA

extraction methods, and they were significantly different

(p < 0.001) based on the microorganism concentration with

Ct ¼ 29.94 for 105 CFU/ml and Ct ¼ 20.76 for 108 CFU/ml when

using USPmethod and Ct¼ 30.15 for 105 CFU/ml and Ct¼ 20.31

for 108 CFU/ml when using the alternative method. The same

DNA extracts were used for the two different detection

methods (NMR system and qPCR).
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system in the detection of EMS-causing V. parahaemolyticus

https://doi.org/10.1016/j.bj.2019.01.009
https://doi.org/10.1016/j.bj.2019.01.009


b i om e d i c a l j o u r n a l 4 2 ( 2 0 1 9 ) 1 8 7e1 9 2 191
Because V. parahaemolyticus pathogenicity has been estab-

lished in shrimpwith the LD50 dose of 1� 105 CFU/shrimp [24],

these results also show that the NMR biosensor was able to

detect and distinguish pathogenic levels of the target micro-

organism from higher concentrations. Based on these results,

further experiments using USP were performed.

Specificity test

Next step in this studywas to corroborate the specificity of the

EMS-causing V. parahaemolyticus detection assay in shrimp

tissues using the NMR biosensor. After DNA extraction, PCR

amplification, and incubation with nanoparticles, the NMR

biosensor was able to detect the internal control in all the

samples. There was no detection of non EMS-causing V. par-

ahaemolyticus or V. harveyi strains (Fig. 2). Results were

confirmed by qPCR analysis, where all sampleswere negatives

(data not shown). From these results, we concluded that the

NMR assay is specific for pathogenic V. parahaemolyticus

strains responsible for EMS in shrimp.

Detection of EMS-causingV. parahaemolyticus in laboratory-

infected shrimp and healthy shrimp were analyzed using the

NMR biosensor and qPCR systems. Fig. 3 shows how both

analytical systems were able to detect the presence of the

virulence plasmid in all the samples tested with the exception

of the negative control. The presence of the pathogen was

quantified by qPCR detecting a range of 1.7 � 107e2.9 � 108

plasmid copies per shrimp (Fig. 3A). The NMR biosensor

showed NMR signals for positive specimens ranged between

656e1085 ms. These results indicate that the NMR biosensor

and qPCR are able to detect infected specimens.

Sensitivity test

In order to determine the sensitivity of both detection systems

(the NMR biosensor and qPCR), DNA from one of the infected

specimens was selected to establish the limit of detection

(LOD). DNA serial dilutions from 10 to 106 were made and all

dilutions were processed with NMR biosensor and qPCR. For

both systems, 104 log dilution was the LOD (Fig. 4), obtaining a

730ms signal and Ct¼ 29.0 (6.89� 104 plasmid copies/shrimp)

with the NMR detection system and qPCR system,

respectively.

These results demonstrate that the NMR biosensor is as

sensitive as qPCR, the gold standard that is currently used in

pathology laboratories for EMS-causing V. parahaemolyticus

diagnosis [17].
Discussion

The results of the study are significant because a detection of

>104 CFU during EMS outbreaks would imply potential intra-

species and interspecies spread of the pathogenic bacteria

[25,26]. The capability to test for cross-reactivity within the

Vibrio genus may also be clinically relevant. Because this

method provides reliable identification of Vibrio genus and

potential pathogenic Vibrio species in the food safety area, it

can be applied to early clinical diagnosis, thereby preventing

humans against Vibrio infection.
As demonstrated from a series of experiments on bioassay,

specificity and sensitivity of themethodology using combined

NMR, molecular biology and nanoparticle application, the

NMR biosensor is capable of detecting microbial pathogens

with high degree of sensitivity and specificity. In addition, this

biosensor system can detect a wide range of microorganism

DNAs in different matrices within a short period of time,

compared with conventional microbiology techniques that

require at least 24 h or with conventional PCR that requires

electrophoresis of agarose gels preparation in order to obtain

qualitative results [27,28]. The time factor of rapidly detecting

microbial pathogen in specimens for food production and

consumption is crucial to ensure food safety [29]. Other novel

molecular biology techniques including qPCR have been

applied to microbial detection [16]; however, they are rela-

tively expensive and require specialized equipment and

personnel for performance in the field [30,31]. We have

demonstrated in this study that the NMR biosensor offers an

NMR-DNA based pathogen detection system [U.S. Patent No.

9,442,110 B2], for the detection of pathogenic V. para-

haemolyticus, a shrimp pathogen responsible for elevated rates

of shrimp deaths and economic losses for aquaculture in-

dustry. In addition, the NMR biosensor provides high sensi-

tivity and specificity with similar LOD when compared with

commercially available detection methodology.
Conclusion

The NMR biosensor, through the combination of molecular

biology and NMR technology, represents a novel, rapid, sen-

sitive and highly specific methodology for the detection of

pathogenic V. parahaemolyticus in shrimp tissue. The NMR

biosensor works specifically for EMS-causing V. para-

haemolyticus detection using DNA from two different extrac-

tion methods and shows high sensitivity being able to

generate different signals based on threshold concentration.

In conclusion, the NMR biosensor represents a potential

tool for rapid yet sensitive diagnostic as well as quality control

to ensure microbial pathogens such as V. parahaemolyticus are

not the cause of infection. In addition, such detection system

opens a new window to be used as a platform for detection of

other microbial pathogens that have impacted human health,

food and also animal health.
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