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Type 1 and 2 diabetes (T1/2D) are complex metabolic diseases caused by absolute

or relative loss of functional β-cell mass, respectively. Both diseases are influenced by

multiple genetic loci that alter disease risk. For many of the disease-associated loci,

the causal candidate genes remain to be identified. Remarkably, despite the partially

shared phenotype of the two diabetes forms, the associated loci for T1D and T2D are

almost completely separated. We hypothesized that some of the genes located in risk

loci for T1D and T2D interact in common pancreatic islet networks to mutually regulate

important islet functions which are disturbed by disease-associated variants leading

to β-cell dysfunction. To address this, we took a dual systems genetics approach. All

genes located in 57 T1D and 243 T2D established genome-wide association studies

(GWAS) loci were extracted and filtered for genes expressed in human islets using RNA

sequencing data, and then integrated with; (1) human islet expression quantitative trait

locus (eQTL) signals in linkage disequilibrium (LD) with T1D- and T2D-associated variants;

or (2) with genes transcriptionally regulated in human islets by pro-inflammatory cytokines

or palmitate as in vitro models of T1D and T2D, respectively. Our in silico systems

genetics approaches created two interaction networks consisting of densely-connected

T1D and T2D loci genes. The “T1D-T2D islet eQTL interaction network” identified 9

genes (GSDMB, CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3, PLEKHA1,

and HEMK1) in common T1D and T2D loci that harbor islet eQTLs in LD with disease-

associated variants. The “cytokine and palmitate islet interaction network” identified 4

genes (ASCC2, HIBADH, RASGRP1, and SRGAP2) in common T1D and T2D loci whose

expression is mutually regulated by cytokines and palmitate. Functional annotation

analyses of the islet networks revealed a number of significantly enriched pathways and

molecular functions including cell cycle regulation, inositol phosphate metabolism, lipid

metabolism, and cell death and survival. In summary, our study has identified a number

of new plausible common candidate genes and pathways for T1D and T2D.
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INTRODUCTION

Type 1 (T1D) and 2 diabetes (T2D) are complex metabolic
traits characterized by complete or relative insulin deficiency,
respectively, due to destruction or failure of the β-cells in
the pancreatic islets of Langerhans. In T1D, the β-cells are
destroyed by both innate and adaptive immune mechanisms
in which pro-inflammatory cytokines are believed to play key
roles (Berchtold et al., 2016). During the process of immune-
mediated β-cell killing, the β-cells are not just passive bystanders
but actively participate in their own demise through the interface
with the immune system via e.g., MHC class I expression and
production of chemokines favoring islet infiltration of immune
cells, and through their inherent “fragility” to immune damage
(Soleimanpour and Stoffers, 2013; Mallone and Eizirik, 2020).
β-cell failure in T2D may be caused by prolonged metabolic
stress exerted by e.g., free fatty acids (FFA) such as palmitate,
and by the persistent increased demand for insulin production
due to peripheral insulin resistance ultimately leading to β-cell
failure (Prentki and Nolan, 2006; Oh et al., 2018; Wysham and
Shubrook, 2020). Hence, although different mechanisms lead to
β-cell failure in T1D and T2D, the loss of functional β-cell mass
is a common key mechanism and, in both cases the β-cells seem
to play an active role (Eizirik et al., 2020).

Both T1D and T2D are polygenetic and disease risk is
influenced by multiple genetic variants. To date, genome-wide
association studies (GWAS) genotyping thousands of single
nucleotide polymorphisms (SNPs) have established more than
50 and 200 risk loci for T1D and T2D, respectively (Barrett
et al., 2009; Bradfield et al., 2011; Morris et al., 2012; Onengut-
Gumuscu et al., 2015; Mahajan et al., 2018)1 Remarkably, the
GWAS signals in T1D and T2D are starkly separated with only a
few shared loci (Basile et al., 2014; Aylward et al., 2018) indicating
vastly different genetic architectures. Among the few known
common risk genes that have also been functionally validated is
GLIS3 which plays an important role in the β-cells by regulating
proliferation and apoptosis (Nogueira et al., 2013;Wen and Yang,
2017). Based on its functional role, GLIS3 has been suggested as
an important predisposing factor of β-cell fragility in both forms
of diabetes (Nogueira et al., 2013; Liston et al., 2017). Of note, the
causal genetic variant(s) and gene(s) for most of the GWAS loci
in T1D and T2D have not been identified. Better insight into the
differences and putative commonalities of diabetes genetics may
shed new light onto the pathogeneses of both diabetes forms.

Traditionally the gene located in closest physical proximity
to the GWAS SNP in the disease locus has been considered
the candidate risk gene (Slatkin, 2008). However, for complex
polygenetic traits it has been reported that disease-associated
SNPs are enriched for variants that have gene expression
regulatory effects as determined by expression quantitative trait
locus (eQTL) analyses (Westra and Franke, 2014; Fagny et al.,
2017). eQTL analyses therefore represent an attractive way
to link disease-associated SNPs to potential causal risk genes.
Importantly, genetic variants can exert eQTL effects on genes that
are physically distant to the disease-associated SNP underlining

1Immunobase. Available online at: https://www.immunobase.org/.

the complexity of disease genetics (Kumar et al., 2014). Based
on this, it is plausible that many causal variants in T1D and
T2D increase disease risk through changes in gene expression of
nearby and distant genes. Notably, eQTLs can be highly tissue-
specific emphasizing the necessity to examine eQTLs in relevant
disease-affected tissue such as pancreatic islets in the case of T1D
and T2D (Fagny et al., 2017).

In the present study, we aimed to take current knowledge
of T1D and T2D genetics a step further by applying a systems
genetics approach integrating GWAS data with human islet
eQTLs and in vitro pathogenesis models to identify plausible
causal risk genes, networks, and pathways shared between
T1D and T2D at the pancreatic islet level. We identified a
number of hitherto unreported common genes and pathways
thereby advancing our understanding of shared genetic and
pathogenic mechanisms in T1D and T2D. From our findings,
novel hypotheses can be generated and tested in experimental
disease models.

MATERIALS AND METHODS

T1D and T2D Loci and Associated Genes
T1D loci; GWAS signals and candidate genes were retrieved from
ImmunoBase1. ImmunoBase provides curated and integrated
datasets of summary case/control association studies from
12 immunologically related human diseases including T1D
originally targeted by the ImmunoChip consortium. T2D loci;
GWAS signals and candidate genes were retrieved fromMahajan
et al. (2018). All genes located ± 500 kb from GWAS-significant
SNPs were extracted using bedtools (Quinlan and Hall, 2010).
This window to retrieve loci-associated genes was selected based
on published studies (Alasoo et al., 2019; Stacey et al., 2019).
Previously pin-pointed/suggested causative candidate genes for
each locus were retrieved as reported (Onengut-Gumuscu et al.,
2015; Mahajan et al., 2018)1.

Islet eQTLs and LD Analysis
Recently, Viñuela et al. (2020) profiled and genotyped human
islet samples from 420 human organ donors as a part of
Integrated Network for Systematic analysis of Pancreatic Islet
RNA Expression (InsPIRE) consortium (Viñuela et al., 2020).
The study aggregated previous islet studies and retrieved data
from 196 individuals (Fadista et al., 2014; van de Bunt et al., 2015;
Varshney et al., 2017). The samples were jointly mapped and
reprocessed (median sequence-depth per sample ∼60M reads).
We retrieved both exon- and gene-based islet eQTLs from this
study to identify islet eQTLs associated with T1D-T2D loci.

Islet eQTLs in linkage disequilibrium (LD) (r2 ≥ 0.8) with
nominally associated disease variants (both T1D and T2D
variants) were identified using SNIPA (Arnold et al., 2015). The
variant set used for LD calculation was 1,000 Genome, Phase 3
v5 (GRCh37 genome build), European population. For T1D and
T2D, 20,669 and 5,270 nominally associated SNPs were obtained
(p < 0.05), respectively. The summary statistics from a BMI-
adjusted European dataset were used to retrieve T2D SNPs from
Mahajan et al. (2018).
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All the islet eQTL variants were annotated with Islet Regulome
chromatin classes (including islet enhancers, promoters, and
CTCF binding sites) retrieved from Mularoni et al. (2017)
and Miguel-Escalada et al. (2019) using intersectBed feature of
Bedtools (Quinlan and Hall, 2010). The T1D/T2D variants in LD
with islet eQTLs were also annotated with islet regulome features.

Total RNAseq datasets from FACS-purified human α-, β-,
and exocrine cells from 8 organ donors without diabetes were
retrieved fromGEO (GSE50386 and GSE76268) (Bramswig et al.,
2013; Ackermann et al., 2016). The datasets included libraries that
were single-end sequenced to 100 bp on an Illumina hiSeq2000.
The raw fastq files were trimmed, cropped, and adapters removed
using Trimmomatic v.0.36 (Bolger et al., 2014). The filtered
reads after pre-processing (trimming and adapter removal) were
aligned to a human genome (GRCh38) using tophat 2.1 (Trapnell
et al., 2009) using the following parameters: Library-type = fr-
firststrand, no-coverage-search, m 2, p 10. The raw read counts
at gene level were calculated using htseqcount and further
normalized to counts per million (CPM) and logCPM in EdgeR
(Robinson et al., 2010).

Genes Transcriptionally Modified by
Cytokines or Palmitate in Human Islets
The differentially expressed genes after cytokine (IL-1β + IFNγ)
or palmitate exposure for 48 h in human islets were retrieved
from GEO datasets GSE35296 and GSE53949, respectively
(Eizirik et al., 2012; Cnop et al., 2014). Both datasets included five
human islet preparations obtained from organ donors without
diabetes, treated, and handled under similar conditions, with
comparable human islet collection and handling protocols. In
both studies, paired-end total RNA-sequencing was performed
using polyA-selected mRNA and the datasets were processed
using similar methods. Briefly, the authors mapped the paired
end reads to human genome (GRCh37) using GenomicMultitool
(GEM) suite (https://bio.tools/gemmapper) and transcripts were
quantified into RPKM values using Flux Capacitor (http://flux.
sammeth.net) (Eizirik et al., 2012; Cnop et al., 2014). The
differentially expressed genes were identified using Fisher’s exact
test and p-values were corrected using Benjamini-Hochberg
method. A difference in gene expression was considered
significant if the adjusted p < 0.05 and if the expression changed
significantly in one direction in at least four out of the five islet
preparations (Eizirik et al., 2012; Cnop et al., 2014). In total
3,019 genes were found to be modulated by cytokines whereas
1,236 genes were modified by palmitate. Of these, 494 genes were
regulated by both cytokines and palmitate.

PPI Network and Pathway Analysis
ToppCluster within ToppGene Suite (Chen et al., 2009) was
used to identify protein-protein interactions (PPIs) between
the T1D and T2D loci genes. Cytoscape v3.7.0 (http://www.
cytoscape.org) (Smoot et al., 2011) was used to visualize the
PPI network. A network topological analysis was performed
using NetworkAnalyzer v2.7 which is a part of Cytoscape to
assess various topological features. For every node in a network,
NetworkAnalyzer computes its degree, the number of self-loops,
and a variety of other parameters.

Ingenuity pathway analysis (IPA, Qiagen Inc.) was used
to predict the downstream effects of the selected genes
from the PPI networks. IPA has the most comprehensive,
manually curated QIAGEN Knowledge Base that includes data
derived from “omics” experiments including RNAseq, small
RNAseq, metabolomics, proteomics, microarrays, and small-
scale experiments from published studies2. IPA core analysis
was performed to identify enriched pathways and molecular
and cellular functions for the T1D and T2D loci genes in the
PPI networks.

Pathway analysis was also performed using ClueGO plug-
in v2.5.3 (Bindea et al., 2009) in Cytoscape. ClueGO integrates
GO terms and pathways into a PPI network and creates
a functional annotation map that represents the associations
between terms. Pathway based clustering was performed with
following settings: minimumnumber of genes within each cluster
= 3, pathway network connectivity measure (κ score) = 0.4.
The κ score defines the term-term interrelations and creates
functional groups based on shared genes between the terms. The
p-values were calculated using two-sided hypergeometric test and
adjusted using Bonferroni step-down method. The minimum
percentage of genes and terms for group merge was 50%. KEGG,
Reactome, andWikiPathway annotations were used for pathway-
based enrichment analyses in ClueGO.

STRING database and STRING enrichment app (Doncheva
et al., 2019) in Cytoscape were used for expanding the network
for the selected shared genes. The extended network in STRING
was created using the following parameters: A confidence score
cutoff of 0.5, selectivity of interactors 0.5 and the total number of
interactors to expand the network was set to 50. The KEGG and
Reactome pathway annotations were used to perform STRING
enrichment analysis. The significant pathways were selected
based on an FDR value < 0.05.

RESULTS

Selection and Integration of T1D and T2D
Loci Genes and Islet eQTLs
A systems genetics approach was applied to pinpoint likely
causal T1D and T2D risk genes and to examine their putative
interactions in joint networks in human islets—the common
“diseased tissue” in T1D and T2D (Figure 1). We divided our
overall approach into two sub-approaches integrating; (1) T1D
and T2D loci genes with human islet eQTL data, and (2) T1D
and T2D loci genes with cytokine- or palmitate-modified human
islet gene expressional changes. First, all genes located within
± 500 kb from 107 and 380 genome-wide significant signals
for T1D and T2D, respectively, were extracted from publicly
available data from ImmunoBase and Mahajan et al. (2018)1.
These signals corresponded to 57 T1D and 243 T2D genomic
loci of which 5 were overlapping. The genomic loci were defined
based on conditionally independent signals that reach the GWAS
significance ± 500 kb surrounding the lead SNP (Mahajan et al.,
2018)1. If the minimum distance between any distinct signals

2IPA (QIAGEN Inc). Available online at: https://digitalinsights.qiagen.com/
plugins/ingenuity-pathway-analysis/.
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FIGURE 1 | Overview of the dual systems genetics approach applied.

from two separate loci was <500 kb, additional conditional
analysis taking both regions (encompassing ± 500 kb from both
ends) were performed to assess the independence of each signal
(Mahajan et al., 2018). Of the total 403 identified distinct signals
by Mahajan et al. 380 remained after excluding 23 signals that
were not amenable to fine mapping (Mahajan et al., 2018). In
total, 2,487 and 7,114 genes were retrieved for the T1D and T2D
loci, respectively (Figure 2A).

Leveraging on a study by Vinuela and colleagues (Viñuela
et al., 2020) that profiled gene expression and performed
genotyping of human islets from 420 individual donors, we
retrieved islet eQTLs. Both exon and gene-level cis-eQTLs
corresponding to 4,312 and 6,039 genes, respectively (FDR <

1%; cis defined as within 1Mb of the transcription start site
[TSS]), were combined that resulted in a total of 10,108 islet eQTL
associations for 6,618 genes (Table 1.1 in Supplementary File 1).

The majority of the islet eQTL signals were associated with
protein-coding genes (n = 9,627), while a much lower fraction
was associated with long non-coding RNA genes (n = 842).
We annotated the islet eQTL variants with Islet regulome
features to identify enrichment for islet regulatory elements
including islet enhancers, promoters, open chromatin regions,
and CTCF binding sites etc. Only 12% (1,282 SNPs) of the islet
eQTLs showed overlap with islet regulatory features, whereas the
majority of the islet eQTL SNPs did not show any overlap (Table
2.1 in Supplementary File 2).

To further filter and prioritize the islet eQTL genes, we
performed LD analysis to identify T1D and T2D GWAS
SNPs that either themselves have islet eQTL effects or are
in strong LD (r2 > 0.8) with islet eQTL SNPs. For this
analysis, we included all nominally associated SNPs for both
T1D and T2D with a p < 0.05. Using a LD cutoff of r2 >
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FIGURE 2 | The “T1D-T2D islet eQTL interaction network.” The “T1D-T2D islet eQTL interaction network” is derived from islet eQTLs in linkage disequilibrium (LD

≥0.8) with nominally associated disease variants (both T1D and T2D variants). (A) Venn diagram of the genes filtered for. (B) The ’T1D-T2D islet eQTL interaction

network’ as visualized by Cytoscape. T1D (n = 204) and T2D genes (n = 192) are shown as cyan and red nodes, respectively. The edges (blue lines) represent the

physicial interactions between the nodes. The network consists of 361 nodes, of which 9 are shared (shown in green). (C) Functional annotation of the “T1D-T2D islet

eQTL interaction network” (117 nodes with a node degree ≥1) based on IPA analysis. Top canonical pathways and molecular and cellular processes are shown for the

selected nodes.

0.8, 242,191 proxy SNPs were retrieved for the 10,108 islet
eQTL SNPs.

For the T1D loci, 247 islet eQTLs SNPs (associated with 204
genes) were in LD with 1,735 T1D-associated SNPs. Of these, 55
of the T1D-associated SNPs directly acted as islet eQTL signals
for T1D loci genes (Table 1.2 in Supplementary File 1). For the
T2D loci, 223 islet eQTLs SNPs (associated with 192 genes) were
in LD with 176 T2D SNPs. Of these, 19 of the T2D-associated
SNPs directly acted as islet eQTL signals for T2D loci genes (Table
1.3 in Supplementary File 1). The annotation of these T1D and
T2D SNPs in LD with islet eQTL SNPs with islet regulome
features and Variant Effect Predictor (VEP) are shown in (Tables
2.2, 2.3 in Supplementary File 2).

Generation of a Common T1D-T2D Islet
eQTL Interaction Network Based on Genes
in LD With Disease Variants
We created a “T1D-T2D islet eQTL interaction
network” based on the genes with islet eQTLs in
LD with nominally associated T1D and T2D SNPs,
i.e., the 204 T1D and 192 T2D loci-associated
genes (Figures 2A,B).

Figure 2B (see Supplementary File 3 for a high resolution
image) shows the generated network which consists in total
of 361 nodes, of which 9 are shared between T1D and T2D
(shown as green nodes). These shared genes are GSDMB,
CARD9, DNLZ, ERAP1, PPIP5K2, TMEM69, SDCCAG3,
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PLEKHA1, and HEMK1 and are covered in detail in the
following section.

Pathway-based functional annotation was performed on the
117 nodes with a node degree ≥1 (i.e., with at least one physical
interaction partner) in the “T1D-T2D islet eQTL interaction
network.” The top canonical pathways based on IPA pathway
analysis included “Cell Cycle: G1/S checkpoint regulation,”
“PEDF Signaling,” “Osteoarthritis Pathway,” “Cell cycle control
of chromosomal regulation,” and “RhoA signaling” (Figure 2C).
The identified molecular and cellular processes included “Cell-
to-cell signaling and interaction,” “Cell cycle,” “Cell morphology,”
and “Lipid metabolism.”

We also performed ClueGO pathway analysis of the “T1D-
T2D islet eQTL interaction network” which identified 10 highly
significant pathways that grouped into 5 clusters (Figure 1 in
Supplementary File 1). The representative pathways and genes
for these 5 clusters were “Sphingolipid metabolism” (with 3
genes involved: CERS2, GBA, GLB1), “Transcriptional regulation
of white adipocyte differentiation” (with 4 genes involved:
CDK8, MED1, MED28, MED31), “G1 to S cell cycle control”
(with 3 genes involved: CDC25A, POLA2, PRIM1), “Ethanol
effects on histone modifications” (with 4 genes involved: ACSS2,
ATF2, MED1, HDAC7) and “Chromosomal and microsatellite
instability in colorectal cancer” (with 6 genes involved: RHOA,
SMAD3, TCF7L2, CDK8, ATF2, PLEC). All the 10 significant
pathways are listed in Table 1.4 in Supplementary File 1 along
with their clusters and p-values.

Extended Network of Shared Genes and
Pathway Analysis
The 9 shared genes between T1D and T2D found in the “T1D-
T2D islet eQTL interaction network” (Figure 2B) were explored
further in relation to; (1) their shared eQTL signals for T1D and
T2D; (2) their neighboring interacting partners; and (3) their
associated pathways. Table 1 lists the 9 shared genes and their
islet eQTL associations with T1D- and T2D-associated SNPs. The
genes with islet eQTLs in LD with highly significant (GWAS
p < 2E-08) T1D- and T2D-associated SNPs were GSDMB and
CRAD9 (Table 1).

We extended the network of the 9 shared T1D/T2D genes by
including neighboring genes to create a larger network allowing
identification of their associated pathways. Figure 3A shows the
extended network of the 9 shared genes. The extended network
was expanded by allowing a maximum of 50 interactors shown
in gray nodes (Figure 3A). The STRING enrichment analysis
identified 17 significant pathways and an overall PPI enrichment
score of 1.0E-16. A PPI enrichment score <0.05 indicates that
the proteins are more likely to be biologically connected as a
group. The top 5 pathways for the extended network included
“inositol phosphatemetabolism,” “synthesis of pyrophosphates in
the cytosol,” “phosphatidylinositol signaling system,” “synthesis
of IPs in the nucleus,” and “c-type lectin receptors (CLRs)”
(Table 2). We then analyzed the expression of the genes in the
extended network using RNAseq data from FACS-purified α-, β-,
and exocrine cells derived from human islets. Figure 3B shows

TABLE 1 | Islet eQTL SNPs in LD with disease-associated SNPs for the 9 shared genes within the “T1D-T2D islet eQTL interaction network.”

Islet eQTLs T1D-associated SNP in LD

(r2>0.8)

T2D-associated SNP in

LD(r2>0.8)

Gene name eQTL SNP A1 A2 MAF chrSNP StartSNP SNP P-value SNP P

HEMK1 rs12493985 T G 0.14 3 50544715 rs1034405 2.39E-03 rs1034405 0.022

GSDMB rs870829 A C 0.42 17 38068382 rs870829 2.42E-08

rs12939565 A T 0.47 17 38038389 rs12453507 1.05E-08 rs11557467 0.019

ERAP1 rs7063 A T 0.29 5 96110211 rs7063 0.014

rs146341958 C T 0.13 5 96125159 rs72773968 0.007

PPIP5K2 rs1898673 G C 0.33 5 102293380 rs3776855 0.016 rs34813 0.00064

rs27489 C T 0.28 5 102555746 rs3776855 0.016 rs34813 0.00064

TMEM69 rs28597977 A G 0.32 1 46181206 rs6694302 0.040 rs28375469 0.049

DNLZ rs57052773 T C 0.04 9 139385701 rs78270318 0.012 rs3812561 0.002

rs28679497 G A 0.28 9 139246594 rs60980157 2.02E-15

rs4442263 C T 0.04 9 139322775 rs78270318 0.012 rs3812561 0.002

SDCCAG3 rs34619169 G A 0.27 9 139327277 rs11146021 0.021 rs3812594 0.0051

CARD9 rs57052773 T C 0.04 9 139385701 rs78270318 0.012 rs3812561 0.002

rs61386106 G A 0.28 9 139246768 rs60980157 2.02E-15

rs4442263 C T 0.04 9 139322775 rs78270318 0.012 rs3812561 0.002

PLEKHA1 rs4752689 G A 0.4 10 124131176 rs1045216 9.80E-06

rs71486610 G C 0.49 10 124134803 rs2280141 0.030

rs7097701 0.0270

The table shows the 9 shared genes in the “T1D-T2D islet eQTL interaction network.” eQTLs that are disease-associated SNPs themselves are shown in bold. T1D/T2D SNPs in LD

with islet eQTL SNPs are listed. In case of multiple disease-associated SNPs in LD with an eQTL SNP, the most significant disease-associated SNP is listed. The disease-associated

SNPs with GWAS significance are highlighted in bold.
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FIGURE 3 | Extended network of the 9 shared genes within the “T1D-T2D islet eQTL interaction network.” (A) The 9 shared genes within the “T1D-T2D islet eQTL

interaction network” are shown as red nodes. The network was extended based on physical interactions to allow 50 neighboring genes (shown in gray nodes) using

STRING app in Cytoscape. (B) Expression of the genes within the extended network (n = 59) in FACS-purified α, β, and exocrine cells derived from human islets. The

heatmap shows unsupervised clustering of log2CPM values for α-cells (n = 8), β-cells (n = 8), and exocrine cells (n = 2) samples. The clustering was done using

Euclidean distance with complete linkage method.

a heatmap of the expression values of the genes in the three
cell types.

Generation of a Common T1D-T2D Islet
Interaction Network Based on Cytokine-
and Palmitate-Regulated Loci Genes
As eQTLs may not be present under basal, non-disease
conditions, but only in the disease state or the phase preceding
disease, we sought to take an additional approach to investigate
interactions between islet expressed T1D and T2D loci genes.
We therefore next created a network of T1D and T2D loci
genes whose expression in human islets is modulated by
pro-inflammatory cytokines as an in vitro model of a T1D
environment and/or by the FFA palmitate as an in vitro
model of a T2D environment using published RNAseq datasets
(Eizirik et al., 2012; Cnop et al., 2014) (Figures 4A,B). In total,
cytokines modulated the expression of 191 T1D loci genes
whereas palmitate modulated the expression of 187 T2D loci
genes. Interestingly, among these, 4 genes (ASCC2, HIBADH,
RASGRP1, and SRGAP2) were commonly regulated by cytokines
and palmitate and were also located in shared T1D and
T2D loci (Table 1.5 in Supplementary File 1). Figure 4B (see
Supplementary File 4 for a high resolution image) depict the
derived network with a total of 372 nodes, the 4 shared genes are
shown in green nodes.

IPA pathway analysis of the “cytokine and palmitate islet
interaction network” identified “Antigen presentation” and “Th1

and Th2 activation” as top canonical pathways (Figure 4C).
The top molecular and cellular processes included “Cellular
movement,” “Cell death and survival,” and “Cell proliferation
and growth.”

Functional annotation of the “cytokine and palmitate islet
interaction network” using ClueGO revealed 3 clusters of
24 highly significant pathways (Figure 2 and Table 1.6 in
Supplementary File 1). The representative terms and genes for
these 3 clusters are “Signaling by NOTCH4” (with 6 genes
involved: ACTA2, FBXW7, NOTCH2, PSMB1, PSMB8, PSMB9),
“Apoptosis-related network due to altered Notch3 in ovarian
cancer” (with 5 genes involved: APOE, AXIN1, ERBB3, ERN1,
IL7R) and “Epstein-Barr virus infection” (with 35 genes involved:
HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DRA, HLA-DRB5,
ITGB3, TAP1, TAP2, TUBA4A, CIITA, IL2RA, IL7R, NOTCH2,
RARA, PTPRN2, EEF1A2, SOCS1, ICAM1, KRT40, CEBPG,
CTSD, LSP1, IKBKE, KPNA2, OAS3, ADCY5, CDKN2C, FOSL1,
MYC, DDB2, TNFAIP3, RAC2, AP1B1, AP2M1, PSMB9).

DISCUSSION

In this study, we employed a systems genetics approach
integrating RNAseq data, eQTL signals and cytokine/palmitate-
regulated genes to look for PPIs between probable causal
risk genes in T1D and T2D GWAS loci at the human
pancreatic islet level. We were able to create a PPI network
that contained interactions between multiple T1D and

Frontiers in Genetics | www.frontiersin.org 7 March 2021 | Volume 12 | Article 630109

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kaur et al. Islet Networks for T1D and T2D

TABLE 2 | Pathway-based functional annotation of the extended network of the 9 shared genes within the “T1D-T2D islet eQTL interaction network.”

Annotation

Source

# Background

genes

# Genes Description Genes FDR Value

Reactome 48 8 Inositol phosphate metabolism ITPK1, IPPK, IP6K2, IPMK,

IP6K3, PPIP5K1, IP6K1,

PPIP5K2

4.31E-10

Reactome 10 6 Synthesis of pyrophosphates in

the cytosol

ITPK1, IPPK, IP6K3, PPIP5K1,

IP6K1, PPIP5K2

4.31E-10

KEGG 97 8 Phosphatidylinositol signaling

system

ITPK1, IPPK, IP6K2, IPMK,

IP6K3, PPIP5K1, IP6K1,

PPIP5K2

2.81E-08

Reactome 4 4 Synthesis of IPs in the nucleus IPPK, IP6K2, IPMK, IP6K1 1.65E-07

Reactome 134 6 C-type lectin receptors (CLRs) PYCARD, CLEC4E, MALT1,

BCL10, CARD9, CLEC6A

9.48E-05

Reactome 94 4 CLEC7A (Dectin-1) signaling PYCARD, MALT1, BCL10,

CARD9

0.0042

Reactome 6 2 CLEC7A/inflammasome pathway PYCARD, MALT1 0.0042

Reactome 53 3 Synthesis of PIPs at the plasma

membrane

PLEKHA3, PLEKHA1, PTPN13 0.0089

Reactome 54 3 Nucleotide-binding domain,

leucine rich repeat containing

receptor (NLR) signaling

pathways

PYCARD, CARD9, TNFAIP3 0.0089

Reactome 2032 15 Metabolism PLEKHA3, ITPK1, ENOPH1,

IPPK, IP6K2, THEM4,

PLEKHA1, IPMK, C9orf41,

ORMDL3, PTPN13, IP6K3,

PPIP5K1, IP6K1, PPIP5K2

0.009

Reactome 1925 14 Immune System PYCARD, TRIM62, ERAP1,

CLEC4E, MALT1, IL23R, IP6K2,

THEM4, BCL10, CARD9,

CLEC6A, ORMDL3, PTPN13,

TNFAIP3

0.0145

Reactome 84 3 PI Metabolism PLEKHA3, PLEKHA1, PTPN13 0.0202

KEGG 73 3 Inositol phosphate metabolism ITPK1, IPPK, IPMK 0.0241

KEGG 93 3 NF-kappa B signaling pathway MALT1, BCL10, TNFAIP3 0.0241

KEGG 172 4 Tuberculosis CLEC4E, MALT1, BCL10,

CARD9

0.0241

Reactome 26 2 Dectin-2 family CLEC4E, CLEC6A 0.0258

Reactome 35 2 NOD1/2 Signaling Pathway CARD9, TNFAIP3 0.0413

The functional annotations of the extended network of the 9 shared genes are shown in the table. KEGG and Reactome pathway annotations were used for the pathway enrichment

analysis using the STRING app in CytoScape. The 9 shared genes associated with the enriched pathways are highlighted in bold.

T2D loci genes that associated with SNPs in LD with
islet eQTL SNPs. IPA pathway analysis of the interacting
nodes pointed toward important cellular processes such as
regulation of cell cycle processes. Considering that loss of
functional β-cell mass is a key mechanism in both T1D
and T2D, it is plausible to think that disease-associated
variants linked to altered gene expression of genes involved
in cell cycle control could negatively affect the replicative
capacity of the β-cells thereby favoring a loss of functional
β-cell mass.

Interestingly, we identified 9 shared genes within the “T1D-
T2D islet eQTL interaction network” and an extension of
the network surrounding these shared genes revealed highly
interconnected nodes that are putatively involved in regulating
common processes leading to either type of disease. Among

the 9 shared genes (HEMK1, GSDMB, ERAP1, PPIP5K2,
TMEM69, DNLZ, SDCCAG3, CARD9, and PLEKHA1), two
of them, GSDMB (gasdermin B) and PLEKHA1 (pleckstrin
homology domain-containing family A member 1) were
previously identified as candidate genes for T1D (Morris et al.,
2012) and T2D (Mahajan et al., 2018), respectively. GSDMB
and CARD9 (caspase recruitment domain family member
9), both have implications in the inflammatory pathways
leading to apoptosis (Hara et al., 2007; Ruan, 2019). Three
genes encode for enzymes with different functions, ERAP1
(endoplasmic reticulum aminopeptidase 1) an amino peptidase
involved in the processing of HLA class I-binding precursors
(Rock et al., 2002), a histidine acid phosphatase, PPIP5K2
(diphosphoinositol pentakisphosphate kinase 2), regulating
bioenergetic homeostasis (Nair et al., 2018), andHEMK1 (methyl
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FIGURE 4 | The “cytokine and palmitate islet interaction network.” The “cytokine and palmitate islet interaction network” is derived from overlap of T1D and T2D loci

genes with cytokine- and/or palmitate-regulated genes. (A) Venn diagram of the genes filtered for. (B) The “cytokine and palmitate islet interaction network” as

visualized by Cytoscape. The T1D loci genes subject to cytokine regulation (n = 191) and T2D loci genes subject to palmitate regulation (n = 187) are shown in cyan

and red nodes, respectively. The edges (blue lines) represent the physicial interactions between the nodes. The network consists of 372 nodes, of which 4 are shared

(shown in green). (C) Functional annotation of the “cytokine and palmitate islet interaction network” (181 nodes with node degree ≥1) based on IPA analysis. Top

canonical pathways and molecular and cellular processes are shown for the selected nodes.

transferase family member 1), responsible for the methylation
of glutamine residues. Further, PLEKHA1 (pleckstrin homology
domain containing A1) is involved in signaling complexes in
the plasma membrane. SDCCAG3 (serologically defined colon
cancer antigen 3) is potentially related to protein trafficking and
secretion (Neznanov et al., 2005).

The enriched pathways for the extended network of the 9
shared genes included interesting categories such as “inositol
phosphate metabolism,” “immune system,” “inflammasome
pathway,” and “NOD1/2 signaling.” Broadly speaking, most if not
all these pathway functions seem rational in terms of regulating
cellular mechanisms that could be important for diabetes at
the islet level. For instance, with regard to “inositol phosphate
metabolism,” it is well-recognized that inositol phosphate
compounds are intimately involved in the stimulus-secretion

coupling process in β-cells through the regulation of calcium
signaling (Barker et al., 2002). Remarkably, there was as many as
6 enriched pathways in total related to inositol in the extended
network inferring that inositol signaling and metabolism may
play prime roles in both T1D and T2D.

Identifying protein complexes from PPIs is an important
area of research for gaining insights into genetic pathways and
identification and prioritization of disease genes (Lage et al.,
2007; Taylor and Wrana, 2012). An increasing number of studies
have employed PPI networks to explore the molecular basis
of complex diseases (Oti et al., 2006; Bergholdt et al., 2007;
Lage et al., 2007; Jaeger and Aloy, 2012). Genes causing the
same or similar diseases tend to lie close to one another in
a network of PPIs or functional interactions and display a
high degree of connectivity (Oti et al., 2006; Vanunu et al.,
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2010). Previous studies combining PPIs and genetic interactions
predicted disease genes for genetically heterogeneous diseases
and proved helpful in identifying associations between disease
genes and other genes for specific protein complexes (Oti et al.,
2006; Bergholdt et al., 2007, 2009; Lage et al., 2007; Vanunu et al.,
2010).

An important part of our study design of the first approach
was the gene filtering based on regulatory islet eQTLs.
Lappalainen et al. (2013) provided a detailed landscape of
regulatory SNPs in 1,000 Genomes data and demonstrated how
eQTL data can be used to identify potential causal variants.
In a recent study, Fagny et al. (2017) constructed tissue-level
eQTL networks in 13 human tissues and observed tissue-specific
regulatory roles of common variants and their collective impact
on biological pathways underlining the necessity to look for
eQTLs in the specific tissue of interest, i.e., in islets in our
current study, to obtain meaningful and (patho)physiologically
relevant information.

In our second part of analyses, we also selected for loci
genes that were subject to differential regulation by cytokines
and/or palmitate as in vitro models of T1D and T2D. This
analysis revealed 4 commonT1D and T2D loci genes (ASCC2,
HIBADH, RASGRP1, and SRGAP2) that are all regulated by both
cytokines and palmitate in human islets. RASGRP1 (RAS guanyl
releasing protein 1) was previously identified as a candidate
gene for both T1D and T2D (Mahajan et al., 2018), and ASCC2
(activating signal cointegrator 1 complex subunit 2) and SRGAP2
(SLIT-ROBO Rho GTPase-activating protein 2) were identified
as T2D candidate genes (Mahajan et al., 2018)1. Interestingly,
two of the genes, ASCC2 and HIBADH, were also associated
with islet eQTLs, and even more remarkably, we found that
ASCC2 eQTL SNPs were in strong LD with T1D-associated
SNPs (data not shown). ASCC2 is involved in ubiquitin binding
activity which might be responsible for commonly regulating
β-cell function in human islets and contributing to both T1D
and T2D (López-Avalos et al., 2006), which deserves further
investigation in future studies. HIBADH (3-hydroxyisobutyrate
dehydrogenase) has been previously implicated in insulin
resistance and risk of incident type 2 diabetes and gestational
diabetes mellitus (Nilsen et al., 2020). Although the selection of
genes based on their regulation by cytokines and/or palmitate
does not necessarily identify causal genes, but merely identifies
genes whose expression level correlate with cytokine/palmitate
exposure. It is also important to keep in mind that the genes
observed to be differentially expressed at a specific time point
only reflect a snapshot of the gene regulatory effects exerted by
cytokines and palmitate. Despite these drawbacks, we do believe
that this approach is a valid alternative approach to the eQTL/LD
selection criteria in our first part of the analyses.

Our finding that risk genes for T1D and T2D interact in
shared networks at the islet level supports the concept that despite
the overall lack of genetic commonality in T1D and T2D, and
that different mechanisms underlie the loss of functional β-cell
mass in T1D and T2D, at least some candidate risk genes of
both diabetes forms seem to cooperate in common pathways
to regulate various islet processes that could be relevant for
promoting disease. The common networks identified by our

analyses adds to our current knowledge andmay offer an opening
to pinpoint potential commonality between T1D and T2D. It
is worth noticing, however, that although both diseases are
heterogenous, T2D is probably more heterogenous than T1D
and can be classified into multiple subtypes according to clinical
parameters and phenotype, and genetics most likely play an
important underlying role in this (Udler, 2019). Future studies
comparing T1D genetics with the various subclasses of T2D
categorized by genetic profiles would be of interest.

A limitation of our study may be that the GWAS datasets
used to define the disease-associated loci are from European
populations only. We therefore might have missed potential
GWAS signals that could be present in other ethnicities. Another
limitation is that it was not possible to use PPIs obtained from
human islets as such data currently does not exist. It is therefore
not possible to apply tissue specificity at this point. In general,
however, PPIs are not tissue-specific, though, but, obviously, rely
on the expression of the protein-coding genes that interact at
the protein level. We applied islet gene expression filtering that
indirectly added some tissue specificity for the PPI analyses, but
it would have been further advantageous if PPI data for human
islets existed. Additional studies are highly warranted to validate
the results and to explore the roles of the identified common
candidate genes for normal and dysfunctional islet mass.

In summary, by a dual systems genetics approach, we report
the identification of novel plausible causal T1D and T2D risk
genes that are common between both diabetes forms. Our study
further suggests that some genes located in T1D and T2D
risk loci interact in shared islet networks where they regulate
critical cellular functions such as cell cycle processes and lipid
metabolism in human islets. From our findings novel testable
hypotheses can be formulated thereby setting the groundwork
for future experimental follow up and functional characterization
of the shared and interacting T1D and T2D candidate genes in
in vitro and in vivo models. Moreover, it would be imperative
to experimentally validate the identified PPIs in human islets
and in β-cells by appropriate methods. These studies are highly
warranted as they could shed further light onto causal and
pathogenic mechanisms and offer new clues about how genetic
factors set the scene for immune- and metabolic stress-mediated
β-cell loss in T1D and T2D.
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Supplementary File 1. |

Supplementary Table 1.1 | Annotation of islet eQTL signals and biotype of islet

eQTL genes. The islet eQTL associations were retrieved from Viñuela et al. (2020).

Both exon and gene-level cis-eQTLs corresponding to 4,312 and 6,039 genes,

respectively (FDR<1%; cis defined as within 1Mb of the transcription start site

[TSS]), were combined that resulted in a total of 10,108 islet eQTL associations for

6,618 islet eQTL genes.

Supplementary Table 1.2 | T1D-associated SNPs as islet eQTLs. The table lists

55 T1D-associated SNPs that act as islet eQTLs. T1D GWAS summary statistics

were retrieved from Onengut-Gumuscu et al. (2015). All nominally associated

SNPs (p < 0.05) were compared against the significant exon and gene level islet

eQTLs from Viñuela et al. (2020). OR, log odds ratio for the effect allele. T1D

GWAS Alleles (Min>Maj); Islet eQTL Alleles (Ref>Alt).

Supplementary Table 1.3 | T2D-associated SNPs as islet eQTLs. The table lists

19 T2D-associated SNPs that act as islet eQTLs. The T2D GWAS summary

statistics were retrieved from Mahajan et al. (2019) (European BMI adjusted

dataset). All nominally associated SNPs (p <0.05) were compared against the

significant exon and gene level islet eQTLs from Viñuela et al. (2020). Beta: log

odds ratio for the effect allele; T2D GWAS Alleles (Effect allele > other allele); Islet

eQTL Alleles (Ref>Alt).

Supplementary Table 1.4 | Pathway-based annotation analysis of the “T1D-T2D

islet eQTL interaction network.” The pathway-based annotations were performed

using KEGG, Reactome, and Wiki pathway annotations in ClueGo app in

Cytoscape. P-values were corrected with Bonferroni step down.

Supplementary Table 1.5 | Shared genes in the “cytokine and palmitate islet

interaction network”.

Supplementary Table 1.6 | Pathway-based annotation analysis of the “cytokine

and palmitate islet interaction network.” The pathway-based annotation was

performed using KEGG, Reactome, and Wiki pathway annotations in ClueGo app

in Cytoscape. P-values are corrected with Bonferroni step down.

Supplementary Figure 1 | Pathway based functional annotation of “T1D-T2D

islet eQTL interaction network” (117 nodes with node degree ≥1) using

CytoScape plugin ClueGO.

Supplementary Figure 2 | Pathway based functional annotation of “cytokine and

palmitate islet interaction network” (181 nodes with node degree ≥1) using

CytoScape plugin ClueGO.

Supplementary File 2. |

Supplementary Table 2.1 | Annotation of islet eQTL SNPs based on islet

regulome features. A total of 1,282 islet eQTL SNPs intersect with islet regulome

features derived from Miguel-Escalada et al. (2019). All the coordinates are based

on the GRCh37 version of the human genome.

Supplementary Table 2.2 | Annotation of T1D-associated SNPs in LD with islet

eQTL SNPs based on islet regulome features. 140 T1D-associated SNPs in LD

with islet eQTLs intersect with islet regulome features derived from

Miguel-Escalada et al. (2019). All the coordinates are based on the GRCh37

version of the human genome.

Supplementary Table 2.3 | Annotation of T2D-associated SNPs in LD with islet

eQTL SNPs based on islet regulome features. 22 T2D SNPs in LD with islet eQTLs

intersect with islet regulome features derived from Miguel-Escalada et al. (2019).

All the coordinates are based on the GRCh37 version of the human genome.

Supplementary File 3. | High resolution view of the ’T1D-T2D islet eQTL

interaction network’ as visualized by Cytoscape. T1D (n = 204) and T2D genes (n

= 192) are shown as cyan and red nodes, respectively. The edges (blue lines)

represent the physicial interactions between the nodes. The network consists of

361 nodes, of which 9 are shared (shown in green).

Supplementary File 4. | High resolution view of the ‘cytokine and palmitate islet

interaction network’ as visualized by Cytoscape. The T1D loci genes subject to

cytokine regulation (n = 191) and T2D loci genes subject to palmitate regulation (n

= 187) are shown in cyan and red nodes, respectively. The edges (blue lines)

represent the physicial interactions between the nodes. The network consists of

372 nodes, of which 4 are shared (shown in green).

REFERENCES

Ackermann, A. M., Wang, Z., Schug, J., Naji, A., and Kaestner, K. H. (2016).
Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta
cell signature genes. Mol. Metab. 5, 233–244. doi: 10.1016/j.molmet.2016.
01.002

Alasoo, K., Rodrigues, J., Danesh, J., Freitag, D. F., Paul, D. S., and Gaffney, D.
J. (2019). Genetic effects on promoter usage are highly context-specific and
contribute to complex traits. Elife 8:e41673. doi: 10.7554/eLife.41673

Arnold, M., Raffler, J., Pfeufer, A., Suhre, K., and Kastenmüller, G. (2015). SNiPA:
an interactive, genetic variant-centered annotation browser. Bioinformatics 31,
1334–1336. doi: 10.1093/bioinformatics/btu779

Aylward, A., Chiou, J., Okino, M.-L., Kadakia, N., and Gaulton, K. J. (2018). Shared
genetic risk contributes to type 1 and type 2 diabetes etiology. HumMol Genet.
2018:ddy314. doi: 10.1093/hmg/ddy314

Barker, C. J., Leibiger, I. B., Leibiger, B., and Berggren, P.-O. (2002). Phosphorylated
inositol compounds in beta -cell stimulus-response coupling. Am. J. Physiol.

Endocrinol. Metab. 283, E1113–E1122. doi: 10.1152/ajpendo.00088.2002
Barrett, J. C., Clayton, D. G., Concannon, P., Akolkar, B., Cooper, J. D., Erlich,

H. A., et al. (2009). Genome-wide association study and meta-analysis find
that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707.
doi: 10.1038/ng.381

Basile, K. J., Guy, V. C., Schwartz, S., and Grant, S. F. A. (2014). Overlap of
genetic susceptibility to type 1 diabetes, type 2 diabetes, and latent autoimmune
diabetes in adults. Curr. Diab. Rep. 14:550. doi: 10.1007/s11892-014-0550-9

Berchtold, L. A., Prause, M., Størling, J., and Mandrup-Poulsen, T. (2016).
Cytokines and pancreatic β-cell apoptosis. Adv. Clin. Chem. 75, 99–158.
doi: 10.1016/bs.acc.2016.02.001

Bergholdt, R., Brorsson, C., Lage, K., Nielsen, J. H., Brunak, S., and Pociot, F.
(2009). Expression profiling of human genetic and protein interaction networks
in type 1 diabetes. PLoS ONE 4:e6250. doi: 10.1371/journal.pone.0006250

Bergholdt, R., Størling, Z. M., Lage, K., Karlberg, E. O., Olason, P. I., Aalund,
M., et al. (2007). Integrative analysis for finding genes and networks
involved in diabetes and other complex diseases. Genome Biol. 8:R253.
doi: 10.1186/gb-2007-8-11-r253

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky,
A., et al. (2009). ClueGO: a Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks. Bioinformatics 25,
1091–1093. doi: 10.1093/bioinformatics/btp101

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
doi: 10.1093/bioinformatics/btu170

Bradfield, J. P., Qu, H.-Q., Wang, K., Zhang, H., Sleiman, P. M., Kim, C.
E., et al. (2011). A genome-wide meta-analysis of six type 1 diabetes

Frontiers in Genetics | www.frontiersin.org 11 March 2021 | Volume 12 | Article 630109

https://www.frontiersin.org/articles/10.3389/fgene.2021.630109/full#supplementary-material
https://doi.org/10.1016/j.molmet.2016.01.002
https://doi.org/10.7554/eLife.41673
https://doi.org/10.1093/bioinformatics/btu779
https://doi.org/10.1093/hmg/ddy314
https://doi.org/10.1152/ajpendo.00088.2002
https://doi.org/10.1038/ng.381
https://doi.org/10.1007/s11892-014-0550-9
https://doi.org/10.1016/bs.acc.2016.02.001
https://doi.org/10.1371/journal.pone.0006250
https://doi.org/10.1186/gb-2007-8-11-r253
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1093/bioinformatics/btu170
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kaur et al. Islet Networks for T1D and T2D

cohorts identifies multiple associated loci. PLoS Genet. 7:e1002293.
doi: 10.1371/journal.pgen.1002293

Bramswig, N. C., Everett, L. J., Schug, J., Dorrell, C., Liu, C., Luo, Y., et al. (2013).
Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J.
Clin. Invest. 123, 1275–1284. doi: 10.1172/JCI66514

Chen, J., Bardes, E. E., Aronow, B. J., and Jegga, A. G. (2009). ToppGene Suite for
gene list enrichment analysis and candidate gene prioritization. Nucleic Acids
Res. 37, W305–W311. doi: 10.1093/nar/gkp427

Cnop, M., Abdulkarim, B., Bottu, G., Cunha, D. A., Igoillo-Esteve, M., Masini,
M., et al. (2014). RNA sequencing identifies dysregulation of the human
pancreatic islet transcriptome by the saturated fatty acid palmitate.Diabetes 63,
1978–1993. doi: 10.2337/db13-1383

Doncheva, N. T., Morris, J. H., Gorodkin, J., and Jensen, L. J. (2019). Cytoscape
stringapp: network analysis and visualization of proteomics data. J. Proteome

Res. 18, 623–632. doi: 10.1021/acs.jproteome.8b00702
Eizirik, D. L., Pasquali, L., and Cnop, M. (2020). Pancreatic β-cells in type 1 and

type 2 diabetes mellitus: different pathways to failure. Nat. Rev. Endocrinol. 16,
349–362. doi: 10.1038/s41574-020-0355-7

Eizirik, D. L., Sammeth, M., Bouckenooghe, T., Bottu, G., Sisino, G., Igoillo-
Esteve, M., et al. (2012). The human pancreatic islet transcriptome: expression
of candidate genes for type 1 diabetes and the impact of pro-inflammatory
cytokines. PLoS Genet. 8:e1002552. doi: 10.1371/journal.pgen.1002552

Fadista, J., Vikman, P., Laakso, E. O., Mollet, I. G., Esguerra, J. L., Taneera, J., et al.
(2014). Global genomic and transcriptomic analysis of human pancreatic islets
reveals novel genes influencing glucosemetabolism. Proc. Natl. Acad. Sci. U.S.A.
111, 13924–13929. doi: 10.1073/pnas.1402665111

Fagny, M., Paulson, J. N., Kuijjer, M. L., Sonawane, A. R., Chen, C.-Y., Lopes-
Ramos, C.M., et al. (2017). Exploring regulation in tissues with eQTL networks.
Proc. Natl. Acad. Sci. U.S.A. 114, E7841–E7850. doi: 10.1073/pnas.1707375114

Hara, H., Ishihara, C., Takeuchi, A., Imanishi, T., Xue, L., Morris, S. W., et al.
(2007). The adaptor protein CARD9 is essential for the activation of myeloid
cells through ITAM-associated and Toll-like receptors. Nat. Immunol. 8,
619–629. doi: 10.1038/ni1466

Jaeger, S., and Aloy, P. (2012). From protein interaction networks to novel
therapeutic strategies. IUBMB Life 64, 529–537. doi: 10.1002/iub.1040

Kumar, V., Wijmenga, C., and Xavier, R. J. (2014). Genetics of immune-mediated
disorders: from genome-wide association to molecular mechanism. Curr. Opin.
Immunol. 31, 51–57. doi: 10.1016/j.coi.2014.09.007

Lage, K., Karlberg, E. O., Størling, Z. M., Olason, P. I., Pedersen, A. G.,
Rigina, O., et al. (2007). A human phenome-interactome network of protein
complexes implicated in genetic disorders. Nat. Biotechnol. 25, 309–316.
doi: 10.1038/nbt1295

Lappalainen, T., Sammeth, M., Friedländer, M. R.,’t Hoen, P. A. C., Monlong, J.,
Rivas, M. A., et al. (2013). Transcriptome and genome sequencing uncovers
functional variation in humans.Nature 501, 506–511. doi: 10.1038/nature12531

Liston, A., Todd, J. A., and Lagou, V. (2017). Beta-cell fragility as a common
underlying risk factor in type 1 and type 2 diabetes. Trends Mol Med 23,
181–194. doi: 10.1016/j.molmed.2016.12.005

López-Avalos, M. D., Duvivier-Kali, V. F., Xu, G., Bonner-Weir, S., Sharma, A., and
Weir, G. C. (2006). Evidence for a role of the ubiquitin-proteasome pathway in
pancreatic islets. Diabetes 55, 1223–1231. doi: 10.2337/db05-0450

Mahajan, A., Taliun, D., Thurner, M., Robertson, N. R., Torres, J. M., Rayner, N.
W., et al. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution
using high-density imputation and islet-specific epigenome maps. Nat. Genet.
50, 1505–1513. doi: 10.1038/s41588-018-0241-6

Mallone, R., and Eizirik, D. L. (2020). Presumption of innocence for beta cells:
why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia
63, 1999–2006. doi: 10.1007/s00125-020-05176-7

Miguel-Escalada, I., Bonàs-Guarch, S., Cebola, I., Ponsa-Cobas, J., Mendieta-
Esteban, J., Atla, G., et al. (2019). Human pancreatic islet three-dimensional
chromatin architecture provides insights into the genetics of type 2 diabetes.
Nat. Genet. 51, 1137–1148. doi: 10.1038/s41588-019-0457-0

Morris, A. P., Voight, B. F., Teslovich, T. M., Ferreira, T., Segrè, A. V.,
Steinthorsdottir, V., et al. (2012). Large-scale association analysis provides
insights into the genetic architecture and pathophysiology of type 2 diabetes.
Nat. Genet. 44, 981–990. doi: 10.1038/ng.2383

Mularoni, L., Ramos-Rodríguez, M., and Pasquali, L. (2017). The pancreatic islet
regulome browser. Front. Genet. 8:13. doi: 10.3389/fgene.2017.00013

Nair, V. S., Gu, C., Janoshazi, A. K., Jessen, H. J., Wang, H., and Shears, S. B. (2018).
Inositol pyrophosphate synthesis by diphosphoinositol pentakisphosphate
kinase-1 is regulated by phosphatidylinositol(4,5)bisphosphate. Biosci. Rep.
38:BSR20171549. doi: 10.1042/BSR20171549

Neznanov, N., Neznanova, L., Angres, B., and Gudkov, A. V. (2005). Serologically
defined colon cancer antigen 3 is necessary for the presentation of TNF receptor
1 on cell surface. DNA Cell Biol. 24, 777–785. doi: 10.1089/dna.2005.24.777

Nilsen, M. S., Jersin, R. Å., Ulvik, A., Madsen, A., McCann, A., Svensson, P.-A.,
et al. (2020). 3-Hydroxyisobutyrate, a strongmarker of insulin resistance in type
2 diabetes and obesity that modulates white and brown adipocyte metabolism.
Diabetes 69, 1903–1916. doi: 10.2337/db19-1174

Nogueira, T. C., Paula, F. M., Villate, O., Colli, M. L., Moura, R. F.,
Cunha, D. A., et al. (2013). GLIS3, a susceptibility gene for type 1 and
type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of
a splice variant of the BH3-only protein Bim. PLoS Genet. 9:e1003532.
doi: 10.1371/journal.pgen.1003532

Oh, Y. S., Bae, G. D., Baek, D. J., Park, E.-Y., and Jun, H.-S. (2018). Fatty acid-
induced lipotoxicity in pancreatic beta-cells during development of type 2
Diabetes. Front. Endocrinol. 9:384. doi: 10.3389/fendo.2018.00384

Onengut-Gumuscu, S., Chen, W.-M., Burren, O., Cooper, N. J., Quinlan, A. R.,
Mychaleckyj, J. C., et al. (2015). Fine mapping of type 1 diabetes susceptibility
loci and evidence for colocalization of causal variants with lymphoid gene
enhancers. Nat. Genet. 47, 381–386. doi: 10.1038/ng.3245

Oti, M., Snel, B., Huynen, M. A., and Brunner, H. G. (2006). Predicting
disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698.
doi: 10.1136/jmg.2006.041376

Prentki, M., and Nolan, C. J. (2006). Islet beta cell failure in type 2 diabetes. J. Clin.
Invest. 116, 1802–1812. doi: 10.1172/JCI29103

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics 26, 841–842.
doi: 10.1093/bioinformatics/btq033

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616

Rock, K. L., York, I. A., Saric, T., and Goldberg, A. L. (2002). Protein degradation
and the generation of MHC class I-presented peptides.Adv. Immunol. 80, 1–70.
doi: 10.1016/S0065-2776(02)80012-8

Ruan, J. (2019). Structural insight of gasdermin family driving pyroptotic cell
death. Adv. Exp. Med. Biol. 1172, 189–205. doi: 10.1007/978-981-13-9367-9_9

Slatkin, M. (2008). Linkage disequilibrium–understanding the evolutionary
past and mapping the medical future. Nat Rev Genet 9, 477–485.
doi: 10.1038/nrg2361

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., and Ideker, T. (2011).
Cytoscape 2.8: new features for data integration and network visualization.
Bioinformatics 27, 431–432. doi: 10.1093/bioinformatics/btq675

Soleimanpour, S. A., and Stoffers, D. A. (2013). The pancreatic β cell and type 1
diabetes: innocent bystander or active participant? Trends Endocrinol. Metab.
24, 324–331. doi: 10.1016/j.tem.2013.03.005

Stacey, D., Fauman, E. B., Ziemek, D., Sun, B. B., Harshfield, E. L., Wood, A.
M., et al. (2019). ProGeM: a framework for the prioritization of candidate
causal genes at molecular quantitative trait loci. Nucleic Acids Res 47:e3.
doi: 10.1093/nar/gky837

Taylor, I. W., and Wrana, J. L. (2012). Protein interaction networks in medicine
and disease. Proteomics 12, 1706–1716. doi: 10.1002/pmic.201100594

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering
splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111.
doi: 10.1093/bioinformatics/btp120

Udler, M. S. (2019). Type 2 diabetes: multiple genes, multiple diseases. Curr. Diab.
Rep. 19:55. doi: 10.1007/s11892-019-1169-7

van de Bunt, M., Manning Fox, J. E., Dai, X., Barrett, A., Grey, C., Li, L.,
et al. (2015). Transcript expression data from human islets links regulatory
signals from genome-wide association studies for type 2 diabetes and
glycemic traits to their downstream effectors. PLoS Genet. 11:e1005694.
doi: 10.1371/journal.pgen.1005694

Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., and Sharan, R. (2010).
Associating genes and protein complexes with disease via network
propagation. PLoS Comput. Biol. 6:e1000641. doi: 10.1371/journal.pcbi.10
00641

Frontiers in Genetics | www.frontiersin.org 12 March 2021 | Volume 12 | Article 630109

https://doi.org/10.1371/journal.pgen.1002293
https://doi.org/10.1172/JCI66514
https://doi.org/10.1093/nar/gkp427
https://doi.org/10.2337/db13-1383
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.1038/s41574-020-0355-7
https://doi.org/10.1371/journal.pgen.1002552
https://doi.org/10.1073/pnas.1402665111
https://doi.org/10.1073/pnas.1707375114
https://doi.org/10.1038/ni1466
https://doi.org/10.1002/iub.1040
https://doi.org/10.1016/j.coi.2014.09.007
https://doi.org/10.1038/nbt1295
https://doi.org/10.1038/nature12531
https://doi.org/10.1016/j.molmed.2016.12.005
https://doi.org/10.2337/db05-0450
https://doi.org/10.1038/s41588-018-0241-6
https://doi.org/10.1007/s00125-020-05176-7
https://doi.org/10.1038/s41588-019-0457-0
https://doi.org/10.1038/ng.2383
https://doi.org/10.3389/fgene.2017.00013
https://doi.org/10.1042/BSR20171549
https://doi.org/10.1089/dna.2005.24.777
https://doi.org/10.2337/db19-1174
https://doi.org/10.1371/journal.pgen.1003532
https://doi.org/10.3389/fendo.2018.00384
https://doi.org/10.1038/ng.3245
https://doi.org/10.1136/jmg.2006.041376
https://doi.org/10.1172/JCI29103
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/S0065-2776(02)80012-8
https://doi.org/10.1007/978-981-13-9367-9_9
https://doi.org/10.1038/nrg2361
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.1016/j.tem.2013.03.005
https://doi.org/10.1093/nar/gky837
https://doi.org/10.1002/pmic.201100594
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1007/s11892-019-1169-7
https://doi.org/10.1371/journal.pgen.1005694
https://doi.org/10.1371/journal.pcbi.1000641
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kaur et al. Islet Networks for T1D and T2D

Varshney, A., Scott, L. J., Welch, R. P., Erdos, M. R., Chines, P. S., Narisu,
N., et al. (2017). Genetic regulatory signatures underlying islet gene
expression and type 2 diabetes. Proc. Natl. Acad. Sci. U.S.A. 114, 2301–2306.
doi: 10.1073/pnas.1621192114

Viñuela, A., Varshney, A., van de Bunt, M., Prasad, R. B., Asplund, O., Bennett,
A., et al. (2020). Genetic variant effects on gene expression in human
pancreatic islets and their implications for T2D. Nat. Commun. 11:4912.
doi: 10.1038/s41467-020-18581-8

Wen, X., and Yang, Y. (2017). Emerging roles of GLIS3 in neonatal diabetes, type 1
and type 2 diabetes. J. Mol. Endocrinol. 58, R73–R85. doi: 10.1530/JME-16-0232

Westra, H.-J., and Franke, L. (2014). From genome to function by studying eQTLs.
Biochim. Biophys. Acta 1842, 1896–1902. doi: 10.1016/j.bbadis.2014.04.024

Wysham, C., and Shubrook, J. (2020). Beta-cell failure in type
2 diabetes: mechanisms, markers, and clinical implications.

Postgrad. Med. 132, 676–686. doi: 10.1080/00325481.2020.1
771047

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Kaur, Mirza, Overgaard, Pociot and Størling. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 13 March 2021 | Volume 12 | Article 630109

https://doi.org/10.1073/pnas.1621192114
https://doi.org/10.1038/s41467-020-18581-8
https://doi.org/10.1530/JME-16-0232
https://doi.org/10.1016/j.bbadis.2014.04.024
https://doi.org/10.1080/00325481.2020.1771047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Dual Systems Genetics Approach Identifies Common Genes, Networks, and Pathways for Type 1 and 2 Diabetes in Human Islets
	Introduction
	Materials and Methods
	T1D and T2D Loci and Associated Genes
	Islet eQTLs and LD Analysis
	Genes Transcriptionally Modified by Cytokines or Palmitate in Human Islets
	PPI Network and Pathway Analysis

	Results
	Selection and Integration of T1D and T2D Loci Genes and Islet eQTLs
	Generation of a Common T1D-T2D Islet eQTL Interaction Network Based on Genes in LD With Disease Variants
	Extended Network of Shared Genes and Pathway Analysis
	Generation of a Common T1D-T2D Islet Interaction Network Based on Cytokine- and Palmitate-Regulated Loci Genes

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


