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ABSTRACT Leishmania (Viannia) braziliensis is the main etiological agent of tegu-
mentary leishmaniasis in the neotropics. Here, we report a draft genome sequence
(31.2 Mb) of an L. braziliensis strain from the western Amazon region of Brazil. This
genome sequence will complement those available for other Leishmania species and
contribute to further studies focusing on this parasite and the neglected diseases as-
sociated with it.

Leishmania braziliensis (Kinetoplastida: Trypanosomatidae) belongs to the subgenus
Viannia, which comprises species found exclusively in the neotropics; it is the main

agent of tegumentary leishmaniasis (TL) in this region and causes a broad range of
clinical manifestations, ranging from single to multiple lesions in the skin and naso-
pharyngeal mucosa, as well as persistent metastatic disease. The clinical expression of
TL caused by L. braziliensis is multifactorial, being influenced by host and parasitic
characteristics, including its endosymbiosis with Leishmania RNA virus 1 (LRV1) (1). The
hypothesis that LRV1 is an ancient virus that coevolved with Leishmania species (2) and
is not transmitted from one Leishmania strain to another is well accepted. Genetic
clusters observed for L. braziliensis strains correlate with the presence/absence of LRV1,
as well as with the phylogeny of this endosymbiont (3), indicating differences in the
genomes of L. braziliensis strains bearing LRV1.

Some studies have revealed a considerable intraspecies variability in L. braziliensis (4,
5), which could explain its ability to adapt to different ecological conditions. There are
around 30 Leishmania genome assemblies available, 6 corresponding to Leishmania
(Viannia) species and only 2 for L. braziliensis. These genomes were obtained from
long-term cultures and maintained using in vivo and in vitro conditions, which were
recently demonstrated to affect genomic characteristics of this organism (6).

Here, we report the genome of an L. braziliensis strain (IOC-L3564) isolated in 2014
from a cutaneous lesion from a patient infected in the western Amazon region of Brazil
and maintained with few in vitro passages. This is the first reported genome sequence
of an L. braziliensis strain presenting the endosymbiont LRV1. The strain was typed as
L. braziliensis by the hsp70 PCR gene restriction fragment length polymorphism proto-
col and isoenzyme electrophoresis (7, 8) and was deposited in the Leishmania collection
at the Oswaldo Cruz Institute. LRV1 was detected by reverse transcriptase PCR (8).
Genomic DNA was extracted from an in vitro culture and purified using a PureLink DNA
minikit prior to library preparation. The library was prepared with an Ion Xpress Plus
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fragment library kit. Genomic libraries were enriched using an Ion PGM template Hi-Q
View OT2 kit and sequenced using the Ion Torrent platform.

Using the TMAP tool for the Ion Torrent platform (https://github.com/iontorrent/
TMAP), we determined the obtained reads to have 98.39% identity to the reference
genome L. braziliensis strain M2904 (release TriTrypDB-27) (9). Trimming under the
parameters TRAILING:5 LEADING:7 SLIDINGWINDOW:3:15 MINLEN:150 was performed
using Trimmomatic (10). De novo assembly of the trimmed reads was conducted with
SPAdes version 3.1.10 (11), which generated 10,557 scaffolds. The redundant scaffolds
were removed using Redundans version 0.13a (12), which resulted in 7,363 scaffolds
that were oriented and ordered on ABACAS version 1.3.1 (13) with default parameters;
34 scaffolds/chromosomes were obtained as the consensus for the haploid Leishmania
genome (90.57% coverage), while 993 scaffolds did not match the reference genome
L. braziliensis M2904 (release TriTrypDB-27).

QUAST software was used to check the quality of the assembly and to determine
genome fraction (%) metrics (14). Annotation and gene prediction were performed on
the Companion Server version 1.0.2 pipeline (15). Characteristics of the draft genome
sequence of L. braziliensis IOC-L3564 are presented in Table 1.

Data availability. This draft genome sequence has been deposited at DDBJ/ENA/
GenBank under the accession number cited in Table 1.
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