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Abstract. The biological processes of pulmonary artery 
vascular smooth muscle cells (PA‑SMCs) and pulmonary 
artery endothelial cells in pulmonary arterial hyperten‑
sion  (PAH) are generally abnormal, with increased levels 
of proliferation and reduced levels of apoptosis. Although 
microRNAs (miRNAs/miRs) participate in a number of 
biological processes in a variety of diseases, such as tumors 
and infections, studies on the association between miRNAs 
and PAH are limited. In the present study, blood samples were 
collected from 6 patients with patent ductus arteriosus. The 
experimental group included 3 patients with severe PAH, while 
the control group included 3 patients without PAH. Microarray 
technology was used to detect the presence of any associated 
miRNAs. Moreover, a rat PAH model was established via left 
lung resection followed by monocrotaline injection, involving 
a total of 8 rats in the PAH group and 8 untreated rat in the 
control group. Reverse transcription‑quantitative PCR was 
performed to verify the expression levels of the miR‑30 family 
in the animal model. miR‑30d‑5p mimics and anti‑miR‑30d‑5p 
were transfected into primary cultured PA‑SMCs. Levels of 
cytotoxicity and cell apoptosis were examined, and Notch‑3 
expression levels were studied using western blotting. The 
results of the present study demonstrated that miR‑30d‑5p 
expression was downregulated in both patient blood and animal 
models of the PAH group compared with control groups. In 
primary cultured PA‑SMCs, overexpression of miR‑30d‑5p 
attenuated the platelet‑derived growth factor‑induced toxicity 
of PA‑SMCs, while knockdown of miR‑30d‑5p resulted in the 
increased toxicity of PA‑SMCs compared with control group. 

The apoptosis rate of PA‑SMCs increased with the overexpres‑
sion of miR‑30d‑5p compared with control group. Moreover, 
the expression levels of Notch‑3 in the miR‑30d‑5p group were 
significantly reduced compared with the anti‑miR‑30d‑5p and 
miR‑NC groups. In total, 10 circulating miRNAs that may be 
associated with PAH were discovered in the present study. 
Moreover, the expression of the miR‑30 family was verified in 
animal models in vivo, and seven miRNAs in this family were 
discovered that may be associated with PAH. Additionally, 
miR‑30d‑5p was downregulated in both patients with PAH 
and animal models compared with control groups. Thus, the 
results of the present study demonstrated that the regulatory 
mechanism underlying PA‑SMCs may be via the Notch‑3 
signaling pathway.

Introduction

Pulmonary arterial hypertension (PAH) is a progressive 
disease characterized by increased pulmonary resistance that 
leads to right heart failure and in some cases, death (1,2). Thus 
far, numerous causes have been associated with the mecha‑
nisms underlying PAH development. For example, endothelin, 
nitric oxide and prostaglandin are classic regulatory factors of 
PAH (3). Pulmonary vascular remodeling is the most notable 
pathological change in PAH, and pulmonary artery vascular 
smooth muscle cells (PA‑SMCs) and pulmonary artery 
endothelial cells (PA‑ECs) are key factors in vascular activity 
and remodeling (3). However, the pathogenesis of PAH and 
associated molecular pathways, such as pulmonary vascular 
remodeling, and PA‑SMC and PA‑EC proliferation, are yet to 
be fully elucidated (4‑6).

MicroRNAs (miRNAs/miRs) are a class of small 
non‑coding RNAs (7). miRNAs participate in a number of 
key biological processes, such as differentiation, cell prolifera‑
tion and apoptosis. miRNAs exert these biological processes 
by controlling the 3' untranslated region of mRNA, which 
degrades and inhibits the translation of target genes, as well as 
regulates the expression levels of target genes (8).

In PAH, the biological processes of PA‑SMCs and PA‑ECs 
are abnormal, characterized by increased proliferation and 
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reduced apoptosis (9‑11). miRNAs participate in the regula‑
tion of proliferation and apoptosis in numerous diseases. For 
example, in retinoblastoma miR‑675 promotes glioma cell 
proliferation and motility by regulating the RB1 gene (12). 
miR‑34a and miR‑181a have been indicated to participate 
in apoptosis and oxidative stress in human osteoarthritic 
chondrocytes (13). miR‑21 promotes breast cancer prolifera‑
tion and metastasis (14). We hypothesized that there may be 
associations between miRNAs and PAH development. The 
results of previous studies have revealed that a number of 
miRNAs participate in the regulation of PAH development, 
such as miR‑29b, miR‑138, and miR‑222 and miR‑204 (15,16). 
However, the differential expression of miRNAs in PAH is yet 
to be fully elucidated.

The aim of the present study was to verify the relationship 
between miRNAs and PAH in order to unravel novel poten‑
tial therapeutic target for PAH. RNA microarray in patients 
with patent ductus arteriosus with or without PAH, reverse 
transcription‑quantitative PCR in a PAH animal model, flow 
cytometry, western blotting, miRNA transfection and MTT 
assay in primary cultured PA‑SMCs were used for this purpose. 
The differential expression levels of miRNAs in patients with 
PAH were investigated. Furthermore, the expression level of the 
miR‑30 family was verified in the lung tissue of rats during the 
development of PAH. The regulatory functions of miR‑30d‑5p 
were also investigated in the toxicity of PA‑SMCs.

Materials and methods

Patient data and blood sample collection. A total of 6 patients 
(West China Second University Hospital of Sichuan University; 
Chengdu, China) with patent ductus arteriosus were enrolled 
in the present study between June 2013 and January 2014. All 
the patients exhibited no other lung diseases or heart diseases. 
A total of 3  patients diagnosed with severe pulmonary 
hypertension by echocardiograms and cardiac catheters were 
assigned to the PH group [mean pulmonary artery pressure 
(PAP), >70 mmHg]. A further 3 patients without pulmonary 
hypertension were included in the control group. The clinical 
characteristics of all patients are summarized in Table I. Blood 
samples from the 6 patients were collected for RNA extraction 
and subsequent experiments. All experiments involving human 
subjects were approved by the Medical Ethics Committee of 
West China Second University Hospital of Sichuan University 
(Chengdu, China; approval no. 2015‑010). Written informed 
consent for using the blood samples of patients was obtained 
from the parents of the patients.

miRNA differential expression spectrum. Total RNA was 
extracted from blood samples using PureLink™ RNA extrac‑
tion kit (cat. no. 12183020; Thermo Fisher Scientific, Inc.) and 
purified using mirVana™ PARIS™ RNA and Native Protein 
Purification kit (cat. no. AM1556, Ambion; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol. RNA 
integration was determined using an Agilent Bioanalyzer 2100 
(Agilent Technologies, Inc.). A sample was considered quali‑
fied with an RNA integrity number >7.

RNA labeling and array hybridization. miRNAs in total 
RNA were labeled using the miRNA Complete Labeling and 

Hybridization kit (cat. no. 5190‑0456; Agilent Technologies, 
Inc.) according to the manufacturer's protocol. Each slide was 
hybridized with 100 ng Cy3‑labeled RNA using the aforemen‑
tioned miRNA Complete Labeling and Hybridization kit in 
a hybridization oven (cat. no. G2545A; Agilent Technologies, 
Inc.) at 55˚C and low agitation for 20 h, according to the manu‑
facturer's protocol. Slides were subsequently washed using 
the Gene Expression Wash Buffer kit (cat. no. 5188‑5327; 
Agilent Technologies, Inc.). An Agilent Microarray Scanner 
(cat. no. G2565BA; Agilent Technologies, Inc.) was used to 
scan the slides. The original data were normalized using 
the Quantile algorithm, Gene Spring Software 11.0 (Agilent 
Technologies, Inc.).

Animal model. All animal experiments animals were 
approved by the Medical Ethics Committee of West China 
Second University Hospital of Sichuan University (Chengdu, 
China; approval no. 2015‑010). Sprague‑Dawley  (SD) rats 
were purchased from Chengdu Dashuo Biological Technology 
Co., Ltd., and raised in specific‑pathogen‑free conditions. The 
room temperature was 25˚C with 50% humidity. The light and 
dark cycle was 12 h each. The rats had free access to food and 
water. Rats were divided into the following two groups: i) PAH 
group; and ii) control group.

In the PAH group, a total of 10 male SD rats (weight, 
300‑400 g; age, 9 weeks) underwent left lung resection and 
subcutaneous injection of monocrotaline (MCT; 60 mg/kg) 
one week after surgery in order to mimic pulmonary hyper‑
tension (1). Rats were anesthetized with an intraperitoneal 
injection of pentobarbital (30‑60 mg/kg) for lung resection, 
and the duration of the operation was 10‑15 min. Following 
the aforementioned procedures, animal health was monitored 
daily. In total, 1 rat died 1 day following surgery, and 1 rat 
died 5 days following surgery. Thus, a total of 8 rats were used 
in subsequent procedures. At 5 weeks after the drug injec‑
tion, the rats were used for subsequent studies. The results of 
our previous study demonstrated that severe PAH formed at 
5 weeks following MCT injection (1). Furthermore, the control 
group consisted of 8 healthy male SD rats (weight, 300‑400 g; 
age, 9 weeks).

PAP was measured through the jugular vein using a 
transvenous catheter, and animals were subsequently sacri‑
ficed. Following the aforementioned anesthesia using an 
intraperitoneal injection of pentobarbital (30‑60 mg/kg), rats 
were sacrificed by exsanguination via the jugular veins and 
carotid arteries. Animal death was confirmed by an absence of 
heart rate and lack of breathing. Lung tissues from both groups 
were isolated for RNA extraction. The hearts were dissected, 
and the weight of the right ventricle (RV), left ventricle (LV) 
and ventricular septum (S) were measured. The right heart 
hypertrophy index (RVHI) was calculated using the equation: 
RV/(LV + S).

Reverse transcription‑quantitative (RT‑qPCR). The expression 
levels of miR‑30a‑5p, miR‑30b‑5p, miR‑30c‑5p, miR‑30d‑5p, 
miR‑30e‑5p, miR‑30a‑3p, miR‑30b‑3p, miR‑30c‑1‑3p, 
miR‑30c‑2‑3p, miR‑30d‑3p and miR‑30e‑3p in the lung tissues 
of the PAH group and control group were verified using 
RT‑qPCR. Total RNA was extracted from lung tissues using 
TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.), 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  23:  108,  2022 3

according to the manufacturer's protocol. RT‑qPCR was 
performed using the EzOmics™ One‑Step qPCR kit 
(cat. no. BK2100; Biomics Biotechnologies Co., Ltd.). A total 
of 1 µl RNA was added to 25 µl EzOmics™ One‑Step qPCR 
kit components (including 2X master mix, 50X SYBR Green I, 
50 mM MgCl2 and H2O), 1 µl EzQuick™ 50X RT/Taq Mix, 
2 µl RT primer and 30 µl diethylpyrocarbonate‑H2O. The 
primers were included in the EzOmics™ miRNA qPCR 
Detection Primer Set (cat. no. BK1010; Biomics Biotechnologies 
Co., Ltd.). The thermocycling conditions were as follows: 
Initial denaturation at 95˚C for 10 min, followed by 40 cycles 
of 95˚C for 15 sec, 55˚C for 30 sec and 72˚C for 30 sec. Data 
were analyzed using the 2‑ΔΔCq method (17) for relative quanti‑
fication to U6. The primer sequences were as follows: 
miR‑30a‑5p forward, 5'‑AACGAGACGACGACAGAC‑3' 
and reverse, 5'‑TGTAAACATCCTCGACTGGAAG‑3'; 
miR‑30b‑5p forward, 5'‑TGTAAACATCCTACACTCAGCT‑3' 
and reverse, 5'‑CAGTGCGTGTCGTGGAGT‑3'; miR‑30c‑5p 
forward, 5'‑ACACTCCAGCTGGGTGTAAACATCCTACA 
CTC‑3' and reverse, 5'‑CTCAACTGGTGTCGTGGAGTCG 
GCAATTCAGTTGAGGCTCAGAG‑3'; miR‑30d‑5p forward, 
5'‑GCCTATAAACATCCCCGAC‑3' and reverse, 5'‑GTGCGT 
GTCGTGGAGTCG‑3'; miR‑30e‑5p forward, 5'‑TGTAAACAT 
CCTTGACTGGAAGG‑3' and reverse, 5'‑CCAGTGCGAATA 
CCTCGGAC‑3'; miR‑30a‑3p forward, 5'‑CCCTGCTCTGGC 
TGGTCAAACGGA‑3' and reverse, 5'‑TTGCCAGCCCTGCT 
GTAGCTGGTTGAAG‑3'; miR‑30b‑3p forward, 5'‑GCTGCG 
GTGTAGACATCTAATAC‑3' and reverse, 5'‑ATCCAGTGCA 
GGGTCCGACC‑3'; miR‑30c‑1‑3p forward, 5'‑ACACTCCAG 
CTGGGCTGGGAGAGGGTTGTTTACTCC‑3' and reverse, 
5'‑CTCAACTGGTGTCGTGGAG TCGGCAATTCAGTTGA 
GGGAGTAAA‑3'; miR‑30c‑2‑3p forward, 5'‑CACGCACTGG 
GAGAAGGC‑3' and reverse, 5'‑GTCGTATCCAGTGCAG 
GGTCCGAGGTATTCGCACTGGATACGAC‑3'; miR‑30d‑3p 
forward, 5'‑TGGTTTTTTAGTATTATTGTTAGTTGT‑3' and 

reverse, 5'‑ATACATACAATCCCAACTATTCAAA‑3'; 
miR‑30e‑3p forward, 5'‑ACGCTTTCAGTCGGATGTTTA 
CAGC‑3' and reverse, 5'‑GTGCGTGTCGTGGAGTCG‑3'; U6 
forward, 5'‑GCTTCGGCAGCACATATACTAAAAT‑3' and 
reverse, 5'‑CGCTTCACGAATTTGCGTGTCAT‑3'.

Cell culture. Rat PA‑SMCs were isolated and cultured as 
previously described by Yin et al  (18). Immediately after 
the rats were sacrificed, the pulmonary artery was dissected 
and removed. The following procedure was performed under 
aseptic conditions. The connective tissue, tunica intima and 
tunica adventitia of the artery was eliminated. The rest of 
the tissue was cut into small pieces ~2 mm2 and transferred 
to a cell culture flask. A total of 1 h later, when the tissue 
attached to the cell culture flask, it was cultured in DMEM 
(Gibco; Thermo Fisher Scientific, Inc.) with 10% fetal bovine 
serum (Gibco; Thermo Fisher Scientific, Inc.). The cells were 
cultured in a 37˚C incubator with 5% CO2.

miRNA transfection. The miR‑30d‑5p mimics (miR‑30d‑5p; 
cat. no. miR10000807‑1‑5), miR‑negative control (NC) mimics 
(miR‑NC; cat. no. miR20000807‑1‑5), miR‑30d‑5p inhibitor 
(anti‑miR‑30d‑5p; cat. no. miR1N0000001‑1‑5) and miR‑NC 
inhibitor (anti‑miR‑NC; cat. no. miR2N0000001‑1‑5) were 
purchased from Guangzhou RiboBio Co., Ltd. Primary cultured 
PA‑SMCs were transfected at 37˚C for 24 h with the aforemen‑
tioned miRNAs (100 nM each) using Lipofectamine® 3000 
reagent (Thermo  Fisher Scientific, Inc.) according to the 
manufacturer's protocol. The cells were harvested 24 h after 
transfection and used in subsequent experiments.

MTT assay. An MTT assay was performed using rat PA‑SMCs 
to examine cytotoxicity. Cells were cultured in 96‑well plates 
(5x104) and treated with vehicle or 20 ng/ml platelet‑derived 
growth factor (PDGF; Sangon Biotech, Co., Ltd.) at 37˚C for 

Table I. Clinical characteristics of control patients and patients with PAH.

A, Control patients without PAH

Age,		  Weight,	 Body surface	 RVSP,	 mPAP,	 PVRI, wood	 PDA diameter,
months	 Sex	 kg	 area, m2	 mmHg	 mmHg	 units m2	 mm

  34	 Female	 14.0	 0.590 	 27	 18	 N/A	 2
  47	 Female	 11.5	 0.503	 25	 15	 N/A	 2
  44	 Female	 9.0	 0.415	 22	 14	 N/A	 2

B, Patients with PAH

Age, 		  Weight,	 Body surface	 RVSP,	 mPAP,	 PVRI, wood	 PDA diameter,
months	 Sex	 kg	 area, m2	 mmHg	 mmHg	 units m2	 mm

  34	 Female	 13.0	 0.555	 105	 75	 10.83	 7
108	 Male	 26.0	 1.010	 116	 87	 18.74	 6
  49	 Male	 12.0	 0.520	 112	 75	 21.40	 8

RVSP, right ventricular systolic pressure; mPAP, mean pulmonary artery pressure; PVRI, pulmonary vascular resistance index; PDA, patent 
ductus arteriesus; PAH, pulmonary arterial hypertension; N/A, not available.
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24 h. Cells were further divided into five groups: i) Control, 
ii)  miR‑30d‑5p, iii)  miR‑NC, iv)  anti‑miR‑30d‑5p; and 
v) anti‑miR‑NC. MTT reagent (Sigma‑Aldrich; Merck KGaA) 
was added and cells were incubated for 4  h at 37˚C. 
Subsequently, a spectrophotometer was used to assess the 
formation of colored formazan with dimethyl sulfoxide at 
540 nm. All samples were analyzed three times.

Flow cytometry. Flow cytometry was performed using 
rat PA‑SMCs (1x106  cells) to examine cell apoptosis. 
Annexin V‑PE and PI (BD Biosciences) were used to stain the 
PA‑SMCs. Apoptotic cells were analyzed using a FACScan 
flow cytometer (Becton, Dickinson and Company) with Cell 
Quest software v1.1 (BD Biosciences). The apoptosis rate was 
calculated as the percentage of early + late apoptotic cells.

Western blot analysis. PA‑SMCs were collected 48  h 
after transfection. Cells were lysed using phosphatase and 
proteinase inhibitors. Proteins were extracted with RIPA 
lysis buffer (Thermo  Fisher Scientific, Inc.) and protein 
concentration was determined via the Bradford method. 
Proteins (20 µg/lane) were loaded in a 4% 1.0‑mm Bis‑Tris gel 
(Thermo Fisher Scientific, Inc.), and subsequently transferred 
onto PVDF membranes (Thermo Fisher Scientific, Inc.). No 
blocking was performed before primary antibody incubation. 
The membranes were incubated with the primary antibody 
anti‑Notch‑3 (1:1,000; cat. no. ab23426; Abcam) at 4˚C for 1 h. 
Following primary incubation, membranes were incubated 
with an anti‑rabbit HRP‑conjugated  secondary antibody 
(1:2,000; cat. no. ab7090; Abcam) for 1 h at room temperature. 

The integrated optical density of the samples was measured 
with a visualization reagent (Luminol; Sigma‑Aldrich; 
Merck KGaA) using a Gel‑Pro analyzer. An anti‑α‑tubulin 
antibody (1:1,000; cat. no. ab7291; Abcam) followed by incu‑
bation with a secondary antibody (1:2,000; cat. no. ab205719; 
Abcam) under the same conditions as aforementioned, was 
used as the loading control.

Statistical analysis. The miRNA microarray analysis results 
were analyzed using the SBC Analysis System (Shanghai 
BioChip Co., Ltd.), following the manufacturer's protocol. 
Additionally, miRNAs with a fold‑change >2 and P<0.05 were 
considered to indicate a statistically significant difference. All 
other data were analyzed using SPSS software version 23.0 
(IBM  Corp.). Data following normal distribution were 
presented as the mean ± standard deviation. Data involving 
two groups following a normal distribution were analyzed 
using unpaired Student's t‑tests, and data with multiple groups 
were analyzed using one‑way ANOVA followed by Tukey's 
post hoc tests. P<0.05 was considered to indicate a statistically 
significant difference.

Results

miRNA expression spectrum. A total of 593 differentially 
expressed miRNAs were identified and analyzed. The expres‑
sion levels of a total of nine miRNAs with a fold‑change >2 and 
P<0.05 were significantly downregulated, and the expression 
level of one miRNA was significantly upregulated in the PAH 
group, compared with the control group (Fig. 1B). The miRNAs 

Figure 1. miRNA expression spectrum. (A) Heat map of differential expression of miRNAs in control and PAH groups, using a criteria of P<0.05 and a 
fold‑change >2. Green, downregulation; red, upregulation. (B) Volcano plot of miRNAs. Red dots indicate differentially expressed miRNAs matching the 
criteria of P<0.05 and a fold‑change >2. miRNA/miR, microRNA; PAH, pulmonary arterial hypertension.
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with downregulated expression levels included miR‑30d‑5p, 
miR‑151q‑3p, miR181a‑5p, miR‑584‑5p, miR‑484, miR‑4454, 
miR‑3135b, miR‑26A‑5P and miR‑145‑5p. The miRNA with 
an upregulated expression level was miR‑1290 (Fig. 1A).

Circulating miR‑30 family expression levels. In addition to 
the aforementioned differentially expressed miRNAs, the 
expression levels of the circulating miRNA family were also 
analyzed (Table  II). The results revealed the upregulation 
of miR‑30c‑1‑3p and miR‑30c‑2‑3p, and the downregula‑
tion of miR‑30c‑5p, miR‑30d‑5p and miR‑30e‑3p compared 
with the control group; however, only the altered expression 
level of miR‑30d‑5p was significant. Moreover, miR‑30a‑3p, 

miR‑30a‑5p, miR‑30b‑3p, miR30b‑5p, miR‑30d‑3p and 
miR‑30e‑5p demonstrated a small but not significant 
fold‑change compared with the control group.

Animal model of PAH with increased PAP and RVHI. When 
the animal model was established, PAP was measured via 
the jugular vein. RVHI was calculated after the dissection 
of the heart. Both PAP (Fig. 2A) and RVHI (Fig. 2B) were 
significantly increased in the PAH group compared with the 
control group. These results suggested that the PAH model 
was successfully established.

RT‑qPCR results of miR‑30 family. As demonstrated in Fig. 1, 
miR‑30d‑5p was significantly downregulated in the PAH group 
compared with the control group; besides, numerous studies 
have also revealed the association between the miR‑30 family 
and PAH (15,16). Moreover, as a previous study has suggested 
that the miR‑30 family influences vascular smooth muscle 
cells (19), the expression of the miR‑30 family was investi‑
gated in the lung tissue of a rat PAH model using RT‑qPCR.

The results demonstrated that the expression levels of 
miR‑30a‑5p, miR‑30b‑5p, miR‑30c‑5p (Fig. 3A), miR‑30d‑5p, 
miR‑30e‑5p, miR‑30a‑3p (Fig. 3B) and miR‑30d‑3p (Fig. 3C) 
were reduced, and the expression levels of miR‑30c‑2‑3p 
(Fig. 3C) were increased in the PAH group compared with 
the control group. The expression levels of miR‑30c‑1‑3p 
(Fig. 3C) and miR‑30e‑3p (Fig. 3D) were not significantly 
different between the two groups; although a slight upregula‑
tion in miR‑30b‑3p (Fig. 3C) was observed in the PAH group, 
compared with the control group, the difference was not 
significant.

The results of the present study demonstrated that the 
expression levels of miR‑30b‑5p were downregulated in both 
the blood of patients with PAH and the lung tissues of animal 
models; therefore, miR‑30b‑5p was selected for analysis in 
subsequent experiments.

miR‑30d‑5p inhibits cell toxicity and promotes the apop‑
tosis of PA‑SMCs in vitro. RT‑qPCR was used to determine 

Figure 2. Pulmonary artery pressure and right heart hypertrophy in the PAH animal model. (A) Pulmonary artery pressure in the PAH group was significantly 
increased compared with the control group. (B) Right heart hypertrophy index in the PAH group was significantly increased compared with the control group. 
**P<0.001 vs. control. n=8 in each group. PAH, pulmonary arterial hypertension; RV, right ventricle; LV, left ventricle; S, ventricular septum.

Table II. Expression levels of the circulating miR‑30 family.

	 Expression in
	 PAH group
Name	 vs. control	 P‑value	 Fold‑change

miR‑30a‑3p	 Upregulated	 0.823	 1.01
miR‑30a‑5p	 Upregulated	 0.963	 1.11
miR‑30b‑3p	 Upregulated	 0.823	 1.01
miR‑30b‑5p	 Downregulated	 0.672	 1.05
miR‑30c‑1‑3p	 Upregulated	 0.401	 2.38a

miR‑30c‑2‑3p	 Upregulated	 0.406	 1.89
miR‑30c‑5p	 Downregulated	 0.298	 2.29a

miR‑30d‑3p	 Upregulated	 0.823	 1.01
miR‑30d‑5p	 Downregulated	 0.046b	 2.66a

miR‑30e‑3p	 Downregulated	 0.297	 2.14a

miR‑30e‑5p	 Downregulated	 0.428	 1.33

The fold‑change of miR‑30c‑1‑3p, miR‑30c‑5p, miR‑30d‑5p and 
miR‑30e‑3p was >2; however, only miR‑30d‑5p exhibited both a 
fold‑change >2 and a P‑value <0.05. aFold‑change >2; bP<0.05. PAH, 
pulmonary arterial hypertension; miR, microRNA.
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transfection efficiency in PA‑SMCs following cell transfection. 
As demonstrated in Fig. 4, the expression levels of miR‑30d‑5p 
were significantly increased in the miR‑30d‑5p mimics group 
compared with the miR‑NC group. Moreover, the expres‑
sion levels of miR‑30d‑5p were significant decreased in the 

anti‑miR‑30d‑5p group compared with the anti‑miR‑NC group 
(Fig. 4).

An MTT assay was used to assess PDGF‑induced 
PA‑SMC toxicity. Following transfection with the miR‑30d‑5p 
mimic, the levels of PDGF‑induced toxicity of PA‑SMCs were 
significantly decreased, compared with the miR‑NC group. 
Moreover, knockdown of miR‑30d‑5p resulted in increased 
levels of toxicity of PA‑SMCs, compared with the anti‑miR‑NC 
group (Fig. 5A).

Flow cytometry was used to evaluate the levels of cell 
apoptosis. Notably, following transfection with the miR‑30d‑5p 
mimic, the levels of apoptosis of PA‑SMCs were significantly 
increased, compared with the miR‑NC group. However, 
there was no significant difference in the levels of apoptosis 
of PA‑SMCs between the anti‑miR‑30d‑5p and anti‑miR‑NC 
groups (Fig. 5C).

miR‑30d‑5p inhibits the expression of Notch‑3. It was previously 
confirmed that the activation of the Notch‑3 pathway partici‑
pated in the proliferation of PA‑SMCs (19). Thus, the expression 
levels of Notch‑3 were determined using western blot analysis. 
the results of the present study revealed that the expression levels 
of Notch‑3 were significantly decreased in the miR‑30d‑5p 
group, compared with all other groups; the expression levels 
of Notch‑3 were significantly increased in the anti‑miR‑30d‑5p 
group, compared with all other groups (Fig. 5B).

Figure 3. Expression levels of the miR‑30 family in a rat PAH model. (A) Downregulation of miR‑30a‑5p, miR‑30b‑5p and miR‑30c‑5p in the PAH group 
compared with the control group. (B) Downregulation of miR‑30d‑5p, miR‑30e‑5p and miR‑30a‑3p in the PAH group compared with the control group. 
(C) miR‑30c‑2‑3p expression was significantly upregulated in the PAH group compared with the control group. (D) miR‑30d‑3p expression was significantly 
downregulated in the PAH group compared with the control group. n=8 in each group. *P<0.05, **P<0.01. miR, microRNA; PAH, pulmonary arterial hyperten‑
sion; NS, not significant.

Figure 4. miR‑30d‑5p expression is increased in the miR‑30d‑5p mimics 
group compared with the miR‑NC and anti‑miR‑NC groups. miR‑30d‑5p 
expression is decreased in the anti‑miR‑30d‑5p group compared with the 
miR‑NC and anti‑miR‑NC groups. n=3 (experimental repeats) in each group. 
*P<0.05. miR, microRNA; NC, negative control.
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Discussion

Numerous biological processes involve the participation of 
miRNAs (20-22). However, the role of various miRNAs in 
the development of PAH is yet to be fully elucidated. In the 
present study, miRNAs with differential expression were 
screened for in patients with PAH using a miRNA microarray. 
In total, 10 miRNAs with significantly differential expression 
levels were detected in patients with PAH, compared with the 
control group.

The results of previous studies have demonstrated 
changes in the expression levels of miR‑151a‑3p in a number 
of diseases  (23,24); however, the mechanisms underlying 
miR‑151a‑3p in these diseases have not been further studied, 
to the best of our knowledge. Moreover, it has previously been 
reported that miR‑181a‑5p, miR‑584‑5p, miR‑484, miR‑145‑5p 
and miR‑1290 participated in the modulation of apoptosis and 
proliferation of numerous cancer types, such as cervical and 
gastric cancer  (25‑30). The expression levels of miR‑4454 
were increased in hypoxic lung alveolar macrophages (31). 
Furthermore, results of a previous study revealed that 
miR‑181a‑5p and miR‑4454 participated in cartilage degen‑
eration (32); however, the function of miR‑4454 remains to be 

established. Previous studies have suggested that miR‑3135b is 
associated with heart disease, such as heart failure and acute 
coronary syndrome (33,34); however, no further study has 
reported the specific mechanisms underlying miR‑3135b. A 
study on miR‑26a‑5p expression indicated its association with 
the metastasis of hepatic cellular cancer (35), but the mecha‑
nism remained unclear.

Results of the present study demonstrated that circulating 
miR‑30d‑5p expression was significantly reduced in patients 
with PAH, compared with the control group. Results of 
previous studies suggested that miR‑30d‑5p participates in 
hypoxic‑ischemic injury (36), inhibition of prostate cancer cell 
proliferation (37) and myocardial infarction (38). To the best 
of our knowledge, this is the first time an association between 
miR‑30d‑5p and PAH has been reported. Limitations of current 
microarray analyses include the generation of false‑positive 
results, and that the levels of miRNAs in circulation may not be 
identical to those in tissue. Thus, the expression of the miR‑30 
family, including miR‑30d‑5p was verified using RT‑qPCR 
analysis in an animal model.

In the animal model, the expression levels of miR‑30d‑5p 
were reduced in the lung tissue of the PAH group compared 
with the control group. In addition, alternate miRNAs in the 

Figure 5. miR‑30d‑5p inhibits cell toxicity, promotes the apoptosis of PA‑SMCs in vitro and inhibits the expression of Notch‑3. (A) Cytotoxicity of pulmonary 
artery vascular smooth muscle cells in the anti‑miR‑30d‑5p group was significantly higher compared with the miR‑NC and miR‑30d‑5p groups. In the 
miR‑30d‑5p group, the toxicity was significantly lower compared with the miR‑NC and anti‑miR‑NC groups. (B) Western blot analysis demonstrated that 
the expression level of Notch‑3 was significantly decreased in the miR‑30d‑5p group compared with the miR‑NC and anti‑miR‑NC group, and increased in 
the anti‑miR‑30d‑5p group compared with the miR‑NC and anti‑miR‑NC groups. n=3 (experimental repeats) in each group (C) Levels of apoptosis in the 
miR‑30d‑5p group were significantly increased compared with all other groups. There was no significant difference between the anti‑miR‑30d‑5p group and 
miR‑NC or anti‑miR‑NC groups. *P<0.05, **P<0.01. miR, microRNA; NC, negative control.
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miR‑30 family with significant changes in expression levels 
between the two groups were revealed in the present study. 
These included reduced expression levels of miR‑30a‑5p, 
miR‑30b‑5p, miR‑30c‑5p, miR‑30e‑5p, miR‑30a‑3p and 
miR‑30d‑3p, and an increase in the expression levels of 
miR‑30c‑2‑3p. In patients with PAH, results of the microarray 
analysis did not reveal any significant differential expression 
of the aforementioned miRNAs. These results may be due to 
the following: i) Species differences between humans and rats; 
ii) generation of both false negative and positive results using 
highly efficient microarray technology; and iii) the investiga‑
tion of circulating miRNAs in patients in the present study, 
compared with only lung tissues of the animal model. Results 
of previous studies demonstrated that the expression levels 
of miR‑30a‑5p, miR‑30b‑5p and miR‑30a‑3p were associated 
with the proliferation and apoptosis of several types of tumors, 
such as hepatocellular and renal cell cancer (39‑42). Moreover, 
multiple studies have focused on miR‑30c‑5p and the associ‑
ated functions involved in inflammation regulation, tumor 
migration and invasion (43,44). miR‑30e‑5p participates in 
carcinogenesis in different types of tumors through numerous 
pathways, including the sirtuin 1/JAK/STAT3 signaling and 
MAPK/nuclear factor of activated T‑cells 5 pathway (45,46). 
Although miR‑30d‑3p is associated with lung cancer and 
pancreatic stem cell differentiation, the underlying mechanisms 
are yet to be elucidated (47,48). Furthermore, miR‑30c‑2‑3p is 
associated with cell cycle progression in breast cancer and the 
upregulation of hypoxia‑inducible factor‑2α activity in renal 
cell carcinoma (49,50).

Results of the present study demonstrated that the afore‑
mentioned miRNAs exhibited differential expression levels in 
patients with PAH and animal models; however, the functions 
of these miRNAs in PAH remain unknown. A number of 
miRNAs are involved in cell proliferation and apoptosis (51). 
Results of previous studies have indicated abnormal prolifera‑
tion and apoptosis in PA‑SMCs and PA‑ECs in both patients 
with PAH and animal models (1,3,6); thus, the aforementioned 
miRNAs may be associated with the proliferation or apoptosis 
of cells involved in PAH development. Results of the present 
study revealed that miR‑30d‑5p overexpression was associated 
with decreased PA‑SMC toxicity and increased apoptosis 
compared with control groups. These results may provide a 
theoretical basis for the downregulation of miR‑30d‑5p in 
patients with PAH with increased PA‑SMC cytotoxicity. In 
addition, the effects of miR‑30d‑5p on cell proliferation and 
apoptosis have been established in numerous other diseases, 
such as myocardial infarction and lung cancer (38,52).

Several miRNAs have been found to participate in the 
regulation of PAH. For example, the inhibition of miR‑143 
inhibited the development of PAH  (53). In patients with 
PAH, miR‑124 was downregulated in pulmonary vascular 
and circulating progenitor endothelial cells (54). In addition, 
miR‑125a‑5p ameliorated MCT‑induced PAH via tumor 
growth factor‑β1 (55). These findings suggest that miRNAs 
may act as potential therapeutic targets in the treatment of 
PAH.

Notch signaling participates in multiple physiological 
vascular processes, such as proliferation and apoptosis (56). 
Notch‑1 is associated with PA‑EC proliferation (57), while 
Notch‑3 is highly expressed in PA‑SMCs and promotes 

PA‑SMC proliferation via vascular endothelial growth 
factor  (58). As miR‑30d‑5p was associated with PA‑SMC 
proliferation and apoptosis, we hypothesized an association 
between miR‑30d‑5p and Notch‑3. Results of the present study 
demonstrated that overexpression of miR‑30d‑5p inhibited 
Notch‑3 expression, while the knockdown of miR‑30d‑5p 
induced higher expression levels of Notch‑3.

In the present study, the number of patient samples was 
limited; however, results of the microarray analysis provide 
novel ideas for further studies. Additional investigations will 
involve examining potential changes in the markers of prolif‑
eration and apoptosis to further verify the observed effects of 
miR‑30d‑5p on the regulation of PA‑SMC. Furthermore, the 
sample size of clinical cases will be increased to verify the 
observed changes of miR‑30d‑5p in patients with PAH. The 
mechanisms underlying miR‑30d‑5p in the regulation of Notch 
signaling will also be established. Finally, further investiga‑
tions will also involve the use of miR‑30d‑5p mimics and the 
miR‑30d‑5p inhibitor in animal models of PAH.

In conclusion, miR‑30d‑5p expression was downregulated in 
both patients with PAH and animal models. The overexpression 
of miR‑30d‑5p resulted in increased cytotoxicity and reduced 
apoptosis of PA‑SMCs. Thus, the mechanisms underlying 
miR‑30d‑5p in PAH may be via the Notch‑3 signaling pathway.
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