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Abstract: A systematic investigation of the experimental 13C-NMR spectra published in Molecules
during the period of 1996 to 2015 with respect to their quality using CSEARCH-technology is
described. It is shown that the systematic application of the CSEARCH-Robot-Referee during the
peer-reviewing process prohibits at least the most trivial assignment errors and wrong structure
proposals. In many cases, the correction of the assignments/chemical shift values is possible by
manual inspection of the published tables; in certain cases, reprocessing of the original experimental
data might help to clarify the situation, showing the urgent need for a public domain repository. A
comparison of the significant key numbers derived for Molecules against those of other important
journals in the field of natural product chemistry shows a quite similar level of quality for all
publishers responsible for the six journals under investigation. From the results of this study, general
rules for data handling, data storage, and manuscript preparation can be derived, helping to increase
the quality of published NMR-data and making these data available as validated reference material.

Keywords: NMR; 13C-NMR; computer-assisted peer-reviewing; spectrum prediction; structure
generation; database

1. Introduction

NMR-spectroscopy is an important technique providing a massive amount of informa-
tion during the structure elucidation process at the level of the constitution, configuration,
and conformation of an unknown compound. The tremendous development of pulse
techniques, high-field NMR-equipment, and automatic sample changers during the last
three decades has dramatically shifted the earlier bottleneck of the amount of time neces-
sary for acquiring the experimental data to a new bottleneck of spectrum interpretation.
This has led to the effect of quite frequent misinterpretations of experimental data in
terms of the wrong structure proposals. A systematic analysis of structure revisions was
published by Nicolaou [1], pointing out the importance of structure proofs by organic syn-
thesis. Pauli and coauthors [2] demonstrated the necessity of a searchable public domain
repository holding the raw spectral data used during the structure elucidation process.
A comprehensive review [3] of computer-assisted peer reviewing and subsequent fully
automatic structure revisions verified the tremendous effect of automatic quality control
for spectral data.

The flood of experimental NMR data has stimulated the development of computer-
software, helping spectroscopists with data interpretation. Carbon-NMR spectroscopy
is well-suited for this purpose because of its large range of chemical shift values and its
simplicity based on usually missing coupling patterns. A powerful computer-assisted tech-
nology for spectrum prediction, named HOSE-code, was introduced in 1978 by Bremser [4].
Later on, neural networks [5] were used; this technology was reprogrammed recently in a
similar way and is now called machine learning [6] using specialized hardware architecture.
The HOSE-code in its basic version represents only the constitutional properties of the
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molecule (except for the easy case of cis-/trans-isomerism) and was later on expanded to
also handle stereochemical features [7,8]. Meanwhile, stereochemistry can also be used
for spectrum prediction in the open-access system nmrshiftdb2 [9]. Since the late 1970’s,
many databases collecting the reference material published in the public domain chemi-
cal literature were built (ACD/NMR-Predictor [10], CAST/CNMR [11], CSEARCH [12],
KnowItAll [13], NMRPREDICT [14], NMRSHIFTDB [15], and Spectrabase [16]). Spec-
trum prediction engines were also implemented into drawing programs for chemical
structures [17], as well as into programs for processing measured NMR-data [18,19].

NMR-spectroscopy is an atom-centered type of spectroscopy, allowing for the assign-
ment of a measured chemical shift value to a specific atom. Understanding this correlation
is essential because the value of the chemical shift is influenced by the structural environ-
ment of the atom under investigation. This relationship between a structural property
and the value of the chemical shift is the basis for all database-oriented prediction tools.
Independent from the mathematical model behind the prediction, we need to start from
the correct data to describe this correlation. From this simple strategy behind spectrum
prediction, it can be immediately derived that publishing simply the list of peaks is not
sufficient, because the central information—the 1:1 relationship between structural environ-
ment and the chemical shift value—is not furthermore available then. Such an unassigned
peak list only represents a fingerprint for a given structure sufficient for spectral similarity
searches, but is completely useless for spectrum prediction.

Despite the tremendous development in the field of pulse-techniques available in
NMR-spectroscopy, many structure elucidation problems are solved through a compari-
son of the new measurements with already published reference material taken from the
public domain chemical literature. The main problem with the existing reference mate-
rial is that there is usually no information available about the quality of these data [20].
During the last two decades, many journals have published so-called “Supplementary
Material” for their articles—mainly as PDFs—showing, in principle, only pictures of the
spectra, efficiently prohibiting the reprocessing of the underlying experimental data. With
respect to NMR-measurements, there is an ongoing initiative [21,22] to agree on a common
vendor-independent format for the raw data in order to add them to the supplementary
material of the publication. This strategy allows for starting a necessary reprocessing
and reinterpretation from the original datasets in case of doubt. A well-defined exchange
format is furthermore a prerequisite to create community-driven databases [23,24].

It is interesting to observe that many errors in the literature are introduced by misinter-
pretation of the spectra obtained using state-of-the-art 2D-techniques. A leading role with
respect to this effect, seems to be HMBC-type spectra showing frequent misinterpretations
of 2J (or 4J)–couplings, as 3J-couplings necessarily leading to incorrect structure propos-
als [25]. This kind of incorrect interpretation of 2D information is frequently preferred
against the application of simple spectrum prediction, efficiently showing the inconsistency
between the structure proposal and spectral data.

2. Results and Discussion
2.1. The CSEARCH-Robot-Referee—General Overview

The automatic structure verification based on 13C-NMR chemical shift data is the
central procedure within the “CSEARCH-Robot-Referee” [3,26–28]. The knowledge base
behind consists of some 340,000 curated 13C-NMR spectra taken from the public domain
literature. A database holding 520 million predicted spectra was additionally used to
allow for efficient structure dereplication. The workflow applied here consisted of the
following steps:

• Formal check of the structure (valency, charge, and stereocenter);
• Create a table to link the structure to other databases (e.g., PUBCHEM [29,30], Chem-

spider [31], and eMolecules [32]);
• Check formal correctness of the supplied peak list (symmetry and exchangeable

assigned signals);
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• Perform spectrum prediction by HOSE-code [4] and NN [5];
• Perform statistical analysis based on underlying data used during the spectrum

prediction process to allow for the evaluation of the quality of the result;
• Assign signals if unassigned signals are given;
• Calculate and visualize the coincidence between the structure proposal and the given

experimental data;
• Perform a search for identical structures contained in the underlying knowledge base;
• Perform a search for an identical spectral pattern associated with different structures;
• Detect positions with a large deviation between the experimental and predicted values;
• Start structure generator, which modifies the topology of the given structure exclu-

sively at the positions with a large deviation;
• Perform dereplication based on the given peak list using the database of 520 million

predicted spectra.

This workflow was applied to 10,039 spectra taken from Molecules between 1996 and
2015. The publications having assigned 13C-NMR data within this range of years were
extracted and these data sets were used to build the CSEARCH database. The reason
for selecting this period of time was simply that we were not able to extract more than
approximately 25 K spectra per year from the literature, and we had to switch to other
journals in order to cover as many journals as possible, with the goal of achieving a high
structural diversity. When comparing Molecules with other prominent journals in the field
of natural product chemistry, like Chemical and Pharmaceutical Bulletin, Fitoterapia, Journal of
Natural Products, Phytochemistry, and Planta Medica, a similar number of compounds were
found that seemed to be in error. It should be mentioned that the manually performed
extraction of the data from the journal was already quite selective, because datasets that
seemed to be in error at a first glance were completely ignored, leading to an improved
impression for the respective journal. This effect influences all journals in a quite similar
and positive way according to our experience. The 13C-NMR data published in these
six above-mentioned journals (Table 1) came from compounds of a similar size with an
average molecular weight between 431 and 520 amu; the average deviation between the
experimental and predicted chemical shift values was also very similar (1.61–2.07 ppm).
The number of compounds with at least one signal more than 20 ppm away from the
predicted chemical shift value was between 1.34 and 3.40% of the entries available in
the CSEARCH-collection. A nearly identical finding was given when the prediction was
restricted by a partial structure search; the examples selected here contained either a
chromone-fragment or a steroid skeleton. In both cases, the average deviation was again in
a very narrow range, starting at 1.40 ppm and 1.27 ppm, respectively, with a maximum
at 1.74 and 1.60 ppm, respectively. From the data compiled (Table 1), it can be concluded
that all six journals showed a similar level of quality with respect to the 13C-NMR data
contained therein.

Table 1. Comparison of the quality of 13C-NMR data published in Molecules (MOL) versus Chemical and Pharmaceutical
Bulletin (CPB), Fitoterapia (FT), Journal of Natural Products (JNP), Phytochemistry (PC), and Planta Medica (PM).

Journal MOL CPB FT JNP PC PM

Entries 10,039 17,863 1568 34,933 38,379 3621

Period 1996–2015 1977–2016 1998–2012 1979–2013 1976–2015 1977–2006

Average MWT (amu) 431 520 497 481 483 479

∆δC (ppm) 2.07 1.61 1.85 1.79 1.66 1.72

∆δC > 20 ppm 341/3.40% 239/1.34% 42/2.68% 542/1.55% 533/1.39% 64/1.77%

∆δC (ppm) Chromones 1.59 1.40 1.74 1.68 1.45 1.57

∆δC (ppm) Steroids 1.60 1.27 1.54 1.47 1.37 1.36
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The following examples were taken from articles published in Molecules between 2010
and 2015, and were exactly reproduced for input into the CSEARCH-Robot-Referee—any
later correction or erratum was ignored, because the intention of this summary is only to
show what can be avoided by fully automatic peer-reviewing at the time of uploading
a manuscript to the editorial office. The examples are grouped according to the kind of
error and only typical cases are shown, far away from being a complete analysis of all
published 13C-NMR data in Molecules. Furthermore, it should be mentioned that this
computer-assisted peer-reviewing could be regarded as an effective tool to support the
usual peer-reviewing process with respect to quality and time-consumption, going into the
details of the structure proofs based on 13C-NMR spectroscopy. Throughout the figures, the
following coloring scheme is applied in order to increase readability. The first row shows
the chemical structure, and in the second row, the structure together with the experimental
chemical shift values, as published, are shown, where green highlighting means that
signals were assigned by authors and yellow highlighting points to exchangeable signal
assignment. The third row shows the differences between the experimental and predicted
chemical shift values; deviations between 5 and 10 ppm are highlighted in yellow. Smaller
deviations are given in green, whereas larger deviations are shown with red.

2.2. Examples of Wrong/Useless 13C-NMR Data
2.2.1. Using the Same Data Twice

In [33], compounds 4 (esculetin; 6,7-dihydroxycoumarin) and 5 (5,7-dihydroxy-2-
hydroxymethylchromone) showed different 1H-NMR data, but identical 13C-NMR chemi-
cal shift values were published, as shown in Figure 1. The given values fit to esculetin, but
were incomplete and wrong for the proposed chromone-derivative. The structure elucida-
tion was done by comparison with the literature data; therefore it should be mentioned
that obviously correct 13C-NMR data for compound 5 were already published in [34].
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2.2.2. Wrong Values—Strange Substituent Effects

Bromine-substitution is known to induce a high-field shift of approximately 6 ppm
in benzene-derivatives, a more pronounced effect can be observed for a nitrile-moiety
(16 ppm); for this reason, the given chemical shift data for the carbon 4’ in compounds
4a (152.1 ppm) and 4d (151.7 ppm) published in [35] are far away from the expected
values, as can be seen in Figure 2. It is interesting to note that the carbons 6 and 7a in
the benzo[d][1,3]-oxathiol-2-one fragment are exchangeable, assigned with values ranging
from 135.2/135.8 ppm (compound 4d) to 153.4/147.9 (compound 4i); this difference in
chemical shift values was obviously attributed, according to the research, to the exchange
of a bromo-substituent with a dimethylamino-moiety seven, respectively nine bonds away!
The compounds described in this publication contain quite interesting structural features,
but the carbon NMR-data are unusable as a high-quality reference material.
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Figure 2. The structures of compound 4a (left), compound 4d (middle), and compound 4i (right) from [35], together with
the published 13C-NMR data and the differences between the experimental and predicted values.

In Figure 3, the published NMR-data of ligand L1 from [36] are summarized, showing a
methoxy-group at 30.12 ppm, which is known to resonate within an extremely narrow range
of around 56 ppm when one ortho-position is unsubstituted; additionally the chemical
shift values of the three CH2-groups are far away from the predicted values, and the
spectroscopic characterization of the aromatic ring system is incomplete.

In [37], a series of benzimidazole derivatives was published and the relevant data
were compiled in the Supplementary Information. A few compounds contained fluorine,
but no C-F couplings in the 13C-NMR data were given. In compound 26, which has
two different names (5-Methyl- according to the header, and 5-Methoxy according to the
experimental procedure), the aromatic -OCH3-group resonated at 55.35 ppm, whereas in
compound 34, a chemical shift value of 33.26 ppm was given. The signal assignment was
completely inconsistent within the presented series of compounds—some carbons with
a quite small influence to be expected on their chemical shift value covered a range of
more than 40 ppm (e.g., C-2). Many compounds showed differences in the range of 40 to



Molecules 2021, 26, 3413 6 of 17

60 ppm between the experimental and predicted values, as given in Figure 4. The overall
impression coming from this research was that they were interesting compounds, with
13C-NMR data beyond repair.
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2.2.3. Typos and Transmission Errors

The examples compiled in Figure 5 showed some significant deviations between the
predicted and experimental 13C-NMR chemical shift values, which could be attributed
to typos and transmission errors, because the other shift values were mainly within their
expectation ranges. In the case of compound 3 (mahanimbine) from [38] and compound 5
from [39], additional assignment errors could be present, as can be seen in Figure 5 (middle
and right column). Compound 5 from [39] shows a quite unusual chemical shift value for an
aromatic -O-CH3 group (51.83 ppm) making reinspection of the underlying experimental
data necessary in order to verify the structural proposal. In the case of compound 13
from [40], a value of 32.2 ppm is given there in Table 3, whereas the experimental part
shows a value of 132.2 ppm, as to be expected.
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2.2.4. Trivial Assignment Errors

The data of compound 4 (apigenin) from [41] show a typical error based on interchang-
ing the numbering of the structure and the sequence of chemical shift values according
to the structure drawing. After this easy correction, an excellent agreement between the
predicted and experimental chemical shift values could be achieved, as summarized in
Figure 6. The identical problem could be observed with compound D1 from [42] and
compound 12 from [43].
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Other trivial assignment errors could be found with compound 3 published in [44];
compound 3 from [45]; compound 3 from [46]; compound 2 in [47], despite excellent
Supplementary Information; compound 1 from [48]; and compound 3 from [49].

A more sophisticated error occurred when the numbering schemes of two complete
ring systems were intermixed [50], leading to massive deviations between the experimental
and predicted chemical shift values at nearly all positions; in this particular case, another
possible assignment error (carbon 1 versus 4a) increased the complexity of the correction,
as can be seen in Figure 7.
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2.2.5. Alkyl-Chains

It is known from basic textbooks on NMR-spectroscopy that an unbranched alkyl
chain is characterized by a quartet around 14 ppm, 2 triplets around 22 and 32 ppm, and all
of the other more centered CH2-groups resonate around 29 ppm. In the chemical literature,
there are frequently examples with a different sequence of signals occurring, either caused
by typos or wrong assignments. Compound 11 (Figure 8) and compound 12 from [51]
showed this misassignment, whereas other compounds (e.g., compounds 4, 5, and 9) from
the same paper were correctly assigned.

The identical problem with the wrong assignment of an alkyl chain can be observed at
compound OH-1 in [52]; the published data of (3S,8S)-falcarindiol are compiled in Figure 9.
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2.2.6. Wrong Structure Drawing

The 13C-NMR data of pyrojacareubine (compound 3 in [53]) show severe deviations
between the experimental and predicted chemical shift values; the differences were focused
into one aromatic ring system, as given in Figure 10. This asymmetric C23-compound was
characterized by only 20 distinct carbon chemical shift values. The molecular formula
was explicitly given as C23H20O6, whereas the structural diagram held seven oxygens.
Removing the 4-hydroxy group from the structure resulted in the well-known compound
pyranojacareubin, here named “pyrojacareubine”. According to the 1H-NMR data, a
chemical shift value of 6.27 ppm for H-4 was given, supporting the assumption of a
drawing error with respect to an additional hydroxy-group in position 4. Independently of
this correction, the problem with three missing signals remained and a minor assignment
error was still present. The wrong structure from this publication was used later in an
investigation on antimalarial QSAR analysis [54], influencing the results published there.
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Figure 10. The data of compound 3 from [53] named pyrojacareubine, as published (left) and after correction of the structure
(right), still holding additional assignment errors.

2.2.7. Multiple Inconsistencies

In [55], a benzophenone-derivative was published, together with its 1H- and 13C-NMR
data, as a structure proof. The following problems were related with this example. Only the
facts freely available in the PDF are summarized here. The numbering scheme was wrong
(1 versus 1’), leading to a misassignment of the carbon signals at 132.21 and 105.58 ppm.
The compound name was inconsistent with the drawing (drawing had four hydroxy-
groups, the name was given as “trihydroxy-“). The signals at 131.60 and 114.36 ppm,
as well as the associated 1H chemical shift values, were interchanged. According to the
1H and 13C chemical shift values in positions 3’ and 5’, the symmetry of the aryl-moiety
was correctly represented, whereas the carbon chemical shift values in positions 2’ and 6’
reflected non-equivalence and the resonance line of C-4’ was missing. The summary for
the presentation of this compound, as shown in Figure 11, is as follows: wrong structure
drawing, compound name inconsistent with the structure drawing, wrong numbering,
wrong signal assignment, missing line caused by wrong assignment—it is a fact that this
paper successfully passed the peer-reviewing procedure.
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In [56], the selective reduction of 17-acetamidoandrost-4-en-3,6-dione (compound 6) 

using NaBH4/NiCl2.6H2O was published. The product was elucidated as 3ß-hydroxy-17-
acetamidoandrost-4-en-6-one (compound 8), showing the 13C-NMR chemical shift values 
as given in Figure 12. The prediction of the spectral data led to significant deviations for 
both carbons of the 4,5-double bond, showing some errors during the structure elucida-
tion process. Starting the structure generator with the obviously wrong structure proposal 
and the given experimental 13C-NMR data produced 1591 alternative structures. The 
given proposal was found at position 358, with an average deviation of 5.20 ppm, whereas 
the corresponding 6-hydroxy-3-one derivative was ranked at position 2, having an aver-
age deviation of only 1.49 ppm. The 13C-NMR data of only one stereoisomer of this alter-
native structure are known [57]—these data slightly differ from those published in [56], 
showing the necessity of going back to the original measurements to clarify these incon-
sistencies. 

  

Figure 11. 13C-NMR data of a benzophenone-derivate (already corrected with respect to the erroneously drawn hydroxy-
group in position 2) taken from [55], as published (left) and the corrected version (right).

2.2.8. Fully Automatic Structure Revisions

In [56], the selective reduction of 17-acetamidoandrost-4-en-3,6-dione (compound 6)
using NaBH4/NiCl2.6H2O was published. The product was elucidated as 3ß-hydroxy-17-
acetamidoandrost-4-en-6-one (compound 8), showing the 13C-NMR chemical shift values
as given in Figure 12. The prediction of the spectral data led to significant deviations for
both carbons of the 4,5-double bond, showing some errors during the structure elucidation
process. Starting the structure generator with the obviously wrong structure proposal and
the given experimental 13C-NMR data produced 1591 alternative structures. The given
proposal was found at position 358, with an average deviation of 5.20 ppm, whereas the
corresponding 6-hydroxy-3-one derivative was ranked at position 2, having an average
deviation of only 1.49 ppm. The 13C-NMR data of only one stereoisomer of this alternative
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structure are known [57]—these data slightly differ from those published in [56], showing
the necessity of going back to the original measurements to clarify these inconsistencies.
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hydroxy-3-one derivative (right) leading to a much better, but not perfect coincidence, with the experimental data. 

Another fully automatic structure revision started from the 13C-NMR data and the 
obviously wrong structure proposal (compound 7 in [41]) given for Moracin M, as sum-
marized in Figure 13. The structure generator created 1794 alternative structures, which 
were sorted by the difference between the experimental and the predicted chemical shift 
values.  The published proposal was ranked at position 66, with an average deviation of 
2.46 ppm; however, the correct structure of Moracin M is found at position 1, with an 
average deviation of only 1.42 ppm. This automatic structure correction was further sup-
ported when retrieving the known structure of Moracin M using CAS-Scifinder. 

 
 

 
 
 

Figure 12. 3ß-Hydroxy-17-acetamidoandrost-4-en-6-one as published in [56] for compound 8 (left), together with the
differences between the experimental and predicted chemical shift values. The automatic structure revision proposes the
6-hydroxy-3-one derivative (right) leading to a much better, but not perfect coincidence, with the experimental data.

Another fully automatic structure revision started from the 13C-NMR data and the
obviously wrong structure proposal (compound 7 in [41]) given for Moracin M, as sum-
marized in Figure 13. The structure generator created 1794 alternative structures, which
were sorted by the difference between the experimental and the predicted chemical shift
values. The published proposal was ranked at position 66, with an average deviation
of 2.46 ppm; however, the correct structure of Moracin M is found at position 1, with
an average deviation of only 1.42 ppm. This automatic structure correction was further
supported when retrieving the known structure of Moracin M using CAS-Scifinder.



Molecules 2021, 26, 3413 14 of 17

Molecules 2021, 26, x  14 of 18 

 

  

 
 

 
 

 
 

 
 

Figure 12. 3ß-Hydroxy-17-acetamidoandrost-4-en-6-one as published in [56] for compound 8 (left), together with the dif-
ferences between the experimental and predicted chemical shift values. The automatic structure revision proposes the 6-
hydroxy-3-one derivative (right) leading to a much better, but not perfect coincidence, with the experimental data. 

Another fully automatic structure revision started from the 13C-NMR data and the 
obviously wrong structure proposal (compound 7 in [41]) given for Moracin M, as sum-
marized in Figure 13. The structure generator created 1794 alternative structures, which 
were sorted by the difference between the experimental and the predicted chemical shift 
values.  The published proposal was ranked at position 66, with an average deviation of 
2.46 ppm; however, the correct structure of Moracin M is found at position 1, with an 
average deviation of only 1.42 ppm. This automatic structure correction was further sup-
ported when retrieving the known structure of Moracin M using CAS-Scifinder. 

 
 

 
 
 

Molecules 2021, 26, x  15 of 18 

 

 
 
 

 

  
Figure 13. (left): Published structure of Moracin M (compound 7 in [41]) together with the given 13C-NMR data and the 
deviations between the experiment and prediction. (right): Fully automatic structure revision leading to excellent coinci-
dence between the experimental and predicted chemical shift values. 

3. Conclusions 
A similar number of examples of problematic or unusable 13C-NMR data can be 

found in nearly every journal—this is simply an indication of the “publish or perish” men-
tality concomitant with the preference of quantity instead of quality. From the examples 
summarized here, the following conclusions can be drawn with the intention of improv-
ing the quality of published NMR reference data. 
• Structures must be deposited as computer-readable files (e.g., MOLfile)—every 

structure drawing must be derived thereof in order to avoid drawing errors. 
• Every structure must be accompanied by a unique identifier (e.g., INCHIKEYS), 

avoiding transmission errors and allowing “identical structure search” via text-based 
search-engines. 

• Every NMR-dataset must be validated (e.g., using CSEARCH [26], MNova [18], and 
ACD [10]). 

• Every NMR-dataset that is uploaded (e.g., NMReDATA [21,22]) must be stored in a 
searchable, public domain, open access, and curated repository—allowing for the au-
tomatic detection of “reusing” already known NMR-data in order to verify another 
structure proposal [58]. 

• It is highly advisable to combine a database-oriented approach, as described here, 
with DFT calculations [59,60]. 

• As many steps as possible in the process of publishing results must be done in a soft-
ware-supported way. It must be mandatory for authors to provide all of the neces-
sary experimental data (free induction decays for NMR) so that every conclusion can 
be reproduced, and it must be mandatory for the publishers to allow for the upload-
ing of such data. Furthermore, these data must be made searchable and down-
loadable for later use. 
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Figure 13. (left): Published structure of Moracin M (compound 7 in [41]) together with the given 13C-NMR data and
the deviations between the experiment and prediction. (right): Fully automatic structure revision leading to excellent
coincidence between the experimental and predicted chemical shift values.

3. Conclusions

A similar number of examples of problematic or unusable 13C-NMR data can be
found in nearly every journal—this is simply an indication of the “publish or perish”
mentality concomitant with the preference of quantity instead of quality. From the examples
summarized here, the following conclusions can be drawn with the intention of improving
the quality of published NMR reference data.

• Structures must be deposited as computer-readable files (e.g., MOLfile)—every struc-
ture drawing must be derived thereof in order to avoid drawing errors.

• Every structure must be accompanied by a unique identifier (e.g., INCHIKEYS),
avoiding transmission errors and allowing “identical structure search” via text-based
search-engines.

• Every NMR-dataset must be validated (e.g., using CSEARCH [26], MNova [18], and
ACD [10]).

• Every NMR-dataset that is uploaded (e.g., NMReDATA [21,22]) must be stored in
a searchable, public domain, open access, and curated repository—allowing for the
automatic detection of “reusing” already known NMR-data in order to verify another
structure proposal [58].

• It is highly advisable to combine a database-oriented approach, as described here,
with DFT calculations [59,60].

• As many steps as possible in the process of publishing results must be done in a
software-supported way. It must be mandatory for authors to provide all of the
necessary experimental data (free induction decays for NMR) so that every conclusion
can be reproduced, and it must be mandatory for the publishers to allow for the
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uploading of such data. Furthermore, these data must be made searchable and
downloadable for later use.

• Improvements in the actual “peer-reviewing” workflow, including massive computer-
supported technologies, every set of spectral data has to be automatically checked
during upload, and the associated protocol as described here must be an integral part
of the manuscript available to the reviewer(s) and, upon publication, to the readers.
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