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Abstract

Evolution and development are typically characterized as the outcomes of gradual changes,

but sometimes (states of equilibrium can be punctuated by sudden change. Here, we stud-

ied the early vocal development of three different mammals: common marmoset monkeys,

Egyptian fruit bats, and humans. Consistent with the notion of punctuated equilibria, we

found that all three species undergo at least one sudden transition in the acoustics of their

developing vocalizations. To understand the mechanism, we modeled different develop-

mental landscapes. We found that the transition was best described as a shift in the balance

of two vocalization landscapes. We show that the natural dynamics of these two landscapes

are consistent with the dynamics of energy expenditure and information transmission. By

using them as constraints for each species, we predicted the differences in transition timing

from immature to mature vocalizations. Using marmoset monkeys, we were able to manipu-

late both infant energy expenditure (vocalizing in an environment with lighter air) and infor-

mation transmission (closed-loop contingent parental vocal playback). These experiments

support the importance of energy and information in leading to punctuated equilibrium states

of vocal development.

Author summary

Species can sometimes evolve suddenly; their appearance is preceded and followed by

long periods of stability. This process is known as “punctuated equilibrium”. Our data

show that for three mammalian species—marmoset monkeys, fruit bats, and humans—

early vocal development trajectories can also be characterized as different equilibrium

states punctuated by sharp transitions; transitions indicate the advent of a new vocal

behavior. To better understand the putative mechanism behind such transitions, we show

that a balance model, in which variables trade-off in their importance over time, captured

this change by accurately simulating the shape of the developmental trajectory and pre-

dicting the timing of the transition between immature and mature vocal states for all three

species. Two variables—energy and information—were hypothesized to trade-off during

development. We tested and found support for this hypothesis in analyses of two
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marmoset monkey experiments, one which manipulated energy metabolic costs and

another which manipulated information transmission.

Introduction

The sudden appearance of a new species preceded and followed by periods of relative stability

is known as “punctuated equilibria” (i.e., periods of equilibrium punctuated by abrupt

changes) [1, 2]. This theory accounts for the appearance of new species in a manner that is dif-

ferent from the gradual change that we normally associate with evolution [1]. More recently,

the theory has been applied to the evolution of communication in humans. In both natural

and artificial language evolution, long periods of gradual divergence are interrupted by periods

of rapid change [3, 4]. The source of this non-linearity in language evolution is thought to be

the balance between optimization and flexibility [4].

Since evolution and development are in many ways similar, contingency-based processes

(just on different timescales [5–7]), the punctuated equilibrium framework may also be appli-

cable to behavioral development. By analogy with the rapid formation of a new animal species

or languages, contextual changes for a developing individual could suddenly lead to a new

behavior (i.e., a new locomotion pattern) while co-existing with other behaviors previously

established. In these cases, “context” is any new state the individual may occupy; this could be

a new body state (following, for example, the growth of one or more parts of the vocal anat-

omy) and/ or it could be a new environmental state (for example, changing interactions with

caregivers or other members of the social group). Here, we investigate this possibility in the

development of vocal behavior and explore putative mechanisms.

We focus on three mammalian species—marmoset monkeys, fruit bats, and humans. In all

of them, vocal development is influenced by postnatal experience during infancy. Using

densely sampled longitudinal vocal recordings, we first demonstrate that gradual vocal devel-

opment was punctuated by rapid change on the timescale of days. We ask two basic questions:

1) how can we mathematically describe the different species’ vocal developmental trajectories?

And 2) are there commonalities among them? We consider three different models of develop-

ment—linear, recurrent, and balance. Linear and recurrent models are standards in the behav-

ioral development literature. In the linear model, the trajectory is changing at a constant rate.

The recurrent model consists of a trajectory that changes until it reaches a stable state and then

there is no further change. It is generated by a factor that changes iteratively depending upon a

previous time point until it achieves a stable state [8]. Finally, the balance model is one in

which change occurs between two stable states and would best represent punctuated equilibria.

The balance model can be generated by the weighted sum of two factors whose weights slowly

change during development; it is like the double-well potential model used in statistical physics

[9].

We find that all three species’ trajectories are best fit by the balance model, the one consis-

tent with punctuated equilibria. We then show that energy and information—and how their

importance varies over time for individuals—are good candidates for a contextual change that

leads to the sharp transitions observed in vocal behavior. Finally, we test our predictions using

new analyses of previously published data from experiments with marmoset monkeys [10,11].

Results

Marmoset monkeys, fruit bats, and humans all use mechanisms for vocal production similar

to most mammals [12]. Vocal production results from the interactions among a large number
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of components: the vocal apparatus (larynx, vocal tract, lungs, etc.), the muscles that move

them, the neural circuit activity that leads to muscular contraction, and the organism’s experi-

ence that modifies those neural circuits [13]. Monitoring and manipulating all these compo-

nents are not possible, especially during development. Moreover, at any age, there are an

exponentially large number of possible configurations they could take. Measurement of a few

key parameters that can account for the shape of a particular vocal developmental trajectory,

and that works across species, would be ideal. With this in mind, we analyzed longitudinal

datasets freely available to the public [14–17] and measured the changes in the distribution of

vocal acoustic features common to our three species’ vocalizations: duration, Wiener entropy,

dominant frequency, and dominant frequency of amplitude modulation [17–19]. To reduce

the dimensionality of these four vocal parameters, we used principal component analysis to

compute their collective first principal component. In our subsequent analyses, we used only

this first principal component (“Principal Acoustic Component” or PAC) as it was the compo-

nent that captured most of the variance of the vocal development dynamics (Fig 1A).

For all three species, the distribution of PACs in earlier versus later periods of development

was different (p< 0.001, Kolmogorov-Smirnov test for the equality of probability distribution)

(Fig 1B and 1C). We associated a thermodynamic cost function for each probability distribu-

tion using the maximum entropy principle [13,20]. The thermodynamic cost is proportional

to the negative logarithm of the probability distribution. Then, we defined a two-dimensional

landscape as the opposite of the thermodynamic cost. In other words, changes in the probabil-

ity distribution of vocal acoustics can be interpreted as modifications in the landscape of the

vocal production. Thus, we can ask, What kind of changes in the vocalization landscape best

describes the trajectory of vocal development? The fit of three different models were tested: lin-

ear (Fig 1D and 1G), recurrent (Fig 1E and 1H), and balance (Fig 1F and 1I). The models were

chosen based on the behavioral development literature and on the possible behavioral land-

scape dynamics that could be observed (see Methods - Development models). The linear

model is the simplest possible trajectory between two points; it represents a range of psycho-

logical and developmental models that (like most evolutionary accounts) involve gradual

changes. For example, Piaget [21] and J.J. & E.J. Gibson [22] argued that sensory perception

gradually emerges in the human infant. The recurrence model focuses on a curvilinear build-

ing-up to a single stable state. The development of mature song in zebra finch via tutoring is

captured by this model [8]. Finally, the balance model could account for a nonlinear shift

between two stable states; we identified this possibility via its application in the phase-transi-

tion literature of physics [9].

We fit each of these models to the vocal developmental trajectories of each species to deter-

mine which one best captures their shape. Fig 2A–2C shows exemplar trajectories, while Fig

2D–2F show the shape of change across the population (marmosets: n = 10 and 105,904 vocali-

zations; bats: n = 13 and 1878 vocalizations; humans: n = 8 and 1055 vocalizations) (Fig 2A–

2F). For each model, we fit the initial (immature) and the final (mature) landscapes through 3

parameters: the last immature day, the first mature day, and the thermodynamic “tempera-

ture” β that is important for the relationship between the landscape and the probability distri-

bution (see Methods - Estimation of the vocalization thermodynamic cost and landscape). In

this manner, the success of the model would be measured by whether the shape of the trajec-

tory could be predicted using only the extreme data points—the data between the last imma-

ture day and the first mature day were not used as inputs. We compared the goodness of fit

(adjusted R2) of each model to the full data. For all species, the balance model best captured

the trajectory of vocal development (adjusted R2 respectively for linear, recurrent and balance

model: marmosets: 0.54, 0.60, and 0.86; bats: 0.80, 0.63, and 0.96; humans: 0.70, 0.71, and 0.89)

(Fig 2G–2I). We performed statistical tests to assess whether the adjusted R2 of the balance
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Fig 1. Different models could explain a transition between two developmental states. a. Diagram illustrating one hypothetical

transition between immature vocalizations to mature vocalizations. The y-axis is the first component of the PCA performed on the

vocalizations and labeled as the Principle Acoustic Component (PAC). b. Sample spectrograms of vocalization for an infant (immature,

left) and an adult (mature, right). From top to bottom, we show an example from common marmoset (Callithrix jacchus), Egyptian fruit

bats (Rousettus aegyptiacus), and humans. c. Comparison between the probability distribution of the PACs of immature calls (gray) and

mature calls (black). From top to bottom: common marmoset, Egyptian fruit bats, and humans. ��� means p< 0.001. d-f. Dynamics of
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model was significantly higher than that of the linear and recurrence model for the three spe-

cies. All were significant (p< 0.05) except for the balance model compared to the linear model

in humans (p = 0.093).

If the balance model is accurate, it should also be able to predict when the transition

between the two stable states occurs. That transition day is the time when the two landscapes

are balanced, i.e., have the same maximum height. To estimate the transition day during vocal

development, we fit the experimental data with an S-shaped curve (a sigmoid function). We

then tested whether the balance model could correctly estimate the timing of developmental

transitions in the vocalization data. For all species, the transition day estimated by the balance

model is within the confidence interval of the transition seen in the data (Fig 2J–2L). For mar-

moset monkeys, the model transition day was 20.07 whereas the experimental transition day

was 20.85 (p = 0.528; 95% CI = [17.55, 20.87]). For bats, the model and experimental transition

days were 54.22 and 55.88, respectively (p = 0.604, 95% CI = [35.67, 60.55]). For humans, the

model and experimental transition days were 191.83 and 173.41 (p = 0.331, 95% CI = [104.30,

238.47]). These data indicate that early vocal development in all three species exhibits punctu-

ated equilibria—equilibrium states separated by a sharp transition.

The balance model provides an account for why there are sudden transitions during vocal

development. Knowing how a behavioral landscape changes helps us understand the underly-

ing causes of those transitions. The balance model assumes that the vocalization landscape—a

changing context—consists of two components (that are each landscapes as well). Further-

more, it predicts that these two components will trade-off, one increasing and the other

decreasing throughout development. What could those components be? One of the most

important trade-offs in animal behavior is between metabolic energy and information [23], so

that was a logical possibility. In many animals, vocal output is linked to increases in metabolic

energy expenditure [24,25]. For example, louder versus softer vocalizations in zebra finches

and humans require greater energy expenditures [26,27]. In marmoset monkeys, infant vocal

output is tightly correlated with fluctuations of arousal (a marker of energy allocation) [28,29].

With regard to information and vocalizations, there are also many accounts. For example, the

crying rate is highest in human infants during the first two months of life during which they

have poor control over phonation [30]. As they begin to cry less and produce more steady

(tonal) vocal sounds, they more reliably elicit vocal responses from caregivers [31]. The same

is true for marmoset monkey infants and the elicitation of responses from caregivers [17,32].

It is important to keep in mind the way we defined the landscape: the peaks in the landscape

are associated with the behavior that is produced with higher probability. Moreover, we

assume some vocalizations are more energetically costly (as in metabolic cost) than others, and

some are more efficient in transmitting information than others. When the energy landscape

is at its peak, the assumption in our model is that more energy is being expended on vocaliza-

tions as opposed to other behaviors because to do so is less costly. Likewise, when the informa-

tion landscape is at its peak, we are assuming that the vocalizations are more efficient in

transmitting information. If the final landscape is a weighted sum of two landscapes, as

described by the balance model, one landscape will start high and decrease, and the other will

start low and increase. Thus, for the case of vocal development, we hypothesized that very

the vocalization landscape during the development. The vocalization landscape depends on the probability distribution of the PAC.

Lighter colors (light blue, yellow, and pink) represent the immature stage of development, darker colors (dark blue, orange, and red) the

mature stage. For an explanation of equations on top of each figure, see Methods - Development models. g-i. Transition predicted by

each mechanism. The transition is shown by the PAC associated with maximum height in the vocalization landscape throughout

development. From left to right: d,g. linear model, e,h. recurrence model for an asymptotic transition (inspired by [8]) and f,i. balance

model for a phase transition, based on a non-equilibrium dynamical balance given by the weighted sum of two constraints.

https://doi.org/10.1371/journal.pcbi.1010173.g001
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Fig 2. The energy-information balance model most successfully reproduces the transition day between two states for different

species. Analysis made using common marmoset in the left column, Egyptian fruit bat in the middle column, and human in the

right column. a-c. Best model fit for individuals of the three species. Notice that for the bat dataset, the data collection was from

different recording periods instead of a single longitudinal experiment; this lead to some gaps in the data. The black dots are the

typical PAC, i.e., a moving average calculated from the experimental data per day of recording (see Methods - Estimation of typical

PAC per day). Blue lines are the best fit for the linear model, orange lines are the best fit for the recurrence model and red lines are

the best fit for the balance model. d-f. Model fitting for the population for the three different species. g-i. Comparison between the

best R2 for each model. j-l. Comparison of transition date predicted by the balance model and calculated from experimental data.

Both transition dates were calculated by fitting a sigmoid to the values, and distributions were obtained via bootstrap.

https://doi.org/10.1371/journal.pcbi.1010173.g002
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young animals produce immature vocalizations at high rates (higher energetic landscape since

vocalizations will be less energetically costly to produce); these vocalizations have less informa-

tion content as they less reliably elicit responses from conspecifics (lower information land-

scape). As they get older, more mature-sounding vocalizations are produced at lower rates

(lower energetic landscape) but contain more information content with greater likelihood of

eliciting a conspecific response (higher information landscape).

Thus, according to our hypothesis, the information component of the vocalization land-

scape, C1(x), is initially low (near 0) and then increases due to the changing weight λ. A higher

information component of the landscape leads to an increase in the information transmission

efficiency (Fig 3A and 3B). We tested our hypothesis directly in developing marmoset mon-

keys by measuring information transmission efficiency via the change in probability of paren-

tal responses following an infant vocalization. Using Granger causality, we found that, as

marmoset infants get older, their vocalizations elicit parental responses with greater reliability

(i.e., information component of the landscape increases and the information transmission effi-

ciency increases; Fig 3C). If information plays a causal role in shaping the vocal developmental

trajectory in the manner predicted by the balance model, then changing the transmission of

Fig 3. Information transmission efficiency is related to the mature component of the vocalization landscape. a. Schematic of how the predicted

information component of the vocalization landscape, λC1(x), varies from immature (smaller λ) to mature phases (larger λ) of development, being lower

during the mature stage. λ is the parameter that controls the balance between landscapes. C1(x) is the component of the landscape which relevance increases

during development. b. Expected increase of efficiency in information transmission given the increase in information landscape. c. Observed information

transmission of marmoset infant calls throughout development. The shaded region represents a 95% confidence interval. d. Schematic of two situations with

different information component of the landscape C1(x): the plot on the top represents a higher information landscape, the plot on the bottom represents a

lower information landscape. The black line represents the energy component, C0(x), and is assumed to be constant in the two scenarios. e. Predicted vocal

dynamics, measured by the optimal PAC, for the two scenarios, showing that higher information landscape predicts faster transition. f. Observed vocal

dynamics from the feedback contingency manipulation setup in marmosets. Dashed lines represent transition day Thigh for high contingency data (dark green

line) and Tlow for low contingency data (light blue line). Thigh < Tlow with p< 0.001.

https://doi.org/10.1371/journal.pcbi.1010173.g003

PLOS COMPUTATIONAL BIOLOGY Punctuated equilibria in vocal development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010173 June 13, 2022 7 / 22

https://doi.org/10.1371/journal.pcbi.1010173.g003
https://doi.org/10.1371/journal.pcbi.1010173


information should alter the timing of the transition between equilibrium states. That is, the

punctuation described by the transition day should shift. For example, in a situation where

one individual produces vocalizations with higher information transmission efficiency (i.e.,

the landscape of the information component has a higher maximum (Fig 3D)), the transition

from immature to mature vocalization should occur earlier (Fig 3E). We used data from a pub-

lished experiment that manipulated the degree of parental contingency of vocal feedback that

an infant marmoset receives during development to test this “information” hypothesis [10].

In the experiment, there were three pairs of dizygotic twins (6 infants from 3 different sets

of parents). Starting at postnatal day 1 (P1), one randomly selected twin was provided the best

possible simulated “parent” who gave 100% vocal feedback via a computer-controlled closed-

loop playback system when the infant produced an immature contact call. The other twin

received vocal feedback to only 10% of the contact calls it produced [10]. This contingency

experiment was performed approximately every other day for less than 1 hour after which the

infants were returned to their families. In the context of the current study, a higher level of

simulated parental responsivity to an infant’s vocalizations is effectively increasing the infor-

mation landscape and thus should shift the transition day in a manner predicted by the balance

model: an earlier transition. The opposite should be true for infants whose vocalizations elic-

ited simulated parent calls with a low probability. As predicted, we observed that the low con-

tingency marmosets do have a significantly later (p< 0.001) transition day than the high

contingency marmosets, both estimated by fitting a sigmoid (high contingency data transition

day = 9.0, 95% CI = [7.1, 10.2]; low contingency transition day = 25.5, 95% CI = [13.5, 33.7])

(Fig 3F). Statistical tests were performed to check whether the balance model would predict

the transition day similarly to what we observed in Fig 2J–2L. The statistical test performed

after bootstrapping the transition day given by the balance model and the sigmoid fit showed

that they were not significantly different for either the high contingency data (p = 0.284) or

low contingency data (p = 0.168). Therefore, using the balance model and different informa-

tion landscapes, we could predict the qualitative changes in the transition day without any fit-

ting to the data.

Likewise, according to our hypothesis, the energetic component of the landscape, C_0 (x),

is initially high then decreases as the weight (1-λ) changes (Fig 4A), which could be a result in

changes of the energetic costs of producing vocalizations. One consequence of that change

could be a decrease in call rate (Fig 4B), given that the more the marmoset vocalizes, the more

energy it spends. We tested the hypothesis indirectly by measuring the vocalization rate over

time. We found that, as the marmoset gets older, the number of vocalizations decreases (Fig

4C). Similar to the manipulation of information landscapes, the manipulation of energy land-

scapes should also affect the timing of the transition day. If we increase the energy landscape,

then it should take longer for both landscapes to balance out: The transition day is predicted to

be later (Fig 4D and 4E). For both infants and adult marmoset monkeys, vocal production is

dependent upon respiration [17,29,33], as it is for all terrestrial mammals [12,34]. We can

manipulate the energy landscape by reducing the effort it takes to respire by placing individu-

als in a helium-oxygen (heliox) environment. (Indeed, for this reason, it is used by clinicians

to treat children with respiratory ailments [35].) The lighter air reduces the energy expenditure

for respiration and, logically, for vocalizations as well.

We again used data collected from a published study wherein, for 10 minutes per recording

session (every other day for 2 months), infant marmosets were placed in an 80% helium and

20% oxygen environment; the mix is lighter than regular air but has the same concentration of

oxygen [11]. Thus, in the brief period in which the air is lighter, the vocalization metabolic

cost is reduced. A lowered metabolic cost of producing vocalizations translates to greater fre-

quency of vocal output and an increase in its representation in the landscape. A lower
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metabolic cost will increase its representation in the landscape (see Methods –Estimation of

the vocalization thermodynamic cost and landscape). As such, we predicted that the transition

day would be later for those vocalizations of infant marmosets recorded while in the heliox

condition versus those recorded while in regular air. [To be clear, we are comparing the vocal

developmental trajectory as measured in heliox versus measured in regular air. We are not

assessing the long-term influence of heliox on vocal production in regular air.]

Indeed, this is what we observed: the transition day is significantly later for heliox compared

to air (p< 0.001; heliox transition day = 30.0, 95% CI = [29.8, 32.6]; regular air transition

day = 10.9, 95% CI = [8.5, 13.6]) (Fig 4F). Likewise, the statistical test performed after boot-

strapping the transition day given by the balance model and the sigmoid fit revealed that they

were not significantly different for vocalizations produced in either regular air (p = 0.61) or

heliox (p = 0.092).

Discussion

Just as evolution occurs when context changes for a population or sub-population of a species,

individual behaviors can also change as contexts change. In both cases, “contexts” can include

changes in the environment but, importantly, also changes in the morphology and/or internal

Fig 4. Energy metabolic cost is related to the immature component of the vocalization landscape. a. Schematic of how the predicted energy component of

the vocalization landscape, (1−λ)C0(x), varies from immature (λ closer to 0) to mature (λ closer to 1) phases of development, being higher during the mature

stage. λ is the parameter that controls the balance between landscapes. C0(x) is the component of the landscape which relevance decreases during development.

b. Expected decrease in call rate. c. Observed decrease in call rate. The shaded region represents a 95% confidence interval. d. Schematic of two situations with

different energy component of the landscape C0(x): the plot on the top represents a lower energy landscape; the plot on the bottom represents a higher energy

landscape. The black line represents the information landscape, C1(x), and is assumed to be constant in the two scenarios. e. Predicted vocal dynamics,

measured by the optimal PAC, for the two scenarios, showing that lower energy landscapes predict faster transition. f. Observed vocal dynamics from the

heliox setup in marmosets. Dashed lines represent transition day Tair for regular air data and Theliox for heliox data. Tair < Theliox with p< 0.001.

https://doi.org/10.1371/journal.pcbi.1010173.g004
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state of the organism [5,6,36]. When context changes are combined with threshold mecha-

nisms, the sudden changes—relative to the gradual changes typically associated with evolution

and development—are possible. Our data show that for three mammalian species—marmo-

sets, fruit bats, and humans—early vocal development trajectories can be characterized as dif-

ferent equilibrium states punctuated by a sharp transition. The balance model captured this

change by accurately simulating the shape of the developmental trajectory and predicting the

timing of the transition between immature and mature vocal states for all three species. Energy

and information trade-off in all sensorimotor systems in all species and thus, it made sense to

use these variables. Our empirical data from marmoset monkeys supported the notion that the

weights of the energy and the information components of the landscape do indeed shift in

opposite directions during vocal development: the energetic component increases over devel-

opmental time while the information component decreases. This had the effect of reducing the

rate of vocalizations while the effectiveness of infant vocalizations to elicit parental responses

increased. To show a causal link between the energy-information trade-off, we manipulated

each, revealing that the transition timing between equilibrium states shifted in the direction

predicted by the balance model.

There are, of course, other instances of sharp transitions during behavioral development.

Another type of motor development—prehension—exhibits similar, self-organized rapid tran-

sitions. Human infants make a switch from non-reaching to reaching early in postnatal life

[37]: From about 8 to 14 weeks, human infants will reach for an object without grasping, then

over the course of only a week or so, they switch to reaching with grasping [38]. Is labeling

these development trajectories with abrupt transitions using the evolutionary term “punctu-

ated equilibrium” valid? In evolution, punctuated equilibrium refers to the sudden appearance

of a new species preceded and followed by periods of relative stability [1]. Gould and Eldridge

argued that it accounts for the appearance of new species in a manner that is different from the

gradual change that we normally associate with evolution [1]. This theory holds that some-

times small sub-populations of species may enter a new context (or “landscape” à la Wadding-

ton [39]), allowing for reproductive isolation. For example, in the evolution of horses, multiple

species rapidly branched from a single lineage with these species co-existing with each other

for some time [40]. In the case of ancestral humans, this might account for the co-existence of

Neanderthals with linguistically-capable, anatomically-modern humans for some period of

time [41] (but see [42] for the possibility of Neanderthals with language capabilities). In our

view, vocal development in an individual follows a similar trajectory. There is an initial set of

vocal behaviors produced by infants and suddenly there is a new mode of behavior that doesn’t

necessarily replace (or is a transformation of) the earlier vocal behaviors. For example, infant

marmosets produce a number of vocalizations early in life but their contact calling is infre-

quent, unreliable and noisy. However, later, they will rapidly transition to produce adult-like

contact calls and produce them only in a specific context [13,17,29,43]. These contact calls are

now produced along with other calls that were present in the repertoire earlier in life (e.g., twit-

ter calls, alarm calls, etc.). Thus, in this sense, contact calls (a “species” of vocalizations) now

coexists with others that were there before. Such an interpretation is consistent with the idea

that evolution and development are both contingency-based, historical processes but operate

on different time scales [6].

Our longitudinal data account for the punctuated trajectory of one set of vocalization vari-

ables in a particular age range and timescale. Just as there is in evolution, there are other

modes of change in development consistent with the other two models we tested. Supporting

the linear model (Fig 1C and 1D), a study of syllable-order development in juvenile songbirds

(zebra and Bengalese finches) and humans infants showed that syllable order changes only

very slowly and gradually [44]. Consistent with the recurrent model (Fig 1E and 1F), zebra
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finches also exhibit an example of diminishing return changes, but over generations [8]. Indi-

vidual zebra finches learning a song from a tutor who produced a simple, non-wildtype song

nevertheless showed an initial bias (i.e., strong change) towards learning certain wildtype-like

syllables. That bias decreased over generations but eventually led the song to sound more and

more like the wildtype song [8]. Thus, there was an initial strong change in vocal behavior fol-

lowed by a slower adaptation to a stable point. While songbirds are an outstanding model for

vocal learning, we did not include them in our study for two reasons, one practical and one

anatomical. The practical reason is that we were unable to find a data set that tracked the devel-

opment of their non-song vocalizations from hatchlings to the age when those vocalizations

sounded mature, and songs are learned typically by juvenile males and are hormonally-depen-

dent. The anatomical reason is that their vocalizations are produced using a specialized organ

called the syrinx which does not have the multiple responsibilities of the mammalian larynx

(e.g., acting as valve for respiration) [45]. Thus, there are different selection pressures for vocal

production in birds versus mammals.

Adult animals must balance the limited availability of energy with their behavioral strate-

gies. For example, in the active-sensing electric fish, swimming in a less energetically efficient

manner increases the chances of encountering prey, and this increase in the prey encounter

rate offsets the metabolic cost of inefficient swimming [46]. In fact, the size of the motor trajec-

tories (i.e., the energetic cost) of at least some animals is proportional to how much informa-

tion might be gained about the location of food sources by such movements; i.e., they

“gamble” energy for the possibility of more accurate information [47]. During vocal

exchanges, there also seems to be a similar type of foraging but in the social domain. Humans

and other primates will change the amplitude of their vocalizations as a function of distance

from conspecifics, getting louder when they are farther away [48,49]; louder calls require more

energy [24]. Primates will also change which vocalizations they produce as a function of social

distance: Marmoset monkeys will switch to shorter duration, less tonal vocalizations as they

get closer to conspecifics [50,51], and this switch is directly related to decreases in energy allo-

cation [51]. It is reminiscent of the way echolocating bats adjust the timing of their vocal out-

put as they approach their targeted prey when foraging [52] and the manner in which male

gelada vocalizations follow Menzerath’s linguistic law [53]. Our data extend the energy-infor-

mation trade-off framework to the developmental time scale. During vocal development,

infant vocalizations are motor trajectories and producing contact vocalizations is foraging for

caregiver attention. Infant vocal sounds that are most likely to elicit vocal responses (i.e., have

more information) are those that are more mature-sounding but that may be more energeti-

cally costly to produce [24,25]. Finally, it is worth noting that the energy-information trade-off

we describe here may be directly related to the “compressibility and expressivity” tradeoff dis-

cussed in linguistics [54].

We only observed a single punctuation in our study. Why not more? One possibility is that

other types of saltatory change occur on shorter timescales not captured at the temporal reso-

lution of our study. For example, phase transitions can occur on the order of seconds such as

those observed in human bimanual movements [55] and in gait changes in locomoting ani-

mals. In horses, at least, these transitions (e.g., from walk to trot) minimize energy consump-

tion as locomotor speed increases [56,57]. Vocal acoustics also exhibit sudden transitions and

on even shorter timescales (e.g., bifurcations and noisiness) [58,59]; these can often be related

to the properties of the vocal tract (e.g., tension on the vocal organ, its material properties, and

respiratory power). This may allow individuals to produce a greater diversity of vocalizations

without a large increase in energy expenditure, which would be required if such vocal diversity

needed exquisite neural control mechanisms [60]. On another timescale—across trials and
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training sessions—conditioning experiments with rodents show that learning curves are not

smooth; rather they show abrupt, step-like increases in performance [61].

Beyond timescales, another possibility is that we may have masked other, more subtle non-

linear shifts in vocal development by using principal component analysis on four variables to

produce a single principal acoustic parameter. Nonlinear shifts in each of those four acoustic

variables may coexist at the same or different times. We know, for instance, that one contribu-

tion for the shift from noisy to tonal vocalizations in developing marmoset monkeys is the

switch of sound sources from the main part of the vocal folds to the apical vocal membranes;

this switch is due to the development of increased tissue stiffness [43]. Changes in vocal sound

quality are also strongly influenced by respiratory power in vertebrates [13,62,63], and both

vocalization duration and tonality are influenced by lung growth in marmoset monkeys [11].

In humans, lung volume almost triples over the first two years of postnatal life [64]. Finally, we

may observe additional punctuations later in life, turning vocal development into a series of

punctuated equilibria where different constraints are balanced. In light of this, future modeling

work will have to include putative mechanisms underlying non-linear behavioral shifts during

development, perhaps even taxon-specific ones (e.g., larynx versus syrinx).

Energy and information are just two variables that shape what is certainly a complicated devel-

opmental landscape. Moreover, they are sufficiently broad that they likely influence many different

mechanisms—and in parallel—over the course of development. Together, energy and information

may serve as a driving force, pushing, so to speak, various interacting mechanisms to progress

through the necessary adaptive changes. For example, the transition from immature to mature

production of contact calls in marmoset monkeys is through a combination of vocal tract growth,

increased muscle strength, and increased control of related neural circuits [13]. Early in postnatal

life, arousal (or the allocation of energy) is tightly linked to the production of vocalizations [28,29].

At the same time, neural circuits for vocal production are influenced by social feedback from con-

specifics [10,17]. Together, arousal and social feedback influence of the development of vocal

motor control [43]. Similar processes almost certainly occur in humans [65].

In sum, we show that punctuated equilibria characterize the early vocal developmental tra-

jectories of three mammalian species. We explore and test the possibility that energy and infor-

mation trade-off over the course of development to instantiate the shift between equilibrium

states. Our hypotheses are supported by our manipulation experiments with marmoset mon-

keys. These findings highlight the important insights that focusing on the process of develop-

ment (the “how”) can lead to, as opposed to focusing on just the outcomes (the “what” and the

“when”). Focusing on the process can lead to better hypotheses about mechanisms and possi-

ble interventions when vocal development goes awry.

Methods

All audio files used in this work were previously published. All the published experiments that

generated the data used in this article were approved by the animal ethics committee from the

institutes where the data were collected.

Dataset for model fitting

We tested the model in 3 different species (common marmoset, Egyptian fruit bat, and

humans) as shown in Figs 1 and 2. A total of 3 datasets were used. All datasets were composed

of published data of audio files containing calls for a given species (Table A in S1 Appendix).

All datasets were obtained from recordings of individual infants interacting with their caretak-

ers or tutors. The methods are already published, but we briefly introduce them in the SI

Appendix.
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Dataset for information transmission experiment

We used the interaction from infants with their parents to calculate the information transmission

in Fig 4C. The interaction dataset used here is the same dataset we used for the model comparison

(Fig 2) [17]. We present a summary of the data (Table B in S1 Appendix). Infant marmosets were

gently separated from the adult caregiver and taken to the experiment room; the adult was

brought to the room after the infant. An opaque curtain prevented the infant and the parent from

having visual contact. The pair were free to vocally interact with each other [17].

Dataset for contingency playback

We used two different contingencies to manipulate the landscapes in Fig 3F. The contingency

dataset used here was reported previously [10]. We present a summary of the data (Table C in

S1 Appendix). In this experiment, the parental presence was simulated by acoustic playback.

Most sessions consisted of a 10 min test condition followed by a 30 min playback condition;

the infants were otherwise with their families for the remaining ~23 hours each day. At each

session, either the mother or father’s calls were played back (counterbalanced). One of the

twins received contingent playback with low probability and the other received contingent

feedback with high probability. The infants were randomly allocated to low or high contin-

gency groups. In [10], the authors conducted experiments to compare the changes in infant

vocalization due to contingency from real parental calls versus from playback calls. In both

cases, the effect was the same.

Dataset for heliox experiment

We used two different air conditions to manipulate the landscapes in Fig 4F. The heliox dataset

used here was reported previously [11]. We present a summary of the data (Table D in S1

Appendix). Starting from postnatal day P1, marmoset infants were placed in an induction

chamber that holds approximately 45 L of air. The subjects were introduced into the chamber

through the lid on top of the chamber. Heliox (20% oxygen and 80% helium) was passed

through the inlet on the chamber and air was expelled from an outlet. An airflow meter was

attached to the inlet. In each session, we carried out recordings of 10 min in heliox and 10 min

in air. The order of these two conditions alternated every session [35].

Dryad DOI

https://doi.org/10.5061/dryad.f1vhhmgzv [66].

Analysis

Quantification of acoustic parameters. Given the audio file of a call and before all other

analyses, we calculated four acoustic properties: the call duration, the natural logarithm of the

dominant frequency, the natural logarithm of the AM frequency, and the Wiener entropy. We

picked these acoustic features because they are commonly extracted and analyzed in the ani-

mal vocalization literature, and they are relevant here since they change throughout develop-

ment [17]. The calculation of the features used a custom-made MATLAB routine. First, the

audios were filtered outside of the typical vocalization range (marmoset: 3kHz to 16kHz, bat:

2kHz to 80kHz, human: 80Hz to 1kHz). Then, the amplitude envelope was calculated with the

absolute value of the spectrogram (FFT window of 1024 points) and a low pass threshold at the

90th percentile of the amplitude was applied. The call duration was calculated as the difference

between the onset and the offset of the result. The dominant frequency was the median of the

frequencies with the highest amplitude in each instant of a call. The amplitude modulation was
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filtered outside the range of dominant frequencies (marmoset: 6kHz to 10kHz, bat: 8kHz to

20kHz, human infant: 200Hz to 1000Hz), passed through a Hilbert transform and the ampli-

tude envelope was calculated. The amplitude modulation is the dominant frequency of the

amplitude envelope. Finally, the Wiener entropy (which is the broadness of the signal) was cal-

culated by taking the difference of the mean of the logarithm of the power spectrum and the

logarithm of the mean.

Calculation of Principal Acoustic Component (PAC). After calculating the z-score of

each property separately, we performed a Principal Component Analysis (PCA) on the acous-

tic properties. For the Egyptian fruit bat, we did not use the AM frequency because their vocal-

izations do not exhibit a significant amplitude modulation. The Principal Acoustic

Component (PAC) of a call is the projection of that call (defined by their acoustic features) on

the 1st component of the PCA. The 1st component and 2nd component of the PCA described

46.6% and 31.9% of the variance for the marmoset dataset, 41.0% and 27.7% for the human

dataset, and 36.1% and 32.9% for the bat dataset, respectively. We restricted the analysis to

only the first principal component so that it would summarize the most important dynamics

of the vocal development, not considering variations that were not as characteristic of the data

throughout development. Note that the PCA was applied for the whole dataset in each single

species, which includes both immature and mature calls. For the marmoset data, the loadings

of the PCA for the first component, after the z-score of the data, were -0.53 for the duration,

0.42 for the dominant frequency, 0.53 for the amplitude modulation, and 0.49 for the entropy.

Even though there seems to be a correlation with call type, these numbers show that there is no

single interpretable acoustic factor explaining the PAC. The loadings for the other animals and

other components are similar (see data on DRYAD).

Comparison of immature and mature PAC distributions. To make sure that there is a

significant difference between the vocalizations at the beginning of the recording period

and the vocalizations at the end of the recording period, we compared the PAC distribu-

tion for each period. For each animal, we considered the vocalizations in the first 10% of

the recording days as the immature vocalizations and the final 10% of the recording days

as the mature vocalizations. We made the plot of the distributions by calculating the distri-

bution for each individual and averaging these distributions. We used a two-sample Kol-

mogorov-Smirnov test using the MATLAB routine kstest2 to verify if the PACs from the

first 10% days (immature calls) would be significantly different from the PACs from the

last 10% (mature calls).

Estimation of typical PAC per day

We calculated a typical value for the Principal Acoustic Component (PAC) for the population

in each day of recording (Figs 1C and 2A–2F). The typical value is defined by the peak of the

distribution of PACs. Since there might be individuals with a higher amount of data, we first

calculated the distribution for each individual and then we averaged it. The distributions were

all calculated using the MATLAB routine ksdensity with a bandwidth equal to 0.5, regardless

of the day or the species.

To avoid days with outlier behavior, we considered the other days around it instead of

using a single day to calculate the distribution. That is equivalent to a data smoothing process

by moving average, because one day contains information for the following (just like the fol-

lowing day contains information from the previous one). The size of the window of the mov-

ing average was determined by the quality of the data, and so we introduced two relevant

variables: the density D that represents the number of subjects per dataset, and the heterogene-

ity H of the data in time, i.e., how well distributed the data collection was over time.
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The variable D was calculated by:

• Taking the number of subjects and the number of calls in a single dataset;

• Dividing the number of subjects by the number of calls. Too few calls per subject should

have more gaps and be more prone to outliers. Few calls per subject lead to higher variable

D, increasing the window size;

• Multiplied the result by 1000 to bring the value closer to a scale of days;

• Evaluated the result by a ceil function to have an integer number.

The heterogeneity H was related to the density of recording sessions and calculated by:

• Checking the days of the sessions;

• Taking the difference between every two recording sessions, obtaining the interval between

recording sessions;

• Calculating the average of these intervals. A high average interval shows data not as thor-

oughly sampled, which requires a bigger window size.

We used a formula for the half period size that returned values for the period that would

give a reasonably smooth dataset for all animals. The half period size is the number of days

before and the number of days after the day in question, i.e., the window of the moving aver-

age. The following formula was used: half-window size d(D2�
p

H)/2.25e where dxe indicates

the ceil function. The values found are shown in Table E of S1 Appendix.

Development models. We considered two sets of calls, representing immature calls and

mature calls. With these sets, we evaluated three models to study the development from imma-

ture to mature calls.

The first model is the linear model. In this model, the landscape shifts. Initially, the call that

minimizes the landscape is the typical immature call. Then, it moves linearly so that the mini-

mum is now at the typical mature call. Considering x as a variable representing the call acous-

tics (e.g. the PAC), and the developmental parameter (control parameter) as a variable λ from

0 to 1, we have that the immature landscape is C0(x) and the mature landscape is C1(x), and

the landscape for a generic moment λ is Cλ(x) = C0(x−λ�k) where k is calculated with the equa-

tion C1(x) = C0(x−k). The model is important to verify if the transition from the immature

state to the mature state is a linear shift.

The second model is a recurrent model. It was inspired by Fehér et al., 2009 and considers a

discrete development for λ, representing generations. In this case, the PAC distribution repre-

sented by Cλ+1(x) in a given moment λ+1 of the development will depend on the typical PAC

of the previous moment represented by Cλ(x) weighted by a constant c0 and a portion of geno-

typic Gλ+1(x) and environmental Eλ+1(x) values. The equation representing the model is

Clþ1ðxÞ ¼ Glþ1ðxÞ þ c0ClðxÞ þ Elþ1ðxÞ:

As in Fehér et al. (2009), we consider Gλ(x) = N(G0, VG) and Eλ(x) = N(0, VE) as Gaussian

distributions uncorrelated through generations, concluding that the expected value and vari-

ance of the distributions C are

E½Cl� ¼ G0ð1 � c0
lÞ=ð1 � c0Þ and

V½Cl� ¼ ðVG þ VEÞð1 � c0
2lÞ=ð1 � c0

2Þ:
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To find a continuous version of the model in which we have λ ranging from 0 to 1 and the

average does not start at G0, we solved the recurrence with constraints for the probability when

λ = 0 and λ = 1, and obtained the following expected value

E½Cl� ¼ kþ G0ð1 � c0
lÞ=ð1 � c0Þ:

Where k is the minimum value for the PAC and gives the curve starting point, G0 is given

by 12/(final age+d#subject/#datae) and dictates how steep the curve will raise and c0 is 1−G0/

(max value for PAC−k) and gives where the curve will finish. #subject/#data is the number of

subjects divided by the total number of calls in a single dataset.

The third model is the balance model. We consider that we have two constraints imposing dif-

ferent vocalization landscapes, which we will call C0(x) and C1(x). In each moment of the devel-

opment, characterized by the value λ2[0,1], we consider that the landscape Cλ will be given by

ClðxÞ ¼ ð1 � lÞC0ðxÞ þ lC1ðxÞ:

After calculating the landscape in a certain day (proportional to λ) and having a value for

the temperature β, we find the probability distribution by using the softmax selection rule

plðxÞ ¼ expð� bClðxÞÞ=Z

and store the expected value of the probability distribution as the typical PAC predicted by the

model. Z is the partition function, calculated through normalization. The partition function is

only used to ensure p is indeed a probability function and should not be interpreted individu-

ally in this context.

Estimation of the vocalization thermodynamic cost and landscape

We need to calculate the thermodynamic costs for producing a vocalization associated with

certain PAC values to implement the 3 different models considered here. We can define a ther-

modynamic cost function c(x) that relates each vocalization with PAC = x to an associated cost

to produce it [13]. Assume that this thermodynamic cost function c(x) has a fixed expected

value E[C(x)] = EV. The maximum entropy principle states that we should maximize

HðpÞ ¼ �
Z 1

� 1

pðyÞ log pðyÞ dy with the constraint that
Z 1

� 1

pðyÞcðyÞ dy ¼ EV:

According to the softmax action selection rule [13], we have that p(x) = exp(−βc(x))/Z. We can

calculate the probability distribution by using the MATLAB routine ksdensity. The band-

widths used to calculate the distributions were robust—when we introduced a variation to

them, the result was not altered greatly. The values used for each animal (marmoset, bat,

human) for the immature distribution and the mature distribution were, respectively: 0.7 and

0.4, 0.9 and 0.3 and 0.3 and 0.6. If we already have the probability distribution, we can estimate

the thermodynamic cost distribution of a call in a period given the probability distribution

with c(x) = −log(p(x))/β, and the landscape was defined as the opposite of the thermodynamic

cost, C(x) = −c(x). Note that this causes the landscape to be higher in regions with higher prob-

ability of vocalizations. For the energy landscape and energy thermodynamic cost, this is

related to the metabolic cost of the vocalization. Importantly, what we label in this section as

“information cost” is used merely to estimate the information landscape; it is not associated

with the metabolic cost, despite the ambiguity of the word “cost”.
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Parameters search and model comparison

We made a search for the parameters in each model and compared the best R2 obtained for

each to compare the goodness of fit for each model. In all models, the same three parameters

were searched for the R2 optimization: the final immature day, the first mature day, and the

“temperature” β. We calculated the immature PAC distribution using all the calls up to the

final immature day and the mature PAC distribution using all the calls from the first mature

day. Using the distributions, we calculate the landscapes. With the landscapes and the “temper-

ature” β, we calculate the typical PAC through the development, including its R2 related to the

experimental data given by the typical PAC per day.

We defined a set of possible immature and mature ranges where we can perform the search

based on important developmental features for mammals. We used weaning age and sexual

maturation. The values for the marmosets were extracted from Schultz-Darken, Braun, and

Emborg [67]. The values for the Egyptian fruit bat were extracted from Cohen, R. (2011). The

values from humans were extracted from Dettwiler and Graber [68, 69]. The values can be

seen on columns 2 to 4 in Table F of S1 Appendix.

We estimated 15 days for the maximum possible age of population vocal immaturity and 40

days for the minimum possible age of population vocal maturity for marmoset monkeys.

Then, we calculated a proportion of the averages (in column 5 of Table F of S1 Appendix) and

estimated the maximum and minimum values for the search for humans and bats. The values

are shown in Table G of S1 Appendix.

We applied a two-sample Kolmogorov-Smirnov test to determine whether this delimitation

considers two different distributions for the PAC of the vocalizations emitted. For each species

the p-values found were below 10−3, hence the immature and mature calls were significantly

different for all three species.

After setting the limits of the mature and immature calls as in Table G of S1 Appendix, we

made a search for the actual minimum mature day, maximum immature day, and β by opti-

mizing the R2 separately for each animal and each model independently. The values found are

shown in Table H of S1 Appendix and the best models are shown in Fig 2D–2I.

Transition day comparison. Once we had the best parameters for the balance model, we

can compute the transition day for the model and compare it with the transition day given by

the experimental data (Fig 2J–2L). We found the point with the highest slope to calculate the

transition day of the model and we fit a sigmoid function using the MATLAB fit routine and

the following formula for the sigmoid

f ðxÞ ¼ p1 þ ðp2 � p1Þ=ð1þ eðp3 � xÞ�p4Þ:

to determine the transition day of the experimental data. We then retrieved the parameter p3

of the sigmoid function which gives the value of x where the transition occurs. We used the

MATLAB fit routine, constraining the parameters to plausible values. The initial value for the

routine was given by the values -1 and 0.5 for p1 and p2. p3 was initialized as the midpoint of

the recording range, and the initial value for p4 was 1.

The same method was used to compare the transition days in Figs 3 and 4. The parameters

were similar to the ones used in Fig 2J–2L. The starting point for p3 was set as 15, which was

between the transitions, providing a better fitting.

To measure the confidence interval of the transition day, we resampled the data with

replacement (bootstrap) and recalculated the transition days, obtaining a distribution for the

transition day both experimental and predicted by the model for Fig 2 and a distribution for

the transition day in each condition in Fig 4. We made a statistical test to see if we could prove

that the transition days are different. The test consisted of finding the percentage of the
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bootstrapped transition days predicted by the model lower than the transition days predicted

by the experimental data. For each bootstrap of the data, we subtracted the transition day of

one context with the transition day of the other context.

Information transmission. We define the efficiency of information as the rate of infor-

mation transmission, and it was calculated through the Granger causality. The methodology

and data were reported previously [32]. We calculated the Granger causality between the

onsets of syllables. Briefly, we fitted a generalized linear model to model the dynamics of the

onset of syllables. We compared two models to test whether infants influence parental vocal

dynamics: one in which the only predictor is the past onset times of parental vocalizations and

one that considers the past onset times of both parental and infant vocalizations. If the model

accounting for both parental and infant vocalizations is a better fit, we can infer that infants

significantly contribute to vocal interactions with their parents. We calculated the strength of

the interaction for each session and then fitted a cubic spline using MATLAB csaps for the

population. We used a bootstrap method to calculate a 95% confidence interval for the popula-

tion average curves. We were interested in the absolute value of the strength of the interaction,

so we calculated the absolute value of those estimates.

Supporting information

S1 Appendix. Dataset for model fitting. Table A in S1 Appendix. Summary of the dataset

used in the model fitting for Fig 2. Table B in S1 Appendix. Summary of information transmis-

sion experiment dataset used in the analysis for Fig 3H. Table C in S1 Appendix. Summary of

contingency experiment dataset used in the analysis for Fig 4E. Table D in S1 Appendix. Sum-

mary of heliox experiment dataset used in the analysis for Fig 4J and 4P. Table E in S1 Appen-

dix. Size of the period used to estimate the typical PAC per day for Fig 2. Table F in S1

Appendix. Values are shown in months. Developmental features found in the literature.

Table G in S1 Appendix. Extreme values for possible immature and mature days range for the

search in Table H. Table H in S1 Appendix. Best parameters for the linear model, recurrence

model, and balance model, respectively.

(DOCX)

Acknowledgments

We are very grateful for the comments and suggestions of Talmo Pereira and Marina Wos-

niack for their thoughtful comments and edits on an earlier draft. Parts of this work were

inspired by discussions at the Santa Fe Institute with Eleanor Brush, Jessica Flack and David

Krakauer.

Author Contributions

Conceptualization: Thiago T. Varella, Daniel Y. Takahashi, Asif A. Ghazanfar.

Data curation: Thiago T. Varella, Yisi S. Zhang, Daniel Y. Takahashi.

Formal analysis: Thiago T. Varella.

Funding acquisition: Thiago T. Varella, Asif A. Ghazanfar.

Investigation: Yisi S. Zhang, Daniel Y. Takahashi.

Project administration: Asif A. Ghazanfar.

Resources: Asif A. Ghazanfar.

PLOS COMPUTATIONAL BIOLOGY Punctuated equilibria in vocal development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010173 June 13, 2022 18 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010173.s001
https://doi.org/10.1371/journal.pcbi.1010173


Software: Daniel Y. Takahashi.

Supervision: Daniel Y. Takahashi, Asif A. Ghazanfar.

Validation: Daniel Y. Takahashi.

Writing – original draft: Thiago T. Varella, Asif A. Ghazanfar.

Writing – review & editing: Thiago T. Varella, Yisi S. Zhang, Daniel Y. Takahashi, Asif A.

Ghazanfar.

References
1. Gould SJ, Eldredge N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiol-

ogy. 1977:115–51.

2. Gould SJ, Eldredge N. Punctuated equilibrium comes of age. Nature. 1993; 366(6452):223–7. https://

doi.org/10.1038/366223a0 PMID: 8232582

3. Atkinson QD, Meade A, Venditti C, Greenhill SJ, Pagel M. Languages evolve in punctuational bursts.

Science. 2008; 319(5863):588–. https://doi.org/10.1126/science.1149683 PMID: 18239118
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