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    Introduction 

 Systemic vasculitis is characterized by blood vessel in fl ammation, which may lead 
to tissue injury from vascular stenosis, occlusion, aneurysm or rupture  [  1  ] . Apart 
from relatively common vasculitides such as Henoch–Schönlein Purpura (HSP) and 
Kawasaki disease (KD), most of the primary vasculitic syndromes are rare in child-
hood, but when present are associated with signi fi cant morbidity and mortality 
 [  2,   3  ] . The cause of the majority of childhood vasculitides is unknown, although it 
is likely that a complex interaction between environmental factors, such as infec-
tions and inherited host responses, triggers the disease and determines the vasculitis 
phenotype  [  4  ] . This chapter summarizes the  fi ndings of recent studies relating to 
the pathogenesis of systemic vasculitis, and considers HSP, KD, antineutrophil 
cytoplasmic antibodies (ANCAs)-associated vasculitis, polyarteritis nodosa and 
Takayasu arteritis (TA). Rarer forms of vasculitis are beyond the scope of this chap-
ter, and the reader is referred elsewhere  [  5  ] . In addition, we discuss current therapeu-
tic approaches and ongoing challenges in the  fi eld of paediatric vasculitis research.  

   Henoch–Schönlein Purpura 

 HSP is the most common childhood primary systemic vasculitis  [  2  ] . HSP typically 
affects children between the ages of 3–10 years  [  6  ] . Gardner-Medwin et al. reported 
an estimated annual incidence of 20.4 per 100,000 children in the UK  [  2  ] . 
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Modi fi cations of the classi fi cation criteria de fi ning HSP described by Ozen et al. in 
2005  [  7  ]  have recently been made following a formal validation study  [  8  ] . According 
to the new EULAR/PRINTO/PRES de fi nition, a patient is classi fi ed as having HSP 
in the presence of purpura or petechie with lower limb predominance (mandatory 
criterion) plus one out of four of the following criteria  [  8  ] :

    1.    Abdominal pain  
    2.    Histopathology showing typical leucocytoclastic vasculitis with predominant 

IgA deposit or proliferative glomerulonephritis with predominant IgA deposit  
    3.    Arthritis or arthralgia  
    4.    Renal involvement (proteinuria or haematuria or presence of red blood cell 

casts)     

 In cases with purpura with atypical distribution, a demonstration of IgA is 
required at biopsy. This new de fi nition provides sensitivity and speci fi city for 
classi fi cation of HSP (using other forms of vasculitis as controls) of 100% and 87%, 
respectively  [  8  ] . 

   Pathogenesis 

 As many as 50% of occurrences in paediatric patients are preceded by an upper 
respiratory tract infection  [  4,   9  ] . Several agents have been implicated, including 
group A streptococci, varicella, hepatitis B, Epstein–Barr virus, parvovirus B19, 
 Mycoplasma ,  Campylobacter , and  Yersinia   [  4  ] . Of note, Masuda et al. showed that 
nephritis-associated plasmin receptor (NAPlr), a group A streptococcal antigen, 
may have a pathogenetic role in a subset of patients with HSP nephritis  [  10  ] . Among 
33 children with biopsy proven HSP nephritis, 30% had segmental or global mesan-
gial deposition of NAPlr antigen, comparing to 3% in other children with non-HSP 
nephritis glomerular diseases (half of these children had IgA nephropathy)  [  10  ] . 
The exact pathophysiologic mechanism, if any, and the relationship between NAPlr 
and HSP nephritis need, however, further investigation. So far no single infectious 
agent has been consistently identi fi ed, and it is likely that genetically controlled host 
responses determine whether or not an individual develops HSP in response to 
infectious triggers. But despite the fact that the cause of HSP is unknown, it is likely 
that IgA has a pivotal role in the pathogenesis of the disease, a hypothesis supported 
by the almost universal deposition of IgA in lesional vascular tissue  [  11  ] . Skin or 
renal biopsies demonstrate the deposition of IgA (mainly IgA1) in the wall of der-
mal capillaries and post-capillary venules and mesangium  [  11  ] . In addition, serum 
IgA levels have been reported to be increased during the acute phase of the disease, 
and a proportion of patients have circulating IgA-containing immune complexes 
and cryoglobulins  [  12  ] . Some studies have found IgA antineutrophil cytoplasmic 
antibodies (IgA-ANCAs) in a proportion of patients with HSP, while others have 
shown an increase in IgA-rheumatoid factor or IgA-anticardiolipin antibodies  [  11  ] . 
Recently, galactose de fi ciency of O-linked glycans in the hinge region of IgA1 has 



372 The Molecular Biology and Treatment of Systemic Vasculitis in Children

been reported in adults with IgA nephropathy and children with HSP  [  13  ] . These 
aberrantly glycosylated IgA1 proteins form immune complexes that deposit in the 
mesangium; their binding to mesangial cells stimulates cellular proliferation and 
overexpression of extracellular matrix components resulting in the typical renal 
lesions associated with HSP  [  13  ] . Recently, Hiasano et al. showed complement acti-
vation through both the alternative and lectin pathways in patients with HSP nephri-
tis and demonstrated that this complement activation is promoted in situ in the 
glomerulus  [  14  ] . The formed IgA immune complexes, through the activation of 
complement, lead to the formation of chemotactic factors (such as C5a), which in 
turn recruit polymorphonuclear leucocytes to the site of deposition  [  15,   16  ] . The 
polymorphonuclear leucocytes thus recruited by chemotactic factors cause 
in fl ammation and necrosis of vessel walls with concomitant thrombosis  [  11  ] . This 
subsequently results in extravasation of erythrocytes from haemorrhage in the 
affected organs and is manifested histologically as leucocytoclastic vasculitis  [  11  ] . 
The term leucocytoclasis refers to the breakdown of white blood cells in lesional 
tissue, particularly the characteristic nuclear debris (“nuclear dust”) observed, and 
is not speci fi c for HSP.  

   Genetics 

 Several genetic polymorphisms have been linked with HSP in various population 
cohorts, often with consistent results across multiple studies (summarized in 
Table  2.1 )  [  32  ] . Many of these polymorphisms relate to cytokines or cell adhesion 
molecules involved in the modulation of in fl ammatory responses and endothelial 
cell activation  [  4,   32  ] . The connection between HSP and HLA alleles is the most 
convincing genetic association. In three cohorts from Italy, northwest Spain and 
Turkey, DRB1*01 and DRB*11 have each been positively associated (OR 1.5–2.5), 
and DRB*07 negatively associated, with HSP in two of the three studies  [  17,   18,   33  ] . 
HLAB35 was associated with HSP in a Turkish cohort  [  19  ] , but was only associated 
with nephritis in a Spanish cohort  [  20  ] . Null alleles in either of the complement fac-
tor C4 genes (C4A or C4B) have shown associations with HSP in multiple cohorts 
of different ethnicities  [  29  ] , but different  fi ndings regarding associations with C4A 
or C4B alleles, association with heterozygosity or only homozygosity for a null 
allele, and close linkage of the C4 genes to HLA have resulted in debate about the 
signi fi cance of these  fi ndings. Polymorphisms in the angiotensin-converting enzyme 
(ACE) gene have been associated with risk of HSP in two cohorts (OR 2.3–2.7) 
 [  24,   25  ] ; several additional studies have focused on association of ACE alleles with 
risk of nephritis but without consistent  fi ndings. A high carriage rate of mutations in 
MEFV was recently reported in Turkish children with HSP (OR 2.06)  [  27  ] . On the 
whole, however, studies of this nature have been hampered by relatively small 
patient numbers and thus lack the power to be de fi nitive or necessarily applicable to 
all racial groups.   
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   Clinical Features 

 Skin involvement is typically with purpura, which is generally symmetrical, 
affecting the lower limbs and buttocks in the majority of cases, the upper extremi-
ties being involved less frequently  [  34  ] . The abdomen, chest and face are gener-
ally unaffected  [  34  ] . Angioedema and urticaria can also occur  [  34  ] . Around two 
thirds of the children have joint manifestations at presentation  [  34  ] . Three quarters 
of the children develop abdominal symptoms ranging from mild colic to severe 
pain with ileus and vomiting  [  34  ] . Haematemesis and melena are sometimes 
observed  [  34  ] . Other complications include intestinal perforation and intussuscep-
tion  [  34  ] . Acute pancreatitis is also described, although is a rare complication  [  34  ] . 
Other organs less frequently involved include the central nervous system (cerebral 
vasculitis), gonads (orchitis may be confused with torsion of the testis) and the 
lungs (pulmonary haemorrhage)  [  34  ] . Reports of HSP nephritis indicate that 
between 20% and 61% of cases are affected with this complication. Renal involve-
ment can present with varying degrees of severity  [  34  ] . This includes isolated 
microscopic haematuria, proteinuria with microscopic or macroscopic haematuria, 

   Table 2.1    Positive genetic associations in Henoch Schönlein purpura   

 Molecule/genetic polymorphism  Role of polymorphism  Reference 

 Human leucocyte antigens (HLAs)  Positivity for HLA-B35 predisposes 
to renal involvement in a Spanish 
cohort 

 HLA-B35 predisposes to HSP 
in a Turkish cohort 

 DRB1*01 and *11 positively 
associated and DRB*07 negatively 
associated with risk of HSP 

  [  17–  20  ]  

 Interleukin-8 (IL-8)  Polymorphism associated with renal 
involvement 

  [  21  ]  

 Interleukin-1 receptor antagonist 
(IL-1Ra) 

 Polymorphism predisposes to renal 
involvement 

  [  22  ]  

 Interleukin-1 b  (IL-1  b )  Polymorphism predisposes to renal 
involvement 

  [  23  ]  

 Angiotensin converting enzyme (ACE)  Increased risk of HSP   [  24,   25  ]  
 Vascular endothelial growth factor 

(VEGF) and its receptor (KDR) 
 VEGF polymorphisms predispose to 

renal involvement 
  [  26  ]  

 Familial Mediterranean fever genotypes 
(MEFV gene mutation) 

 Mutations in MEFV found more 
commonly in Israeli and Turkish 
children with HSP 

  [  27,   28  ]  

 Complement C4A and C4B  Increased risk of HSP   [  29  ]  
 PAX2 (paired box gene 2)  Polymorphisms in PAX2 predispose 

to renal involvement in HSP 
  [  30  ]  

 Nitric oxide and associated molecules  Inducible nitric oxide synthase 2A 
promoter polymorphism predis-
poses to renal involvement 

  [  31  ]  
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acute nephritic syndrome (haematuria with at least two of hypertension, raised 
plasma creatinine and oliguria), nephrotic syndrome (usually with microscopic hae-
maturia) or a mixed nephritic–nephrotic picture  [  34  ] .  

   Treatment 

 The large majority of cases of HSP require symptomatic treatment only  [  34  ] . Non-
steroidal anti-in fl ammatory drugs (NSAIDs) may be used to treat arthralgia associ-
ated with HSP  [  34  ] . Controversies concerning the use of corticosteroids in the 
treatment of HSP exist with regard to whether or not they can (1) reduce severity or 
duration of disease, (2) decrease the risk of glomerulonephritis, and (3) prevent 
relapses of the disease  [  35,   36  ] . Chartapisak et al. recently systematically reviewed 
all published randomized controlled trials (RCTs) for the prevention or treatment of 
renal involvement in HSP  [  37  ] . Meta-analyses of four RCTs, which evaluated 
prednisone therapy at presentation of HSP, showed that there was no signi fi cant dif-
ference in the risk of development or persistence of renal involvement at 1, 3, 6 
and 12 months with prednisone compared with placebo or no speci fi c treatment  [  37  ] . 
In the largest of these trials, which enrolled children between January 2001 and 
January 2005, the primary outcome (urinary protein/creatinine ratio at 1 year) was 
measured in 290 children  [  38  ] . This is the largest study to date showing no signi fi cant 
bene fi t of prednisone over placebo in preventing persistent renal disease  [  38  ] . That 
said, there could still be a role for early use of corticosteroids in patients with severe 
extrarenal symptoms such as abdominal pain and arthralgia, as suggested by the 
 fi ndings of a study performed by Ronkainen et al.  [  36  ] . Prednisone (1 mg/kg/day for 
2 weeks, with weaning over the subsequent 2 weeks) was effective in reducing the 
intensity of abdominal pain and joint pain  [  36  ] . Prednisone did not prevent the 
development of renal symptoms but was effective in treating them if present; renal 
symptoms resolved in 61% of the prednisone patients after treatment, compared 
with 34% of the placebo patients  [  36  ] . Of note, Nikibakhsh et al. reported recently 
on the successful treatment with mycophenolate mofetil (MMF) of recurrent skin, 
articular and gastrointestinal symptoms in children with who failed to respond to 
systemic steroid therapy  [  39  ] . 

 For patients with rapidly progressive glomerulonephritis with crescentic change 
on biopsy, uncontrolled data suggest that treatment may comprise aggressive therapy 
with corticosteroid, cyclophosphamide and possibly plasma exchange  [  34  ] , as with 
other causes of crescentic nephritis. Other therapies such as cyclosporin, azathio-
prine and cyclophosphamide have been reported to be effective  [  40–  42  ] . As HSP is 
the most common cause of rapidly progressive glomerulonephritis in childhood, 
more aggressive therapeutic approaches such as plasma exchange have been 
employed in some cases  [  43  ] . These treatment options, while important in select 
cases, are not yet supported by RCTs. In addition, there are no robust clinical trials to 
guide therapy for HSP nephritis that is not rapidly progressive (patients may exhibit 
less than 50% crescents on renal biopsy, sub-optimal GFR; heavy proteinuria which 
is not necessarily nephrotic range)  [  34  ] . Many would advocate corticosteroids  [  34  ] . 
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Others advocate the addition of cyclophosphamide to corticosteroids in HSP 
nephritis with biopsy showing diffuse proliferative lesions or sclerosis, but with 
<50% crescentic change with ongoing heavy proteinuria  [  34  ] . In patients with 
greater than 6 months duration of proteinuria, an ACE inhibitor may be indicated 
to limit secondary glomerular injury, although again the evidence to support this 
therapy is lacking.  

   Outcome 

 The majority of children with HSP make a full and uneventful recovery with no 
evidence of ongoing signi fi cant renal disease  [  34  ] . Renal involvement is the most 
serious long-term complication of HSP  [  34  ] . Narchi et al. systematically reviewed 
all published literature with regards to long-term renal impairment in children with 
HSP  [  44  ] . Persistent renal involvement (hypertension, reduced renal function, neph-
rotic or nephritic syndrome) occurred in 1.8% of children overall, but the incidence 
varied with the severity of the kidney disease at presentation, occurring in 5% of 
children with isolated haematuria and/or proteinuria but in 20% who had acute 
nephritis and/or nephrotic syndrome in the acute phase  [  44  ] .   

   Kawasaki Disease 

 KD is an acute self-limiting systemic vasculitis predominantly affecting young 
children  [  2  ] . It is distributed worldwide, with a male preponderance, an ethnic bias 
towards Asian children, some seasonality and occasional epidemics  [  45–  49  ] . It is the 
second most common vasculitic illness of childhood and the most common cause of 
acquired heart disease in children in the UK and the USA  [  2,   50,   51  ] . The incidence 
in Japan is 138/100,000  [  52  ]  in children younger than 5 years, whereas in the USA 
it is 17.1  [  53  ]  and in the UK 8.1  [  54  ] . 

   Pathogenesis 

 The aetiology of KD remains unknown, but currently it is felt that some ubiquitous 
infectious agent produces an abnormal immunological response in a genetically 
susceptible subject that results in the characteristic clinical picture  [  55,   56  ] . 
Pronounced seasonality and clustering of KD cases have led to the hunt for infec-
tious agents as a cause  [  55,   56  ] . However, so far no single agent has been identi fi ed, 
a fact most recently highlighted by the negative results that emerged from studies 
examining the potential link between coronavirus infection and KD in Taiwan  [  57  ] . 
One debate regarding the cause of KD has centred around the mechanism of immune 
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activation: conventional antigen versus superantigen (SAg)  [  55,   58  ] . SAgs are a 
group of proteins that share the ability to stimulate a large proportion of T cells (up 
to 30% of the T-cell repertoire compared with one in a million T cells for conven-
tional antigens) by binding to a portion of the T-cell receptor  b  chain (TCRV b ) in 
association with the major histocompatibility complex (MHC) class II molecules 
with no requirement for antigen processing  [  59  ] . SAgs have been identi fi ed in a 
variety of microorganisms, including many of the bacteria and viruses isolated from 
children with KD  [  55,   59,   60  ] . In 1992, Abe et al. were the  fi rst to describe the selec-
tive expansion of V b 2 and V b 8.1T cells in KD  [  61  ] , indicating T-cell V b  skewing—
the hallmark of a SAg-mediated process. Since then, many similar studies have 
examined T cell V b  repertoires in KD, or examined the prevalence of serological 
conversion or colonization with SAg-producing organisms  [  62,   63  ] . An SAg is also 
responsible for induction of coronary artery disease in a murine model of KD (dis-
cussed in detail in the “In Vivo Experimental Data in KD” section)  [  55,   59,   60  ] . 
However, Rowley et al. recently reported three fatal cases of KD and observed IgA 
plasma cell in fi ltration into the vascular wall during the acute phase of the illness 
 [  64  ] . By examining the clonality of this IgA response using reverse transcriptase 
(RT)-PCR in lesional vascular tissue, these researchers observed that the IgA 
response was oligoclonal, suggesting a conventional Ag process rather than a SAg-
driven one  [  64  ] . Although the debate continues regarding the mechanism of initial 
immune activation, different mechanisms are most likely involved with a  fi nal com-
mon pathway of immune activation responsible for this clinical syndrome. 
Regardless of how T cells get activated, the massive immune response characteris-
tic of KD is translated into systemic in fl ammation manifested clinically as fever and 
the cardiac features of KD  [  55  ] .  

   In Vivo Experimental Data in KD 

 Experimental mice develop coronary arteritis in response to intra-peritoneal injec-
tions of  Lactobacillus casei  wall extract (LCWE) with the resultant vasculitis being 
similar to KD in children  [  65,   66  ] . Young mice (age 4–5 weeks) are more suscepti-
ble to LCWE-induced disease compared with older mice  [  65–  69  ] . The peripheral 
immune activation within hours of LCWE injection is followed by local in fi ltration 
into cardiac tissue at day 3 with the in fl ammatory in fi ltrate comprising mainly T 
cells  [  65–  69  ] . This in fl ammatory response peaks at day 28 post injection and is 
accompanied by elastin breakdown with disruption of the intima and media, as well 
as aneurysm formation at day 42  [  65–  69  ] . Additionally, an SAg found within LCWE 
contributes signi fi cantly to the development of vascular disease  [  60  ] . The common 
features between this murine model and the human disease include an infectious 
trigger leading to immune activation; disease susceptibility in the young; a time 
course similar to that seen clinically in KD; similar pathology of coronary arteritis; 
and response to intravenous immunoglobulin (IVIG) treatment  [  55  ] . The proposed 
disease model supported by the in vivo experimental data in this mouse model 
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begins with immune activation by a microbe with superantigenic activity  [  55  ] . The SAg 
found in the LCWE preferentially expands T-lymphocytes expressing TCRV b  2, 4, 
6 and 14 positive T cells, and this superantigenic activity is directly correlated with 
the ability to induce coronary arteritis in mice  [  60  ] . Ablation of IFN- g  con fi rmed 
that IFN- g  plays an important regulatory role in disease induction in this disease 
model  [  55  ] . Mice with absence of TNF- a  activity (blockade of TNF- a ) or TNFR1 
knockouts) do not develop coronary disease after LCWE stimulation  [  68  ] . Of note, 
the T cells found in affected vessels express SAg-reactive TCRV b  families, an 
unexpected  fi nding considering the usual fate of SAg-activated T cells, which are 
actively deleted by apoptosis. Moolani et al. have shown that co-stimulation can 
rescue SAg-stimulated T cells from apoptosis  [  70  ] . Furthermore, the coronary 
endothelium is transformed into a professional antigen-presenting cell (APC) by 
upregulation of co-stimulatory molecules driven partially by the tissue-speci fi c 
expression of Toll-like receptor (TLR)  [  55  ] . Increased TLR2 expression in conjunc-
tion with TLR2 stimulation by the TLR2 ligand in LCWE leads to increased expres-
sion of co-stimulatory molecules facilitating rescue of SAg-activated T cells and 
continued local production of proin fl ammatory cytokines  [  71,   72  ] . This leads to 
further exacerbation of the in fl ammation at the coronary vessel wall  [  55  ] . IFN- g  and 
TNF- a  are involved in transcriptional regulation of matrix metalloproteinases 
(MMPs), with TNF- a  upregulating, and IFN- g  inhibiting production of MMP-9  [  55, 
  73  ] . Following that, the enzymatic activity of MMP-9 leads to elastin breakdown 
and aneurysm formation  [  73  ] . Of note, recently Alvira et al. have shown that in the 
coronary arteritis associated with KD, TGF- b  suppresses elastin degradation by 
inhibiting plasmin-mediated MMP-9 activation  [  74  ] . Thus, strategies to block TGF- b , 
used in those with Marfan syndrome, are unlikely to be bene fi cial in KD as they 
lead to worsening of elastin degradation in this murine model of KD  [  74  ] . So in 
summary, a sustained local immune response together with persistent TNF- a  pro-
duction and leucocyte recruitment lead to upregulation of proteolytic activity, elas-
tin degradation, vessel wall damage and the characteristic coronary artery lesions 
seen in KD  [  55  ] .  

   Genetics 

 Although the clinical syndrome and occurrence of epidemics suggest an infectious 
cause for KD, a genetic contribution to risk is suggested by the much higher preva-
lence of the disease in Japan and Korea than elsewhere, and by increased prevalence 
within families with an increased relative risk to siblings compared to the general 
population  [  75  ] . Recently, a number of polymorphisms have been identi fi ed that 
appear to be linked with disease susceptibility in KD or the risk of coronary artery 
aneurysms (CAAs). These polymorphisms are summarized in Table  2.2   [  4,   81  ] . In 
general, candidate gene studies in KD have been dif fi cult to interpret, since most 
 fi ndings have not been replicated. Indeed, con fl icting results have been reported for 
the few genes that have been evaluated in multiple cohorts.  
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 Furthermore, a genome-wide linkage study using microsatellite markers in 
Japanese families identi fi ed a number of potential loci  [  92  ] . Finer scale studies of 
the 19q32.2-32.3 region led to identi fi cation of a linked group of single-nucleotide 
polymorphisms (SNPs) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) 
gene, associated with KD, with an odds ratio of 1.74  [  75,   92  ] . ITPKC mutation was 
associated with KD not only in Japanese but also in US Caucasian patients, particu-
larly with the risk for developing coronary artery lesions  [  75,   92  ] . Additional data 

   Table 2.2    Genetic polymorphisms associations with Kawasaki disease   

 Molecule/genetic polymorphism  Role of polymorphism  Reference 

 Mannose binding lectin  Ambiguous role for MBL in fl uencing risk 
of coronary artery aneurysms (CAA) 

  [  76  ]  

 Angiotensin-converting enzyme 
(ACE) 

 ACE I/D polymorphism increases disease 
susceptibility 

  [  77  ]  

 Matrix metalloproteinases (MMP)  MMP-3 6A/6A 
 Polymorphism results in higher frequency 

of CAA 
 MMP-1, 3, 7, 12 and 13 in the gene

 cluster on Chr.11q22 results in CAA 
in US–UK subjects 

  [  78,   79  ]  

 Interleukin 1 receptor antagonist 
(IL-1Ra) 

 Polymorphism associated with increased 
disease susceptibility 

  [  80  ]  

 Interleukin 18 (IL-18)  Increases disease susceptibility in Taiwan   [  81  ]  
 Tumour necrosis factor-alpha 

(TNF- a ) 
 TNF- a -308A associated with increased 

intravenous immune globulin (IVIG) 
resistance 

  [  82  ]  

 Interleukin-10 (IL10)  IL-10 gene promoter polymorphisms 
in fl uence risk of CAA 

  [  82  ]  

 Vascular endothelial growth factor 
(VEGF) and its receptor (KDR) 

 Polymorphisms of both contribute to 
increased CAA risk 

  [  83  ]  

 Chemokines  Chemokine receptor CCR5 and its ligand 
CCL3L1 in fl uence disease susceptibility 

  [  84  ]  

 Nitric oxide and associated 
molecules 

 No association of eNOS and iNOS gene 
polymorphisms to the development 
of CAL in Japanese KD patients 

  [  85  ]  

 Fc g  receptors  No association for Fc g  RIIa-131H/R, 
Fc g RIIb-232I/T, Fc g RIIIa-158V/F and 
Fc g RIIIb-NA1/NA2 

  [  86  ]  

 Inositol 1,4,5-trisphosphate 
3-kinase C (ITPKC) gene 

 Increases diseases susceptibility and risk 
of CAA 

 No association with KD and CAA 
in Taiwanese children 

  [  75,   87  ]  

 Caspase 3 (CASP3 )  Associated with CAA in Taiwanese children 
 Susceptibility to KD in both Japanese 

and US subjects of European ancestry 

  [  88,   89  ]  

 COL11A2  Susceptibility to disease and CAA   [  90  ]  
 Inositol 1,4,5-trisphosphate receptor 

type 3 (ITPR3) 
 Increased risk of CAA   [  91  ]  
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supported a functional signi fi cance for one polymorphism identi fi ed: SNP (itpkc_3C) 
led to reduced splicing of the ITPKC gene product and therefore could result in a 
lower mRNA concentration  [  75  ] . Of note, however, Chi et al. subsequently showed 
no statistically signi fi cant association between the ITPKC gene SNP rs28493229 
and KD or coronary artery lesions in Taiwanese children  [  87  ] . The  fi rst genome-
wide association study (GWAS) in KD was notable for assessment of population 
strati fi cation and for replication of GWAS  fi ndings in an independent cohort  [  93  ] . 
GWAS of 109 Caucasian patients, followed by SNP genotyping of the 1,116 most 
signi fi cant SNPs in 583 families, then  fi ne mapping of known genes near some of 
the 40 SNPs that were successfully replicated, led to identi fi cation of eight putative 
novel susceptibility genes [odds ratio (OR) approximately 1.1–1.5]  [  93  ] .  

   Clinical Features 

 The principal clinical features are fever persisting for 5 days or more, peripheral 
extremity changes (reddening of the palms and soles, indurative oedema and subse-
quent desquamation), a polymorphous exanthema, bilateral conjunctival injection/
congestion, lips and oral cavity changes (reddening/cracking of lips, strawberry 
tongue, oral and pharyngeal injection) and cervical lymphadenopathy (acute, non-
purulent)  [  56  ] . For the diagnosis to be established according to the Diagnostic 
Guidelines of the Japan Kawasaki Disease Research Committee,  fi ve of six criteria 
should be present  [  94  ] . If CAAs are present, fewer features may be necessary for 
diagnostic purposes  [  48,   95  ] . The cardiovascular features are the most important 
manifestations of the condition with widespread vasculitis affecting predominantly 
medium-size muscular arteries, especially the coronary arteries  [  56  ] . Coronary 
artery involvement occurs in 15–25% of untreated cases with additional cardiac 
features in a signi fi cant proportion of these, including pericardial effusion, electro-
cardiographic abnormalities, pericarditis, myocarditis, valvular incompetence, 
cardiac failure and myocardial infarction  [  56  ] . Another clinical sign that maybe 
relatively speci fi c to KD is the development of erythema and induration at sites of 
Bacille Calmette–Guérin (BCG) inoculations  [  46  ] . Other system involvement can 
occur, including the gastrointestinal tract, the hepatobiliary tract with hydrops of the 
gall bladder being well recognised, the central nervous system with seizure and 
meningeal features, the auditory system with deafness, the skeletal system with 
arthropathy and the urinary system  [  56  ] .  

   Treatment 

 Early recognition and treatment of KD with aspirin and IVIG have been shown 
unequivocally by meta-analysis to reduce the occurrence of CAAs  [  96,   97  ] . The 
prevalence of CAA is inversely related to the total dose of IVIG  [  97  ] , 2 g/kg of IVIG 
being the optimal dose, usually given as a single infusion  [  96  ] . Meta-analysis of 
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RCTs comparing divided lower doses of IVIG (400 mg/kg/day for 4 consecutive 
days) versus a single infusion of high-dose IVIG (2 g/kg over 10 h) has clearly 
shown that even though the 4-day regimen has some bene fi t, a single dose of 2 g/kg 
has a greater therapeutic effect in the prevention of CAA  [  96,   97  ] . However, IVIG 
resistance occurs in up to 20% of cases  [  98  ] . In those cases most advocate a second 
dose of IVIG and/or the use of corticosteroids. Regarding corticosteroid use in IVIG 
resistant to KD, there are apparently con fl icting data from clinical trials. Inoue et al. 
reported on a randomized control trial of 178 KD patients who were assigned to 
receive IVIG (1 g/kg/day) for two consecutive days, given over 12 h, or IVIG plus 
prednisolone sodium succinate (2 mg/kg/day) three times daily, given by intrave-
nous (IV) injection until the fever resolved and then orally until the C-reactive 
 protein (CRP) level normalized  [  98    ] . Patients in both groups received aspirin 
(30 mg/kg) and dipyridamole (2 mg/kg/day)  [  98    ] . The addition of corticosteroid 
was associated with reduced CAA compared with IVIG alone: in those receiving 
IVIG and anti-platelet therapy, 11.4% had CAA at 1 month, compared with 2.2% in 
those receiving IVIG plus corticosteroids  [  98    ] . Also the duration of fever was shorter 
and CRP decreased more rapidly in the group of patients receiving corticosteroids 
 [  98    ] . In contrast, Newburger et al. in a subsequent multicenter, randomized, double-
blind, placebo-controlled trial examined the effect of the addition of a single dose of 
intravenous methylprednisolone to standard therapy  [  99    ] . They found that this cor-
ticosteroid regimen did not improve the CAA outcome in these children  [  99  ] . These 
contrasting results suggest that dose and duration of corticosteroids may be critical 
when considering this as adjunctive therapy in KD. In fl iximab, a chimeric monoclo-
nal antibody against TNF- a , has been reported to be effective for the treatment of 
IVIG-resistant KD  [  100,   101  ] . In 13 of 16 patients with failed response to a single 
dose or IVIG who received in fl iximab, there was cessation of fever followed by 
reduction in CRP  [  100    ] . More recently, Burns et al. reported on a multi-centre, 
 randomized, prospective trial of second IVIG infusion (2 g/kg) versus in fl iximab 
(5 mg/kg) in 24 children with acute KD and fever after initial failed treatment with 
IVIG  [  101    ] . There was cessation of fever within 24 h in 11 of 12 subjects treated 
with in fl iximab and in 8 of 12 subjects retreated with IVIG  [  101  ] . No signi fi cant 
differences were observed between treatment groups in the change from baseline 
for laboratory variables, fever or echocardiographic assessment of coronary arteries 
 [  101    ] . These reports are encouraging but further RCTs to establish the optimal man-
agement of KD, and in particular IVIG-resistant KD, are needed  [  102  ] . In that 
respect a multi-centre, double-blind, randomized, placebo-controlled trial intended 
to assess the ef fi cacy of etanercept (a fusion protein combining the TNF receptor 2 
and the Fc component of human IgG1) in reducing the IVIG refractory rate during 
treatment of acute KD is ongoing  [  103  ] . 

 In the convalescent phase of the condition, if aneurysms persist, anti-platelet 
therapy in the form of low-dose aspirin should be continued long term until the 
aneurysms resolve  [  56  ] . In the presence of giant aneurysms (greater than 8 mm), 
warfarin is recommended in addition to aspirin  [  104  ] . Some patients may require 
coronary    angioplasty or a revascularization procedure should ischemic symptoms 
arise or evidence of obstruction occur  [  105  ] .  
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   Outcome 

 The acute mortality of KD in Japan is 1.14  [  105  ] . About 20% of patients who 
develop CAAs during the acute disease will develop coronary artery stenoses, and 
the risk is greater with large (giant) aneurysms  [  105  ] . However, emerging data sug-
gest that, in spite of seeming recovery, there are long-term cardiovascular sequelae 
for patients with KD that persist into adult life and that may have important implica-
tions  [  106  ] .   

   Antineutrophil Cytoplasmic Antibody-Associated Vasculitides 

 ANCA-associated vasculitides (AAV) are small-vessel vasculitides characterized by 
necrotizing in fl ammation of small vessels in association with autoantibodies to neu-
trophil constituents—in particular, proteinase 3 (PR3) and myeloperoxidase (MPO) 
 [  107,   108  ] . The AAV comprise Wegener’s granulomatosis (WG, now also referred 
to as granulomatous polyangiitis, although for the purposes of this review the term 
WG is used), microscopic polyangiitis (MPA), including its renal-limited (RL) sub-
set designated as idiopathic necrotizing crescentic glomerulonephritis (iNCGN), 
and Churg–Strauss syndrome (CSS)  [  107,   108  ] . Although rare, AAV do occur in 
childhood and are associated with signi fi cant morbidity and mortality  [  109  ] . 

   Pathogenesis 

 The pathogenesis of AAV is still not fully elucidated, but clinical as well as experi-
mental data strongly suggest a role for autoimmune responses to PR3 and MPO in 
disease development  [  110  ] .  

   In Vitro Studies 

 The most accepted model of pathogenesis suggests that ANCA activate cytokine-
primed neutrophils within the microvasculature, leading to bystander damage to 
endothelial cells themselves and rapid escalation of in fl ammation with recruitment 
of mononuclear cells  [  111  ] . Falk et al. demonstrated in 1990 that ANCAs in vitro 
activate neutrophils to produce reactive oxygen species and release of lytic enzymes 
 [  112  ] . This process requires priming of neutrophils. Priming involves the stimula-
tion of neutrophils with low doses of proin fl ammatory cytokines that result, among 
other things, in surface expression of PR3/MPO on the neutrophil membrane but 
without full neutrophil activation, before their interaction with ANCA  [  113  ] . Primed 
neutrophil activation by ANCA involves interaction with their target antigens on 
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the neutrophil membrane and also with Fc g  receptors—in particular, Fc g RIIa and 
Fc g RIIIb  [  113  ] . In addition, Reumaux et al. showed that ANCA-induced neutrophil 
activation occurs only when neutrophils are attached to a surface and not when 
 fl oating in the circulation  [  114  ] . Furthermore, Radford et al. demonstrated that 
ANCA can directly activate neutrophils to become  fi rmly adherent to vessel walls, 
where they may obstruct  fl ow, initiate tissue damage and contribute to the pathogen-
esis of vasculitis  [  115  ] . These effects can be blocked by antibodies to Fc g RIIa and 
by antibodies to CD11b  [  115  ] . In more detail, Savage et al. showed that activation 
of neutrophils by ANCA causes integrin- and cytokine receptor-mediated adher-
ence to cultured endothelial cells and transmigration across the endothelial layer 
 [  116  ] . In addition, activation of neutrophils with ANCA causes a conformational 
change in beta-2 integrins that enhances ligand binding  [  116  ] . A role for adhesion 
molecules in the interaction between ANCA-activated neutrophils and vessels also 
is supported by immunohistologic evidence of upregulated adhesion molecules in 
glomerular lesions in renal biopsy specimens from patients with AAV  [  117  ] . In 
addition to binding to the surface of endothelial cells, both PR3 and MPO are inter-
nalized into endothelial cells, where they have different pathologic effects  [  118  ] . 
For example, after internalization, PR3 causes endothelial cell apoptosis, whereas 
MPO causes generation of intracellular oxidants  [  118  ] . These differences in MPO 
and PR3 interaction with endothelial cells could in fl uence the patterns of tissue 
injury induced when these antigens react with ANCA at the endothelial cell surface 
 [  111  ] . Furthermore, there is new evidence that after neutrophil activation by ANCA, 
the neutrophils are driven down an accelerated apoptotic death pathway by reactive 
oxygen species  [  119  ] . These neutrophils develop the morphologic features of apop-
tosis, but there is dysregulated coordination of cell surface changes that normally 
accompany apoptosis, including delay in phosphatidylserine expression  [  119  ] , 
which could contribute to failure of these apoptotic cells to be recognized and safely 
removed by phagocytes  [  119  ] . Apoptotic neutrophils eventually disintegrate, releas-
ing cytotoxic contents within vascular tissue. This process may explain the leucocy-
toclasia often seen in vasculitic lesions. Also pertaining to safe clearance of apoptotic 
neutrophils are two studies showing that apoptotic neutrophils can express protei-
nase-3 and myeloperoxidase at the cell surface, which can act as an opsonin for 
ANCA  [  120,   121  ] . Both apoptotic and ANCA opsonized apoptotic neutrophils can 
be phagocytosed by macrophages, but whereas the former induce an anti-in fl ammatory 
response from the macrophage release of interleukin-10, the latter are taken up more 
avidly and are proin fl ammatory by inducing macrophage release of interleukin-1, 
interleukin-8 and TNF  [  120,   121  ] . 

 The signalling cascades that lead to functional responses such as superoxide 
release are only beginning to be elucidated. Tyrosine kinases and protein kinase C 
are known to be involved  [  122  ] . Now, mitogen-activated protein kinases that require 
tyrosine phosphorylation for activation also have been implicated, particularly in 
TNF-mediated priming  [  123  ] . 

 Furthermore, in WG the granulomatous in fl ammation displays several different 
morphologies. Within a surrounding in fl ammatory background, poorly formed 
epithelioid cell granulomas, scattered histiocytic giant cells of Langhans type or 
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palisading histiocytes around central necrosis may be seen  [  124  ] . The mixed 
in fl ammatory in fi ltrate in WG is composed of lymphocytes, plasma cells, neutro-
phils, eosinophils, monocytes, macrophages, histiocytes and giant cells  [  124  ] . Since 
INF- g  and T cells play pivotal roles in granuloma formation, alterations of the T-cell 
and cytokine response could contribute to anomalous autoantigen presentation in 
ectopic lymphoid-like structures and sustain autoimmunity to PR3  [  125  ] . Skewing 
of the T-cell phenotype with expansion of the CD4+ and CD8+ T cells lacking 
CD28 expression is seen in WG  [  126,   127  ] . Expansion of CD28 negative T cells is 
already evident in localized WG and further increases in generalized disease  [  126, 
  127  ] . Abundant IFN- g , CD26 and Th-1 type CC chemokine receptor CCR5 expres-
sion are seen in granulomatous lesions of the respiratory tract in localized WG, but 
appear less strong in generalized WG  [  128,   129  ] . Moreover, a fraction of Th2 type 
IL-4 producing CCR3+ T cells is present in the circulation and tissue lesions in 
generalized but not in localized WG  [  128  ] . These data suggest that an aberrant Th-1 
type response favouring granuloma formation might play a role in initiation of WG 
 [  130  ] . Ectopic presentation of the Wegener’s autoantigen PR3 and autoimmunity to 
PR3 might be sustained within in fl ammatory lesions and by skewed T-cell and 
cytokine responses  [  130  ] . Progression from localized to generalized WG is associ-
ated with the appearance of another subset of Th-2 type cells, which could be a 
consequence of B-cell expansion and T-cell-dependent PR-3 ANCA production 
during disease progression  [  130  ] . In addition, Th17 cells have been recently 
described as major effector cells in autoimmune diseases  [  131  ] . It has been demon-
strated that stimulation of peripheral blood mononuclear cells from PR3-ANCA 
positive patients with WG with the autoantigen PR3 results in production of inter-
leukin (IL)-17 and not INF- g , demonstrating that the autoimmune effector cells are 
Th17 cells  [  132  ] . In healthy individuals regulatory T cells (Tregs) control the activ-
ity of immune effector cells  [  131  ] . There is increasing evidence that the balance 
between Th17 cells and Fox P3-positive regulatory T cells is disturbed in autoim-
mune in fl ammatory conditions  [  131  ] . In patients with WG in remission, the percent-
age of Fox P3-positive Tregs was shown to be increased but the cells were functionally 
de fi cient  [  133  ] . 

 Taken together, in vitro studies support a pathogenic role for the autoimmune 
responses to PR3 and MPO in AAV. Autoantibodies could be responsible for small-
vessel necrotizing vasculitis, whereas dysregulation of T-cell homoeostasis may 
underlie granulomatous in fl ammation.  

   In Vivo Studies 

 Evidence for a pathogenic role of MPO-ANCA in AAV comes from animal models 
for MPO-ANCA-associated vasculitis  [  134  ] . Xiao et al. immunized mice de fi cient for 
MPO with mouse MPO and transferred splenocytes from these immunized mice into 
immunode fi cient or normal mice  [  134  ] . The recipient mice developed pauci-immune 



492 The Molecular Biology and Treatment of Systemic Vasculitis in Children

necrotizing glomerulonephritis and haemorrhagic pulmonary capillaritis, similar to 
the clinical manifestations and the histopathology of MPO-ANCA-associated vas-
culitis  [  134  ] . In addition, transfer of IgG alone from MPO-immunized mice resulted 
in pauci-immune focal necrotizing glomerulonephritis in the recipient, demonstrat-
ing the pathogenic potential of anti-MPO antibodies  [  134  ] . Additional studies 
showed that both neutrophils expressing MPO and the alternative pathway of 
complement besides the antibodies are required to induce AAV as recipient mice 
de fi cient for factor B and complement C5 did not develop disease  [  135  ] . Also in a 
rat model of MPO-ANCA vasculitis, in which rats were immunized with human 
MPO, the pathogenic potential of anti-MPO antibodies was demonstrated  [  136  ] . 
Of note, however, no animal models for PR3-ANCA-associated WG have been 
generated  [  110  ] .  

   Microbial Factors as Triggers of AAV 

 A series of early observations have suggested that infectious episodes may trigger 
relapses of AAV  [  137  ] . Further studies of upper airway involvement in WG showed 
good responses to treatment with trimethoprim/sulphamethoxazole  [  138  ] . Long-
term studies demonstrated that chronic nasal carriage of  Staphylococcus aureus  is a 
major risk factor for relapse in WG in conjunction with persistence of ANCA, and 
maintenance treatment with trimethoprim/sulphamethoxazole reduced the occur-
rence of relapses by 60% in patients with WG  [  139  ] . Possible mechanisms whereby 
 S. aureus  could result in  fl ares of WG include SAg production and T- and B-cell 
activation, direct tropism of  S. aureus  for endothelial cells, with binding and inter-
nalization of the organism by endothelial cells or by priming of neutrophils  [  140  ] . 

 Recently, two studies have shed new light on the possible role of microbial fac-
tors in the pathogenesis of AAV. In the  fi rst study, antibodies to complementary PR3 
were detected in serum samples from patients with PR3-ANCA-associated vasculi-
tis  [  141  ] . Complementary PR3 is a protein translated from the antisense DNA strand 
encoding PR3. Such a complementary protein is a mirror of the original protein 
 [  141  ] . As such, antibodies to a complementary protein can induce anti-idiotypic 
antibodies that react with the original protein  [  141  ] . Pendergraft et al. immunized 
mice with complementary PR3, and these mice then developed antibodies to PR3 
 [  141  ] . This complementary PR3 shows homology with a number of microbial pro-
teins, including proteins from  S. aureus   [  141  ] . This raises the possibility that infec-
tion with  S. aureus  could lead to antibodies cross-reacting with complementary PR3, 
which, in turn, evoke antibodies to PR3 by idiotypic–anti-idiotypic interaction. 

 A second study describes antibodies to the lysosomal membrane glycoprotein 2 
(hLAMP-2) as a sensitive and speci fi c marker for pauci-immune crescentic glomeru-
lonephritis  [  142  ] . hLAMP-2 is present on neutrophils and endothelial cells  [  142  ] . 
Anti-hLAMP-2 antibodies, raised in rabbits, were able to activate neutrophils and 
induce apoptosis of human microvascular endothelial cells  [  142  ] . More importantly, 
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these antibodies induced pauci-immune focal necrotizing glomerulonephritis when 
injected into rats  [  142  ] . Eight out of nine amino acids of the P41–49 immunodominant 
epitope of hLAMP-2 were shown to be identical to the P72–80 peptide of FimH, an 
adhesion molecule of  fi mbriae of Gram negative bacteria  [  142  ] . Immunization of 
rats with FimH resulted in the generation of antibodies cross-reacting with hLAMP-2 
and inducing pauci-immune glomerulonephritis  [  142  ] . These observations suggest 
that infection with Gram negative bacteria could result in a loss of tolerance and 
could lead to AAV.  

   Genetics 

 A number of candidate gene association studies have identi fi ed variants associated 
with an increased incidence of AAV  [  143  ] . Most of the genes described so far 
encode proteins involved in the immune response and are summarized in Table  2.3 . 
Of note, the genes with variants most strongly associated with AAV, the MHC and 
 PTPN22  genes, also have variants associated with other autoimmune diseases, 
including rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus 
(SLE)  [  143  ] . This suggests that genetic risk factors common to other autoimmune 
diseases also apply to AAV. Different variants within each gene may be associated 
with different polymorphisms—for example, SLE associates with the IL-2RA SNP 
rs11594656, while AAV is associated with rs4129506  [  143  ] . A GWAS of AAV is 
currently ongoing and may be enlightening in that respect.  

 Furthermore, Ciavatta et al., in an attempt to uncover a potential transcriptional 
regulatory mechanism for PR3 and MPO disrupted in patients with ANCA vasculi-
tis, examined the PR3 and MPO loci in neutrophils from ANCA patients and healthy 
control individuals for epigenetic modi fi cations associated with gene silencing 
 [  173  ] . They demonstrated that levels of the chromatin modi fi cation H3K27me3, 
which is associated with gene silencing, were depleted at PR3 and MPO loci in 
ANCA patients compared with healthy controls  [  173  ] . Interestingly, in both patients 
and controls, DNA was unmethylated at a CpG island in PR3, whereas in healthy 
controls, DNA was methylated at a CpG island in MPO  [  173  ] . Consistent with 
decreased levels of H3K27me3, JMJD3, the demethylase speci fi c for H3K27me3, 
was preferentially expressed in ANCA patients versus healthy controls  [  173  ] . In 
addition, the mechanism for recruiting the H3K27 methyltransferase enhancer of 
zeste homolog 2 (EZH2) to PR3 and MPO loci was shown to be mediated by 
RUNX3. RUNX3 message was decreased in patients compared with healthy con-
trols, and may also be under epigenetic control  [  173  ] . DNA methylation was 
increased at the RUNX3 promoter in ANCA patients  [  173  ] . These data indicate that 
epigenetic modi fi cations associated with gene silencing are perturbed at ANCA 
autoantigen-encoding genes, potentially contributing to inappropriate expression of 
PR3 and MPO in ANCA patients  [  173  ] .  
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   Clinical Features 

 WG typically affects the upper and lower respiratory tract and is associated with 
glomerulonephritis, although the disease can affect any organ system in the body 
 [  34  ] . From a clinical perspective, it may be useful to think of WG as having two 
forms: a predominantly granulomatous form with mainly localized disease with a 

   Table 2.3    Positive genetic association studies in antineutrophil cytoplasmic antibody-associated 
systemic vasculitis   

 Molecule/genetic polymorphism  Disease  Reference 

 HLA DPB1*0401  WG   [  144  ]  
 HLA DPB1*0401  WG   [  145  ]  
 HLA B50  WG   [  146  ]  
 HLA DR9  WG   [  146  ]  
 HLA DQw7  WG, MPA   [  147  ]  
 HLA DR3  WG, MPA   [  147  ]  
 HLA DR1  WG   [  148  ]  
 HLA DR4  WG, MPA, CSS, RL   [  149  ]  
 HLA DR6  WG, MPA, CSS, RL   [  149  ]  
 HLA DRB4  CSS   [  150  ]  
 HLA DRB3  CSS   [  150  ]  
 HLA DRB4  CSS   [  151  ]  
 HLA DRB3  CSS   [  151  ]  
 PTPN22-620W  WG   [  152  ]  
 PTPN22-620W  WG, MPA, CSS   [  153  ]  
 IL-2RA rs41295061  WG, MPA, CSS   [  154  ]  
 CTLA4 −318T  WG   [  155  ]  
 CTLA4 +49G  WG, MPA, CSS, RL   [  156  ]  
 CTLA4 rs3087243  WG, MPA, CSS   [  153  ]  
 PRTN3 −564G  WG   [  157  ]  
 AAT Z allele  WG, MPA, RL   [  158  ]  
 AAT Z allele  WG, MPA, RL   [  159  ]  
 AAT Z allele  WG   [  160  ]  
 AAT Z allele  WG   [  161  ]  
 AAT Z allele  WG   [  162  ]  
 C3F  WG, MPA   [  163  ]  
 CD18 Ava II  MPO positive   [  164  ]  
 IL-10 microsatellite  WG   [  165  ]  
 IL-10 (−1082) AA genotype  WG, MPA   [  166  ]  
 IL-10 haplotype  CSS   [  167  ]  
 LILRA2 intron 6 AA genotype  MPA   [  168  ]  
 CD226 rs763361  WG   [  169  ]  
 FCGR2A R131 RR genotype with FCGR3A F158 FF  WG   [  170  ]  
 FCGR3B copy number high  WG, MPA, CSS   [  171  ]  
 FCGR3B copy number low  WG   [  171  ]  
 FCGR3B copy number low  MPA   [  171  ]  
 FCGR3B copy number low  WG   [  172  ]  
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chronic course; and a  fl orid, acute small vessel vasculitic form characterized by 
severe pulmonary haemorrhage and/or rapidly progressive vasculitis or other severe 
vasculitic manifestation  [  34  ] . These two broad presentations may coexist or present 
sequentially in individual patients. Symptoms and signs of upper respiratory tract 
involvement include epistaxis, otalgia and hearing loss (conductive and sensorineu-
ral)  [  34  ] . Nasal septal involvement with cartilaginous collapse results in the charac-
teristic saddle nose deformity, although this may not be present at initial presentation 
 [  34  ] . Chronic sinusitis may be observed. Glottic and subglottic polyps and/or large- 
and medium-sized airway stenoses can result from granulomatous in fl ammation 
 [  34  ] . Lower respiratory tract manifestations also include granulomatous pulmonary 
nodules with or without central cavitation and pulmonary haemorrhages that can be 
relatively asymptomatic but result in evanescent pulmonary shadows on chest X-ray, 
or catastrophic pulmonary haemorrhage from pulmonary capillaritis associated with 
respiratory failure and high mortality  [  34  ] . 

 The typical renal lesion is a focal segmental necrotizing glomerulonephritis, with 
pauci-immune crescentic glomerular changes  [  34  ] . Clinical manifestations include 
hypertension, signi fi cant proteinuria, nephritic and nephrotic syndrome, and ulti-
mately the protean clinical features renal failure  [  34  ] . Other manifestations include 
orbital involvement with granuloma, retinal vasculitis, peripheral gangrene with 
tissue loss, and vasculitis of the skin, gut, heart, central nervous system and/or 
peripheral nerves (mononeuritis multiplex), salivary glands, gonads and breast  [  34  ] . 
Non-speci fi c symptoms such as malaise, fever, weight loss or growth failure, arth-
ralgia and arthritis are relatively common  [  34  ] .  

   Treatment of AAV 

 Renal morbidity and mortality is a major concern in the AAV, hence therapy aimed 
at preservation of renal function is a recurring theme for the treatment of AAV in 
adults and children  [  174  ] . Treatment for paediatric AAV is broadly similar to the 
approach in adults, with corticosteroids, cyclophosphamide (usually 6–10 intrave-
nous doses at 500–1,000 mg/m2     [  2  ]  per dose given 3–4 weekly; alternatively given 
orally at 2 mg/kg/day for 2–3 months), plasma exchange (particularly for pulmo-
nary capillaritis and/or rapidly progressive glomerulonephritis-“pulmonary-renal 
syndrome”) routinely employed to induce remission  [  3,   175  ] . Intravenous pulsed 
cyclophosphamide is increasingly favoured over oral continuous cyclophosphamide 
in adults because of reduced cumulative dose and less neutropenic sepsis  [  176,   177  ]  
and is thus increasingly used to treat children with AAV as well, albeit without good 
paediatric evidence. This is followed by low-dose corticosteroids and azathioprine 
(1.5–3 mg/kg/day) to maintain remission  [  3,   178  ] . Anti-platelet doses of aspirin 
(1–5 mg/kg/day) are empirically employed on the basis of the increased risk of 
thrombosis associated with the disease process  [  179  ] . Methotrexate may have a role 
for induction of remission in patients with limited WG  [  180  ] , but is less commonly 
used as an induction agent in children with AAV. Co-trimoxazole is commonly 
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added for the treatment of WG, particularly in those with upper respiratory tract 
involvement, serving both as prophylaxis against opportunistic infection and as a 
possible disease-modifying agent  [  139  ] . Recommendations regarding duration of 
maintenance therapy are based on adult trial data, suggesting that the strongest pre-
dictor of relapse is withdrawal of therapy, and hence maintenance therapy should be 
continued for several years  [  174  ] . As a general therapeutic measure, prophylaxis 
against osteoporosis, gastrointestinal ulceration and infection (bacterial, protozoal 
and fungal) is standard for treatment for AAV  [  174  ] . 

 As the use of cyclophosphamide contributes to morbidity and mortality  [  3,   174  ]  
with infection playing a prominent role  [  181  ] , and disease relapses occur in 50% of 
the patients with AAV as drugs are reduced or withdrawn, newer immunosuppres-
sive agents and immunomodulatory strategies are being explored in both adults and 
children  [  3,   174  ] . Such treatments include MMF and rituximab, which have already 
been reported to be effective at inducing or maintaining remission in adults with 
AAV  [  182,   183  ] . Of interest, two recent randomized control trials reported on the 
ef fi cacy of rituximab compared to cyclophosphamide to induce remission in adults 
with AAV  [  184,   185  ] . Jones et al. report on the results of a randomized trial of ritux-
imab versus cyclophosphamide in ANCA-associated renal vasculitis (RITUXIVAS) 
and Stone et al. report on the results of the rituximab in ANCA-associated vasculitis 
(RAVE) trial  [  184,   185  ] . Similar conclusions are reached in the two studies  [  184,   185  ] . 
Both trials showed that rituximab was ef fi cacious in inducing a remission, as com-
pared with intravenous cyclophosphamide (in the RITUXIVAS trial) or oral cyclo-
phosphamide (in the RAVE trial)  [  184,   185  ] . There are, however, a number of 
important differences between the two trials. In the RITUXIVAS trial, patients who 
were randomly assigned to the rituximab group also received at least two doses of 
intravenous cyclophosphamide, whereas in the RAVE trial, patients randomly 
assigned to the rituximab group did not receive any cyclophosphamide  [  184,   185  ] . 
The trials were similar in that all patients in both trials received both intravenous 
and oral glucocorticoid therapy  [  184,   185  ] . Investigators in the RITUXIVAS trial 
reported sustained remission for 12 months, whereas outcome data from the RAVE 
trial were reported only on the 6-month remission-induction period  [  184,   185  ] . The 
RAVE trial data were confounded by the use of glucocorticoid therapy for 5 of the 
6 months of follow-up  [  185  ] . In addition, both trials raised concerns about the sub-
stantial complications from the use of rituximab and other immunomodulating 
agents in ANCA-associated disease  [  184,   185  ] . Fewer adverse events would have 
been expected in patients treated with rituximab as compared with cyclophosph-
amide. Unfortunately, in the RAVE trial the rate of adverse events was equivalent in 
the two study groups  [  185  ] . Similarly, in the RITUXIVAS study, 6 of 33 patients in 
the rituximab group died, as did 2 of 11 patients in the control group  [  184  ] . The 
RAVE trial also showed an unexpectedly elevated number of malignant conditions 
detected over a relatively short treatment period  [  185  ] . These studies suggest that 
rituximab might be considered as an option for  fi rst-line therapy for induction of 
remission of ANCA-associated disease. It remains unclear whether rituximab 
should be used with glucocorticoids alone or in combination with intravenous 
cyclophosphamide. 
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 Biologic therapy is also increasingly used to treat children with small vessel 
vasculitis, including AAV and ANCA negative vasculitides  [  186  ] . Agents used 
include rituximab (previously mentioned), anti-TNF- a  (etanercept, in fl iximab, and 
adalimumab), and anakinra (recombinant interleukin 1 receptor antagonist)  [  186  ] . 
These therapies are mainly reserved for those children who have failed standard 
treatment, or in those patients where cumulative cyclophosphamide and/or corticos-
teroid toxicity is of particular concern  [  186  ] . Of note is the European vasculitis 
study group (EUVAS) MYCYC trial (UK and Europe), which is comparing induc-
tion therapy of WG and MPA using cyclophosphamide (standard therapy) versus 
MMF (experimental therapy). This is the  fi rst EUVAS trial to include children as 
well as adults and is actively recruiting patients under the age of 17 years in the UK. 
For a full list of the past and present EUVAS trials for AVV, the reader is directed 
to:   http://www.vasculitis.org/    .  

   Outcome 

 The AAV still carry considerable disease-related morbidity and mortality, particu-
larly due to progressive renal failure or aggressive respiratory involvement, and 
therapy-related complications such as sepsis. The mortality for paediatric WG from 
one recent paediatric series was 12% over a 17-year period of study inclusion  [  187  ] . 
The largest paediatric series of WG reported 40% of cases with chronic renal impair-
ment at 33 months follow up despite therapy  [  188  ] . For MPA in children, mortality 
during paediatric follow up is reportedly less than 14%  [  189  ] . For CSS in children, 
the most recent series quotes a related mortality of 18%, all attributed to disease 
rather than therapy  [  190  ] .      

   Polyarteritis Nodosa 

 Systemic polyarteritis nodosa (PAN) is rare in childhood. Although the epidemiol-
ogy is poorly de fi ned, PAN occurs more commonly in children than in adults, as 
well as being more common than the AAV  [  56  ] . Disease manifestations are diverse 
and complex, ranging from the benign cutaneous form to the severe disseminated 
multi-systemic form  [  56  ] . 

   Pathogenesis 

 The immunopathogenesis leading to vascular injury in PAN is probably heteroge-
neous  [  56  ] . Based on animal models, the mechanism of vascular in fl ammation 

http://www.vasculitis.org/
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implicated most often is induction by immune complexes  [  56  ] . In addition, there are 
some data supporting a role for hepatitis B in some patients  [  191  ]  and reports of a 
higher frequency of exposure to parvovirus B19 and cytomegalovirus in PAN 
patients compared to control populations  [  192,   193  ] . HIV has also been implicated 
and PAN-like illnesses have additionally been reported in association with cancers 
and haematological malignancies  [  194,   195  ] . However, associations between PAN 
and these infections or other conditions are rare in childhood. Streptococcal infec-
tion may be an important trigger  [  195  ] , and indirect evidence suggests that bacterial 
SAgs may play a role in some cases  [  56  ] . In terms of pathogenetic mechanisms, it 
seems likely that the immunological processes involved are similar to those in other 
systemic vasculitides and include immune complexes, complement, possibly 
autoantibodies, cell adhesion molecules, cytokines, growth factors, chemokines, 
neutrophils and T cells  [  196,   197  ] . Of note, immunohistochemical studies per-
formed on biopsied perineural and muscle vessels from homogeneous populations 
of PAN patients showed that in fl ammatory in fi ltrates consist mainly of macrophages 
and T lymphocytes, particularly of the CD8+ subset  [  198  ] . To date, there is no reli-
able animal model of the disease. The PAN-like disease in cynomolgus macaques, 
which is very similar to the human disease, occurs only sporadically  [  199,   200  ] . 
Snyder et al. described a PAN-like illness arising spontaneously in beagle dogs, but 
to date this animal model has not provided insight to the pathogenesis of PAN in 
humans  [  201  ] . 

 Furthermore, it is assumed that there are probably genetic predisposing factors 
that may make individuals vulnerable to develop PAN, as have also been considered 
for other vasculitides  [  202–  204  ] . An example of this is the link with familial 
Mediterranean fever  [  56,   205  ] . Yalcinkaya et al. have recently reported on the prev-
alence of FMF mutations in 29 children with PAN showing that 38% of the patients 
were carriers of MEFV mutations  [  205  ] .  

   Clinical Features 

 The new EULAR/PRINTO/PRES classi fi cation criteria for PAN are as follows: 
histopathological evidence of necrotizing vasculitis in medium- or small-sized 
arteries or angiographic abnormality (aneurysm, stenosis or occlusion) as a manda-
tory criterion, plus one of the following  fi ve—skin involvement, myalgia or muscle 
tenderness, hypertension, peripheral neuropathy and renal involvement  [  8  ] . The 
main clinical features of PAN are malaise, fever, weight loss, skin rash, myalgia, 
abdominal pain and arthropathy  [  56  ] . Additional features include ischemic heart 
and testicular pain; renal manifestations such as haematuria, proteinuria and hyper-
tension; and neurologic features such as focal defects, haemiplegia, visual loss, 
mononeuritis multiplex and organic psychosis. Livido reticularis is also a charac-
teristic feature, and occasionally subcutaneous nodules overlying affected arteries 
are present.  
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   Treatment 

 For many years, the treatment of PAN has involved the administration of high-dose 
steroid with an additional cytotoxic agent such as cyclophosphamide to induce 
remission  [  56,   206–  208  ] . Empirically, aspirin has also been given as an anti-platelet 
agent by some clinicians  [  209  ] . Once remission is achieved maintenance therapy 
with daily or alternate day prednisolone and oral azathioprine is frequently utilized 
for about 18 months. Adjunctive plasma exchange can be used in life-threatening 
situations  [  210  ] . Biologic agents such as in fl iximab and rituximab are increasingly 
used  [  185,   211–  215  ] . Treatment for cutaneous PAN is typically much less aggres-
sive. Agents commonly utilized include low-dose prednisolone, anti-platelet agents, 
colchicine, hydroxychloroquine or azathioprine  [  56  ] . However, in a few cases cuta-
neous PAN may progress over time to the systemic form of the disease and therefore 
require more aggressive therapy  [  56  ] .  

   Outcome 

 Ozen et al. reported on a retrospective series of childhood PAN and improved out-
come compared to that reported in adults with only 1 (1.1%) death and 2 (2.2%) 
patients with end-stage renal disease among 110 patients  [  195  ] . Of note, however, 
in that series 30% of patients were classi fi ed as having cutaneous PAN, which typi-
cally has a more benign course than systemic PAN  [  195  ] .   

   Takayasu Arteritis 

 TA is a predominantly large vessel vasculitis with a worldwide distribution, although 
the disease is most common in Asia  [  216  ] . Onset of TA is most common during the 
third decade of life but has been well reported in young children  [  216  ] . 

   Pathogenesis 

 Even though the precise factors responsible for the arterial damage in TA are 
unknown, it is believed that genetically linked immune responses to unidenti fi ed 
antigens may incite autoimmune damage by cell-mediated or humoral pathways, 
resulting in the disease and its relapses  [  216  ] . In the acute phase of TA, the 
in fl ammatory lesions originate in the vasa varum and are characterized by perivas-
cular cuf fi ng mainly composed of  g  d T lymphocytes, cytotoxic lymphocytes and T 
helper cells  [  217  ] . Luminal stenosis of advential small arteries due to intimal thick-
ening is relatively common  [  217  ] . In the chronic stage of TA, intimal  fi brosis is often 
accompanied by well-formed  fi brous atherosclerotic plaques and calci fi cation  [  217  ] . 
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Furthermore, autoantibodies against aortic endothelial cells have been proposed as 
a key factor in the pathogenesis of TA  [  218,   219  ] . Chauhan et al. reported that 
patients with TA show circulating anti-aortic endothelial cell antibodies (AAECAs) 
directed against 60–65 kDa heat-shock proteins (HSPs 60/65)  [  218,   219  ] . Sera from 
AAECA-positive patients with TA were found to induce apoptosis of aortic endothe-
lial cells, suggesting that these antibodies may have a role in the disease pathogen-
esis  [  218  ] . Lastly, while previous reports have suggested a link between TA and 
tuberculosis, additional studies have not supported this association  [  220  ] .  

   Genetics 

 Familial occurrence of the disease has been extensively reported, leading to a 
hypothesis for a hereditary basis  [  221  ] . The genetic association of TA with HLAB52, 
and particularly B*5201 that has been observed, with high estimated OR (4.7–10.2), 
in multiple cohorts of diverse ethnicity (East Asia, South Asia and Mexico)  [  222  ] . 
In addition, a hypothesis was made, based on a Japanese cohort, that an even stron-
ger association can be identi fi ed, considering HLA alleles that share the motif of 
glutamate at position 63 and serine at position 67, which characterizes B*3902 as 
well as B*5201  [  223  ] . Data supporting this hypothesis were recently reported using 
a Mexican cohort  [  222  ] . Candidate gene studies have also reported associations 
with interleukin (IL)-12, IL-2 and IL-6 gene polymorphisms in a Turkish cohort but 
have not been replicated  [  4,   32  ] .  

   Clinical Features 

 Clinical diagnosis of TA is commonly challenging for the clinician. It is estimated 
that one-third of children present with inactive, so-called burnt-out stage of disease, 
in which clinical features represent vascular sequelae rather than active vasculitis 
 [  216  ] . The natural history and the time from onset of symptoms to diagnosis are 
variable. The clinical spectrum at presentation of children with TA differs from that 
of adults; however, hypertension is the most common symptom in both groups 
 [  216  ] . Cakar et al. recently reported in a series of 19 children with TA that the most 
common complaints at presentation were headache (84%), abdominal pain (37%), 
claudication of extremities (32%), fever (26%) and weight loss (10%)  [  224  ] . One 
child presented with visual loss. Examination on admission revealed hypertension 
(89%), absent pulses (58%) and arterial bruits (42%) in the same cohort  [  224  ] .  

   Treatment 

 Corticosteroids are still the mainstay of treatment for TA  [  4,   216  ] . In addition, MTX, 
azathioprine, MMF and cyclophosphamide have been used in children  [  4,   216  ] . 
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Ozen et al. described six children with TA, and treatment with steroid and cyclo-
phosphamide induction followed by MTX was suggested as effective and safe for 
childhood TA with widespread disease  [  225  ] . Anti-TNF therapy may be bene fi cial 
 [  226  ] . Surgical intervention is frequently required to alleviate end-organ ischemia 
and hypertension resulting from vascular stenoses  [  216  ] .  

   Outcome 

 The mortality rate in children has been reported as high as 35%  [  216  ] . The outcome 
depends on the vessel involvement and on the severity of hypertension  [  216  ] .   

   Novel Biomarkers for Vasculitis Disease Activity: 
Tracking Endothelial Injury and Repair 

 Initially considered as a single cell lining of the vascular tree, the endothelium has 
recently emerged as a dynamic interface responsive to environmental stimuli 
 [  227  ] . As a result, alteration of the endothelium generates a repertoire of biologi-
cal responses playing a key role in the control of vascular homeostasis such as 
haemostasis, in fl ammation or angiogenesis  [  228  ] . As a consequence, the endothe-
lium not only displays altered functions but also loses its integrity. Endothelial 
microparticles (EMPs) released from activated or apoptotic endothelial cells and 
whole endothelial cells, circulating endothelial cells (CECs), detached from 
injured vessels constitute a fundamental feature of these injurious responses 
affecting the vessel wall  [  229–  231  ] . In response to injury, regenerative mecha-
nisms are activated to restore endothelium integrity  [  232  ] . In the past, endothelial 
repair was considered to solely involve adjacent endothelial cells able to replicate 
locally and replace the lost cells. Since the original study by Asahara et al., it has 
become obvious that the recruitment of endothelial progenitor cells (EPCs) repre-
sents an additional mechanism for vascular repair  [  232  ] . These stem cells are 
mobilized from the bone marrow and are able to differentiate into mature cells, 
restoring endothelial integrity at sites of vascular injury  [  232  ] . This spectrum of 
endothelial responses can be considered in a dynamic triad “activation/injury/
repair”, which has critically transformed our understanding of endothelial 
biology. 

 CECs and EMPs are sensitive biomarkers of vascular injury for monitoring dis-
ease activity and response to therapy in children with vasculitis  [  233  ] . In addition, 
preliminary data show altered endothelial repair responses in children with systemic 
vasculitis, suggesting an unfavourable balance of endothelial injury and repair in 
childhood vasculitis  [  234  ] .  
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   Does Vasculitis in Childhood Predispose to Accelerated 
Atherosclerosis? 

 Several key aspects of the long-term outcome of vasculitis in the young remain of 
ongoing concern. Histological  fi ndings seen in KD arteries at sites of previous aneu-
rysmal lesions long after disease resolution appear to be indistinguishable from ath-
erosclerosis  [  235  ] . Dhillon et al. studied vascular responses to reactive hyperemia in 
the brachial artery using high-resolution ultrasound  [  106  ] . Flow-mediated dilation 
(an endothelial-dependent response) was reduced in KD patients compared with 
control subjects many years after the illness, even in patients without detectable 
early coronary artery involvement. In addition, Cheung et al. studied a cohort of 
patients with KD with or without coronary aneurysms compared to healthy controls 
and demonstrated reduced arterial distensibility (an independent risk factor for car-
diovascular morbidity and mortality in adults), as assessed using ultrasound pulse 
wave velocity in the brachio-radial arterial segments and carotid IMT  [  236  ] . Similar 
 fi ndings have also been documented in children with PAN  [  237  ] . Thus, the long-
term outlook for patients with systemic vasculitis must remain guarded at the pres-
ent time.  

   Conclusions and Future Directions 

 A series of signi fi cant short- and long-term challenges are looming in the  fi eld of 
paediatric vasculitis research. The development of biomarkers that allow reliable 
non-invasive monitoring of disease activity and guide therapeutic decisions is of 
great clinical importance  [  233,   238  ] . Furthermore, several key aspects of the long-
term cardiovascular risk for children who have systemic vasculitis are described 
 [  239  ] . The emergence of new therapies for the treatment of vasculitis in children 
provides a real opportunity to limit cyclophosphamide and corticosteroid exposure 
in the young. These include MMF  [  182,   183,   240,   241  ]  and biologic agents such as 
rituximab  [  184,   185,   187  ] , anti-TNF- a   [  187,   242  ]  and thalidomide analogues such 
as lenalidomide  [  243  ] , amongst others. None of these agents yet has an evidence 
base to justify their routine use in paediatric vasculitis, although many are increas-
ingly used in this context in individual cases. It is likely that in the future clinical 
trials in the young will attempt to focus on these agents as alternatives to cyclophos-
phamide and azathioprine for induction of and/or maintenance of remission of sys-
temic vasculitis. These sorts of trials will require international collaboration if 
meaningful patient numbers are to be realized, and this remains an important chal-
lenge for vasculitis research in children.      
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