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Abstract
Purpose Inherited variants in the cancer susceptibility genes, BRCA1 and BRCA2 account for up to 5% of breast cancers. 
Multiple gene expression studies have analysed gene expression patterns that maybe associated with BRCA12 pathogenic 
variant status; however, results from these studies lack consensus. These studies have focused on the differences in population 
means to identified genes associated with BRCA1/2-carriers with little consideration for gene expression variability, which 
is also under genetic control and is a feature of cellular function.
Methods We measured differential gene expression variability in three of the largest familial breast cancer datasets and a 
2116 breast cancer meta-cohort. Additionally, we used RNA in situ hybridisation to confirm expression variability of EN1 
in an independent cohort of more than 500 breast tumours.
Results BRCA1-associated breast tumours exhibited a 22.8% (95% CI 22.3–23.2) increase in transcriptome-wide gene expres-
sion variability compared to BRCAx tumours. Additionally, 40 genes were associated with BRCA1-related breast cancers 
that had ChIP-seq data suggestive of enriched EZH2 binding. Of these, two genes (EN1 and IGF2BP3) were significantly 
variable in both BRCA1-associated and basal-like breast tumours. RNA in situ analysis of EN1 supported a significant 
(p = 6.3 ×  10−04) increase in expression variability in BRCA1-associated breast tumours.
Conclusion Our novel results describe a state of increased gene expression variability in BRCA1-related and basal-like 
breast tumours. Furthermore, genes with increased variability may be driven by changes in DNA occupancy of epigenetic 
effectors. The variation in gene expression is replicable and led to the identification of novel associations between genes 
and disease phenotypes.
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Abbreviations
SD  Standard deviations
CV  Coefficient of variance
MAD  Median absolute deviation
RNA ISH  RNA in situ hybridisation
ER  Oestrogen receptor
DV  Differentially variable

Introduction

Gene expression profiles have been used extensively in 
the study of cancer development, treatment response and 
prognosis. In particular, gene expression signatures have 
been developed to classify tumour subtypes [1, 2], predict 
response to endocrine treatment [3, 4], indicate prognosis [3, 
5, 6] and predict tumour recurrence [4]. The development of 
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these signatures has relied on capturing a change in average 
expression between biological groups (e.g. poor respond-
ers versus good responders) and subsequently validating 
these results in independent datasets. The variability in gene 
expression levels (e.g. across samples) is often ignored and 
is generally only considered in terms of the impact it has on 
statistical power. However, gene expression variability has 
been shown to be under genetic control and important to cel-
lular function [7–11]. Gene expression variability has been 
used to evaluate transcriptomic data in human disease and 
development [12–15]. By isolating individual embryonic 
cells, researchers have shown that gene expression variabil-
ity provides insights into gene regulation that is essential 
throughout embryonic development [12]. Differences in 
gene expression variability have also been investigated to 
improve our understanding of cancer biology. Although a 
few studies have been reported to date, this approach has led 
to the identification of a pan-cancer gene set [16], a classifier 
for chronic lymphocytic leukaemia [17] and synthetic lethal 
genes in BRCA2-associated ovarian tumours [18]. These 
studies measured gene expression variability of whole-
transcriptome data generated from microarray or RNA-
sequencing platforms. Two of these studies highlighted the 
utility of measuring global gene expression variability from 
microarray data to classify leukaemia subtypes [17] and to 
identify a 48 gene set as a predictive marker of cancer meta-
static potential and patient survival [16]. One study identi-
fied genes from RNA-sequencing data with potential syn-
thetic lethal interactions with BRCA2 in ovarian cancer [18]. 
Genetic variants in BRCA1 and BRCA2 predispose women 
to breast and ovarian cancers and are believed to contribute 
to 5–10% of all breast cancers and 20–40% of familial breast 
cancers [19, 20]. Despite representing distinct tumour types, 
there has been limited success in identifying gene expression 
profiles related to BRCA1 and BRCA2 pathogenic variants in 
either tumour [3, 21–24] or normal tissue [25–28]. Across 
all studies, consensus on altered genes and pathways has 
been poor, with gene expression profiles influenced by study 
design rather than variant classification [29]. For example, 
early studies were confounded by differences in oestrogen 
receptor (ER) status of BRCA1-associated tumours com-
pared to sporadic [21]. The ER status of breast tumours 
was later identified to be a major driver of gene expression 

changes [3]. These studies have also overlooked the vari-
ability in gene expression and whether these phenotypes are 
associated with the presence of a pathogenic variant.

In this study, we investigate transcriptomic data across 
multiple breast tumour datasets using differential variability 
analysis to identify genes that are associated with BRCA1 
and BRCA2 pathogenic variant status and with different 
tumour subtypes. We also utilised RNA in situ hybridisation 
as an orthogonal approach to validate inter-tumour expres-
sion variability of a candidate gene in an independent cohort 
of breast tumours.

Methods

Data collection

For gene expression variability analyses, we included any 
microarray dataset containing gene expression profiles on at 
least 50 breast tumours, of which > 25 samples were either 
BRCA1- or BRCA2-associated breast tumours (Table 1). 
Raw data were acquired through GEO (https:// www. ncbi. 
nlm. nih. gov/ geo/) for three datasets (GSE19177, GSE27830 
and GSE49481) generated on Illumina, Affymetrix and Agi-
lent microarray platforms, respectively [23, 30, 31]. Raw 
intensities collected on the Illumina and Agilent arrays were 
normalised using quantile normalisation. Additionally, for 
the Agilent array only the intensity values (CY5 channel) 
corresponding to breast tumour RNA were considered. Raw 
intensities obtained on the Affymetrix arrays were normal-
ised using the RMA algorithm [32].

In addition, a retrospective microarray dataset of well-
curated breast cancer gene expression profiles [33] was uti-
lised for a subtype-centric analysis [33]. Briefly, all samples 
were profiled on one of the Affymetrix U133A, U133A2 or 
U133plus2 GeneChip arrays. For consistency, only probes 
common to all arrays were retained. Individual arrays were 
normalised using the RMA method and batch effects were 
corrected using the COMBAT method [34]. The resulting 
dataset consisted of 2116 breast tumours and 22,268 probes.

Lastly, we accessed the METABRIC dataset through cbi-
oportal (www. cbiop ortal. org/), in order to investigate DV 
genes relationship with molecular features.

Table 1  Breast cancer datasets

*Includes Affymetrix U133A, U133plus2 and U133A2

Dataset Repository (GEO) No. of samples
(BRCA1/2)

Array platform

Waddell GSE19177 74 (49) Illumina Human 6v.2
Nagel GSE27830 129 (53) Affymetrix HG U133 plus 2.0
Larsen GSE49481 253 (55) Agilent SurePrint G3
Meta-cohort – 2116 Affymetrix HG-U133 series*

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.cbioportal.org/
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Transcriptome‑wide gene expression variability 
analysis

Transcriptome-wide gene expression variability was 
compared between BRCA1-associated tumours and non-
BRCA1/2 (BRCAx) hereditary breast tumours, BRCA2-asso-
ciated tumours and BRCAx and Basal-like and non-basal 
(luminal A, luminal B, HER2 and normal-like) tumours. To 
assess transcriptome-wide changes, tumour type-specific 
standard deviation (SD), coefficient of variance (CV) and 
median absolute deviation (MAD) were calculated for each 
gene. Pairwise linear regression models were calculated 
between tumour groups for each gene-specific statistics (i.e. 
SD, CV, MAD and mean) and the resulting β (slope coef-
ficient) was compared to a model of tumour equity (β = 1). 
We defined the difference in expression variability between 
tumour groups as the percentage change in the slope coef-
ficient compared to model of tumour equity (1 – β × 100). 
Additionally, pairwise polynomial regression was performed 
to investigate non-linear relationships between tumour-spe-
cific statistics.

Differential expression variability analysis

Genes were considered to exhibit differential expression 
variability (hereafter referred to as differentially variable—
DV-genes) if the spread of expression values differed signifi-
cantly between two tumour groups. For these analyses, the 
same tumour comparison was made as in the transcriptome-
wide analyses (i.e. BRCA1 versus BRCAx, BRCA2 versus 
BRCAx and basal-like versus non-basal). Robust measures 
of spread were used to avoid spuriously large differences 
caused by outlying expression values. Spread was quanti-
fied by the median absolute deviation (MAD) and groups 
were compared by the Brown–Forsythe method [35], essen-
tially an ANOVA on expression values about their medians, 
with p-values adjusted for multiple testing [36] was used to 
determine significance. Ratios of MADs with 95% confi-
dence intervals [37] were used to quantify changes in spread 
between groups.

Breast cancer tissue microarrays

Women diagnosed with breast cancer were identified from 
1800 families recruited into the Kathleen Cunningham Con-
sortium for Research into Familial Breast Cancer (kConFab) 
[38]. For inclusion in this consortium, families must have a 
strong family history of breast and/or ovarian cancer, or be 
known to be segregating a germline variant in genes such as 
BRCA1 and BRCA2 (see www. kconf ab. org for recruitment 
criteria). Breast cancer cases on tissue microarrays (TMAs) 
were verified from pathology reports. Ethics approval was 
obtained from the HREC at the Peter MacCallum Cancer 

Centre (97/27) and through the University of Otago Human 
Ethics Committee (H14/088). Informed consent at study 
entry was obtained from all participants, allowing access to 
medical/treatment reports, blood collection and tumour tis-
sue collections. For deceased participants proxy consent was 
obtained from the next of kin. Where applicable, cause of 
death was verified from a death certificate, doctor or hospital 
medical records. Treatment and medical notes were accessed 
through physicians, hospitals, laboratories and State Cancer 
Registries.

Confirmation of a participant’s germline mutation status 
was performed using a variety of sequencing platforms in the 
Molecular Pathology NATA-accredited clinical laboratory. 
Variants were assigned a class C4–C5 (pathogenic) mutation 
status according to a 5-tier clinical classification introduced 
by ENIGMA (http:// www. enigm acons ortiu morg).

RNA in situ hybridisation (RNAscope)

The mRNA expression level for EN1 was investigated using 
the RNAscope 2.0 BROWN assay (Advanced Cell Diagnos-
tics, Inc.) following manufacturers’ instructions. Addition-
ally, mRNA levels of PPIB and the bacterial gene dapB were 
used as positive and negative controls, respectively. Briefly, 
TMA sections were deparaffinised in a series of xylene and 
100% ethanol steps. Sections were subjected to a series of 
pre-treatments before each section was incubated with target 
or control probes for 2 h at 40 °C in a HybEZ™ Oven. Probe 
signal was amplified through a series of amplification steps 
and colour development was done using diaminobenzidine 
(DAB).

Scoring/counting signals

All TMA cores were scored for abundance of PPIB and 
DapB signals where a positive signal was assessed as a 
brown punctuate dot within a cell. Supplementary Table 1 
describes the criteria for each score. Briefly, a score of ‘0’ 
described an absence of signal, ‘0.5’ was a weak stain with 
< 30% of cells having a signal, ‘1’ was a modest stain with 
> 30% of cells with a positive signal, ‘2’ was considered 
moderate staining with a greater number (4–9) of signals 
per cell, ‘3’ was strong staining with the presence of signal 
clustering in < 10% of cells and ‘4’ was intense staining with 
signal clustering in > 10% of cells.

All TMA sections were scanned with the Aperio Scan-
ner and digital scans were used to quantify mRNA signals 
using the LEICA RNA ISH algorithm (Leica Microsystems 
GmbH, Germany). Briefly, the algorithm was trained on a 
selection of cores from each TMA and across a range of gen-
otypes. These settings were applied to all the cores stained 
with probes targeting EN1 RNA.

http://www.kconfab.org
http://www.enigmaconsortiumorg


366 Breast Cancer Research and Treatment (2021) 189:363–375

1 3

Transcription regulator enrichment analysis

To identify DNA binding elements that were overrepre-
sented in a set of DV genes, the TFEA.ChIP package in 
R was used [39]. ChIP-Seq datasets were obtained through 
the TFEA.ChIP github page (https:// github. com/ Laura 
PS1/ TFEA. ChIP_ downl oads). Briefly, datasets from the 
ENCODE Consortium, DeMap and individual GEO data-
base were included in the analysis, and gene sequences were 
annotated based on transcription regulator binding within 
1 kb of each gene.

Statistical analysis

R (version 3.6.1) was used to normalise microarrays and 
perform all statistical analyses. For microarrays on the Affy-
metrix platform, the RMA normalisation [32] from the affy 
package was applied, whilst for each of the Agilent and Illu-
mina arrays, the quantile normalise method from the limma 
package was used [40]. The lawstat package was used to 
calculate Brown–Forsythe test. To account for multiple test-
ing, p-values were adjusted using the Benjamini–Hochberg 
procedure [36].

Results

Transcriptome‑wide gene expression variability

Differences in transcriptome-wide gene expression variabil-
ity between familial breast cancer groups (BRCA1, BRCA2 
and BRCAx) were quantified by comparing tumour-specific 
measurements of variability (SD, CV and MAD). BRCA1-
related breast tumours share multiple biological proper-
ties with sporadic basal-like breast cancer [41], therefore 
we also assessed gene expression variability differences 
between the basal and non-basal breast tumour subtypes. 
BRCA1-associated and basal-like breast tumours displayed 
greater transcriptome-wide variability compared to non-
BRCA1 and non-basal-like (luminal A, luminal B, HER2 
and normal-like) tumours (Fig. 1, Supplementary Fig. 1). 
Using gene-specific standard deviations, BRCA1-associated 
breast tumours had a 22.8% (95% CI 22.3–23.2) increase in 
gene expression variability. Increased variability in BRCA1-
associated breast tumours was also observed in linear mod-
els of gene-specific CVs (25.0%, 95% CI 24.5–25.6) and 
MADs (32.4%, 95% CI 31.9–33.0). Similarly, basal-like 
tumours had an average 28.2% (95% CI 27.7–28.7) greater 
transcriptome-wide expression variability compared to non-
basal tumours. Gene expression variability in BRCA2-asso-
ciated tumours was inconsistent, with the Waddell dataset 
showing comparable variability with BRCAx tumours (Sup-
plementary Fig. 2), but the Larsen dataset showing only a 

modest 11.1% (95% CI 10.6–11.6) increase in variability in 
BRCA2-associated tumours compared to BRCAx tumours. 
The Nagel dataset had too few BRCA2-associated tumours to 
reliably estimate transcriptome-wide expression variability. 
In contrast to gene expression variability, no changes were 
observed in transcriptome-wide mean expression for any 
tumour groups tested.

Differential expression variability in breast tumours

As BRCA1-associated and basal-like breast tumours dis-
played greater transcriptome-wide expression variability, it 
was of interest to identify specific genes that had altered var-
iability between tumour types. After adjusting for multiple 
comparisons, 503 and 337 genes were found to be signifi-
cantly differentially variable between BRCA1- and BRCAx-
associated breast tumours in the Nagel and Larsen datasets, 
respectively. There were 40 DV genes that were consistent in 
both the Nagel and Larsen datasets (Table 2). The direction-
ality of the gene expression variability was consistent for all 
40 DV genes. Additionally, 36 of the 40 BRCA1-associated 
DV genes were also DV between BRCA1-associated and 
sporadic breast tumours. A total of 185 basal-like-associ-
ated DV genes were identified across the four breast tumour 
datasets, with 184/185 (99.5%) consistent in direction. 
Analysis of the meta-cohort data, which comprised 2116 
samples, found 58% of all genes to be DV. To identify can-
didate genes for in situ expression analysis, we compared the 
top 1.5% most significant DV genes across all datasets and 
between subtype and genotype analyses (Fig. 2A). A total 
of 10 BRCA1-associated and 22 basal-like-associated vari-
able genes were identified in all datasets at 1.5% threshold. 
EN1 and IGF2BP3 were variably expressed in both BRCA1-
associated and basal-like breast tumours (Fig. 2B).

EN1 gene expression variability

We used the publically available METABRIC dataset [42] 
to further interrogate EN1 gene expression in 1904 breast 
tumours (Fig. 2C, D). Consistent with analysis of the four 
breast cancer microarray datasets, basal-like breast tumours 
had significantly greater EN1 expression variability (Fig. 2C, 
p = 3.7 ×  10−146). Additionally, as BRCA1-associated breast 
tumours are typically oestrogen receptor (ER) negative we 
explored the correlation with ESR1. ER negative tumours 
had significantly greater expression variability (Fig. 2D, 
Brown–Forsythe test p = 2.19 ×  10−106) and tumours with 
low ESR1 expression had a greater range of expression. 
Lastly, to determine if gene dosage was the cause of vari-
able expression we measured the correlation of copy num-
ber with EN1 expression. There was no correlation between 
copy number and gene expression (r2 = 0.026) or expression 
variability (r2 = 0.023, Supplementary Fig. 3).

https://github.com/LauraPS1/TFEA.ChIP_downloads
https://github.com/LauraPS1/TFEA.ChIP_downloads
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To assess intra-tumoural expression of EN1, breast 
tumour tissue microarray cores from 503 patients were 
assayed using RNA in  situ hybridisation. These sam-
ples included tumour tissue from 151 BRCA1-associated 
and 124 BRCA2-associated breast cancer cases (Supple-
mentary Tables 2, 4). Tissue microarrays were stained 
and scored for the abundantly expressed PPIB and a 
negative control targeting dapB. Tumour cores with 
scores > 2 for the PPIB and 0 for dapB were consid-
ered high quality and used to investigate EN1 expression. 

Two-hundred-and-thirteen tumours had positive PPIB 
mRNA signals with 141/213 tumours being scored 2 or 
greater for PPIB staining. No dapB signal was detected 
in any tumours.

The LEICA RNA ISH Algorithm was used to estimate 
the abundance of RNA signals and the percentage of pos-
itively stained cells. Consistent with our transcriptome 
analysis, in situ expression analysis of BRCA1-associated 
tumours showed significantly greater EN1 expression vari-
ability (Fig. 3, p = 6.7 ×  10−04).

Fig. 1  Transcriptome-wide gene expression variability in breast 
tumours. BRCA1-associated and basal-like breast tumours each show 
greater gene-specific standard deviations compared to BRCAx and 
non-basal tumour, respectively. Additionally, global gene-specific 

means between tumour groups are depicted. A model of equity (red 
line) was compared to the linear model (blue dashed line) and poly-
nomial regression (sky blue line)
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Table 2  40 consensus 
significant BRCA1-associated 
variable genes

Gene symbol Larsen Nagel

MAD ratio
(95% CI)

p value Adjusted p value MAD ratio
(95% CI)

p value Adjusted p value

A2ML1 100.59
(33.91–298.4)

4.85E−06 2.58E−03 8.65
(2.65–28.24)

4.66E−04 3.73E−02

AFAP1-AS1 3.9
(0.71–21.49)

2.81E−04 2.51E−02 12.25
(3.97–37.76)

4.73E−04 3.76E−02

CLOCK 4.23
(1.71–10.48)

3.43E−04 2.71E−02 4.39
(1.79–10.76)

1.98E−04 2.45E−02

COL22A1 20.66
(8.32–51.28)

1.12E−06 1.06E−03 29.71
(10.84–81.43)

2.39E−09 2.40E−05

CT83 21.9
(4.13–116.2)

4.87E−07 6.09E−04 127.09
(45.43–355.5)

2.37E−04 2.63E−02

CYP27C1 6.11
(1.94–19.29)

1.03E−04 1.45E−02 10.23
(3.52–29.76)

1.28E−05 5.06E−03

DLX2 0.1
(0.03–0.33)

1.53E−04 1.87E−02 0.1
(0.04–0.29)

3.36E−05 8.76E−03

ELOVL4 4.2
(1.41–12.5)

1.30E−04 1.69E−02 4.12
(1.58–10.71)

1.29E−05 5.06E−03

EN1 10.77
(3.93–29.48)

1.59E−08 5.63E−05 12.65
(4.88–32.76)

5.52E−04 3.98E−02

FBN3 21.06
(8.28–53.56)

5.86E−06 2.68E−03 4.57
(1.88–11.1)

2.93E−07 5.88E−04

GABBR2 54.13
(19.58–149.6)

6.70E−04 3.73E−02 42.2
(15–118.69)

1.45E−05 5.29E−03

GFRA3 4.03
(1.08–15.14)

2.39E−04 2.29E−02 4.98
(1.79–13.85)

5.88E−04 4.06E−02

HORMAD1 11.43
(2.63–49.77)

3.40E−04 2.70E−02 504.73
(191.28–1332)

5.95E−05 1.21E−02

HRCT1 7.72
(2.9–20.57)

1.49E−09 1.05E−05 15.55
(5.69–42.49)

4.13E−06 2.86E−03

IGF2BP3 14.05
(4.07–48.47)

4.06E−05 8.45E−03 25
(7.93–78.83)

8.28E−07 1.04E−03

IL12RB2 11.86
(3.76–37.36)

8.06E−04 4.12E−02 27.08
(10.87–67.45)

4.57E−04 3.69E−02

KCND3 0.16
(0.06–0.41)

6.94E−06 2.89E−03 0.18
(0.08–0.43)

1.49E−06 1.30E−03

KLK5 4.31
(1.44–12.92)

9.99E−05 1.42E−02 7.87
(3.21–19.28)

4.58E−05 1.08E−02

KLK6 7.1
(2.69–18.75)

1.77E−07 3.14E−04 7.08
(2.63–19.07)

9.63E−05 1.56E−02

KLK7 2.02
(0.73–5.58)

3.29E−04 2.67E−02 5.09
(1.64–15.74)

7.70E−04 4.83E−02

KRT16 13.31
(5.01–35.38)

2.18E−04 2.17E−02 10.61
(4.52–24.91)

1.23E−05 5.05E−03

LEMD1 18.41
(6.93–48.86)

4.40E−07 5.85E−04 29.25
(10.64–80.37)

5.60E−06 3.39E−03

LINC00839 7.89
(3.39–18.4)

1.76E−06 1.44E−03 23.16
(8.68–61.83)

8.78E−05 1.50E−02

LOXL4 2.79
(1.01–7.71)

7.47E−04 3.96E−02 3.66
(1.46–9.18)

7.27E−05 1.38E−02

MAP2 4.51
(1.89–10.75)

1.09E−03 4.83E−02 4.01
(1.62–9.95)

5.57E−05 1.18E−02

MIA 3.96
(1.73–9.1)

5.60E−04 3.41E−02 3.57
(1.53–8.29)

8.25E−04 5.00E−02

MSLN 28.12
(7.23–109.38)

4.33E−04 3.00E−02 38.82
(13.62–110.7)

2.95E−06 2.19E−03
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Transcription regulators enrichment analysis

To identify transcription regulators that may be respon-
sible for increased BRCA1-associated expression vari-
ability, we used the TFEA.ChIP package in R to identify 
transcription regulators overrepresented in the 40 BRCA1-
associated DV genes (Table 2). Firstly, we identified 
individual ChIP-seq datasets associated with BRCA1-
associated DV genes (Fig. 4) and then summarised these 
results at the transcription regulator level in order to iden-
tify transcription regulators that are enriched or depleted 
within BRCA1-associated DV genes (Supplementary 
Table 3). The top ranked ChIP-seq dataset in human mam-
mary epithelial cells (HMEC) was associated with EZH2 
as shown in (Supplementary Table 3). Further, EZH2 
was the top ranked transcription regulator associated 
with BRCA1-related DV genes (Supplementary Table 3). 
Interestingly, EZH2 was significantly overexpressed in 
BRCA1-associated and basal-like breast tumours (Fig. 5). 

Discussion

The robust and replicable nature of gene expression meas-
urements provides an excellent opportunity to investigate 
biological variability [11]. We explored publicly avail-
able familial breast cancer microarray datasets for pheno-
types associated with BRCA1- and BRCA2-related breast 
tumours. In addition, a cohort of 2116 breast tumours pro-
filed on Affymetrix microarray platforms was included to 
identify gene expression variability in basal-like tumours. 
In this study, we identified that BRCA1-associated and 
basal-like breast tumours displayed greater gene expres-
sion variability compared to non-BRCA1 and non-basal 
tumours, respectively. These observations were consist-
ent across all microarray datasets explored and across 
three different measures of variability. Furthermore, no 
significant transcriptome-wide changes in mean expres-
sion were observed between any tumour groups. Together 
these results suggest that globally expression variability 

A ratio > 1 implies greater gene expression variability in BRCA1-associated tumours

Table 2  (continued) Gene symbol Larsen Nagel

MAD ratio
(95% CI)

p value Adjusted p value MAD ratio
(95% CI)

p value Adjusted p value

NDRG1 5.56
(2.28–13.56)

3.09E−04 2.64E−02 6.17
(2.74–13.92)

3.71E−04 3.30E−02

OPRK1 26.82
(7.14–100.76)

1.94E−04 2.08E−02 6.91
(2.28–20.91)

7.48E−06 4.13E−03

PKP1 13.22
(4.3–40.62)

4.46E−08 1.18E−04 4.21
(1.78–9.91)

4.22E−04 3.58E−02

POU4F1 11.38
(2.84–45.66)

2.17E−04 2.17E−02 16.17
(5.44–48.02)

1.06E−06 1.12E−03

RNF150 5.72
(2.4–13.6)

6.63E−05 1.09E−02 13.78
(5.61–33.81)

5.37E−05 1.16E−02

SIRT5 3.77
(1.47–9.69)

2.00E−04 2.08E−02 3.17
(1.35–7.47)

2.44E−04 2.66E−02

SIX3 2.32
(0.69–7.88)

1.75E−04 1.96E−02 10.31
(2.83–37.61)

4.55E−04 3.69E−02

SOX6 12.46
(4.51–34.46)

1.16E−04 1.58E−02 18.88
(7.65–46.58)

2.35E−08 9.23E−05

SOX8 5.8
(1.71–19.69)

1.07E−04 1.50E−02 15.5
(4.7–51.09)

1.71E−04 2.23E−02

STAC 10.58
(4.12–27.16)

3.62E−07 5.13E−04 9.14
(3.6–23.17)

4.82E−07 7.44E−04

SYT9 0.14
(0.04–0.44)

4.44E−04 3.02E−02 0.07
(0.02–0.21)

5.33E−04 3.92E−02

TDRD6 4.44
(1.86–10.62)

4.21E−04 2.93E−02 5.14
(1.99–13.29)

6.65E−05 1.28E−02

VGLL1 6.41
(2.77–14.87)

7.15E−05 1.14E−02 35.59
(14.02–90.34)

2.86E−04 2.89E−02
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associates with phenotypic features of BRCA1-associated 
cancer to a stronger degree than mean expression and at 
an individual gene level, associations may not be statisti-
cally significant if only mean expression level is examined.

A number of studies have used transcriptome variability 
in humans to described differences in disease and develop-
ment states [12, 14, 16–18]. One study by Bueno and Mar 
[18] has explored gene expression variability to identify 
synthetic lethal genes associated with BRCA2 loss-of-
function ovarian tumours. The authors proposed that 54 
stably expressed (low variable) genes in BRCA2-related 
tumours may be essential in BRCA2-related tumour viabil-
ity. However, there was no formal statistical test that esti-
mated the association of gene expression variability. Our 
analysis in BRCA2-associated breast tumours suggested 
that no genes were differentially variable. However, it is 
possible that the small number of BRCA2 samples in the 
microarray datasets hindered the identification of BRCA2-
associated DV genes.

Transcriptome-wide gene expression variability may be 
driven by tumour heterogeneity, aggressiveness and cellular 
content. For example, more aggressive lymphocytic leukae-
mias are associated with greater gene expression variability 
[17], an observation that is consistent with the greater gene 
expression variability seen in BRCA1-associated and basal-
like breast tumours. Furthermore, the epigenetic status of 
cells is a heritable trait that also has significant variabil-
ity [43]. Specifically, DNA methylation can contribute to 
gene expression variability [44] and the methylation status 
of tumour cells may influence gene expression variability 
described in this study. Consistent with this, the top ranked 
transcription regulator associated with 40 BRCA1 DV genes 
was EZH2, a component of the Polycomb repressive com-
plex 2 (PRC2). PRC2 is important for H3 lysine 27 trimeth-
ylation (H3K27me3) and the stable repression of transcrip-
tion [45]. EZH2 has been shown to be overexpressed in a 
number of tumours including BRCA1-deficient breast can-
cers [45, 46]. In addition, loss of BRCA1 function and the 
decrease in BRCA1 expression can alter the occupancy of 
EZH2 on DNA and increase H3K27me3 levels [47]. These 
BRCA1-related changes in epigenetic regulation are potential 
mechanisms that may alter transcriptional control, ultimately 
leading to increased cellular gene expression variability.

Technical variation is expected to contribute randomly to 
each sample; however, as there was no standardised proto-
col between and within the datasets used, it is plausible that 
processes such as sample collection and RNA extraction may 
influence variability. By considering only genes that were 
variably expressed across all microarray datasets we are able 
to reduce false-positive associations induced by these types 
of experimental artefacts. Our approach identified two genes 
(EN1 and IGF2BP3) that had increased variability in BRCA1-
associated breast tumours. EN1 encodes the transcription 
factor Engrailed Homoeobox 1 and has been extensively 
investigated in neuronal development. Ectopic EN1 expres-
sion improves neurons’ survival and protects against apoptosis 
[48]. Conversely, knockdown of expression in dopaminergic 
neurons has been shown to induce apoptosis [49]. EN1 has 
been observed to be overexpressed in triple-negative breast 
cancers and basal-like breast cancers [50–52]. SDs and inter-
quartile ranges reported by these studies were suggestive of 
increased gene expression variability similar to that seen in this 
study; however, these were not formally tested. Additionally, 
EN1 expression has been associated with poorer survival and 
a greater probability of brain metastases. Interestingly, reduced 
expression of EN1 in basal, but not luminal, breast cancer cell 
lines decreases viability, which can be partially rescued by 
overexpression of EN1 [52]. The evaluation of EN1 protein 
by immunohistochemistry has been perplexing, with Kim 
and colleagues previously describing EN1 protein expression 
as being associated with improved survival in triple-negative 
breast cancer, opposite to that of EN1 RNA [51]. The discrep-
ancy may in part be due to poor antibodies targeting EN1 [52] 
or post-transcriptional processes. In this study, we have inves-
tigated the utility of RNAscope to measure gene expression 
in situ and we were able to recapture the inter-tumour variabil-
ity observed in the microarray analysis. The implementation 
of RNA in situ hybridisation can overcome the issue of anti-
body specificity and may help facilitate replication of survival 
trends. However, the lack of survival data limited our ability 
to formally test for associations. Currently, measurement of 
intra-tumoural variability remains challenging, particularly 
due to the discrimination of signal in dark-stained chromatin 
and granulated nuclei. The development of more sophisticated 
algorithms in the future may provide greater power to assess 
variability within individual sections and allow the ability to 
test for associations with clinicopathological data. Further-
more, to fully appreciate tumour variability, complete tumour 
sections may be required for future studies.

Conclusion

BRCA1-associated and basal-like breast tumours dis-
played a phenotype of greater gene expression variabil-
ity, with no change in global RNA abundance. EN1 had 

Fig. 2  Identification of BRCA1-associated candidate gene(s). A Inter-
section between the consensus BRCA1-associated variable genes 
(green) and basal-like-associated variable genes (orange). B Signifi-
cances of differential variability genes that intersected both analyses 
from A. C EN1 (left) and IGF2BP3 (right) expression in the META-
BRIC dataset stratified by intrinsic subtype. p-values were calculated 
by the Brown–Forsythe test comparing basal-like tumours to all oth-
ers. D Correlation of EN1 (left) and IGF2BP3 with ESR1 expression 
and ER status (insert). All p-values were estimated using the Brown–
Forsythe test

◂
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Fig. 3  EN1 RNAscope® of breast tumour cores. A Representative 
images of BRCA1-, BRCA2- and non-BRCA1/2-associated breast 
tumours stained for EN1 and a section stained with the positive con-
trol probe (PPIB). B Percentage of EN1-positive tumour cells in each 

familial tumour type. A significant difference (Brown–Forsythe test) 
in EN1 expression variability was observed between BRCA1-associ-
ated and BRCAx tumours

Fig. 4  Transcription regulators 
enrichment analysis for BRCA1 
DV genes. Each dot represents 
significant over/underrepre-
sentation of a single ChIP-Seq 
dataset. Log odds ratio (OR) 
> 0 indicates overrepresenta-
tion of BRCA1 DV genes in a 
ChIP-Seq dataset. Polycomb 
repressive complex 2 compo-
nents, EZH2 (blue) and SUZ12 
(yellow) are associated with 
BRCA1 DV genes



373Breast Cancer Research and Treatment (2021) 189:363–375 

1 3

greater expression variability in BRCA1-associated breast 
tumours, and this was captured in transcriptomic and RNA 
ISH analyses. We conclude that the expression variability 
of a gene is replicable, thereby laying a foundation for 
future studies aiming to better understand the molecular 
mechanisms underlying the development of basal-like 
breast tumours.
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