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Abstract The genusMethylobacter is considered an

important and often dominant group of aerobic

methane-oxidizing bacteria in many oxic ecosystems,

where members of this genus contribute to the

reduction of CH4 emissions. Metagenomic studies of

the upper oxic layers of geothermal soils of the Favara

Grande, Pantelleria, Italy, revealed the presence of

various methane-oxidizing bacteria, and resulted in a

near complete metagenome assembled genome

(MAG) of an aerobic methanotroph, which was

classified as a Methylobacter species. In this study,

the Methylobacter sp. B2 MAG was used to

investigate its metabolic potential and phylogenetic

affiliation. The MAG has a size of 4,086,539 bp,

consists of 134 contigs and 3955 genes were found, of

which 3902 were protein coding genes. All genes for

CH4 oxidation to CO2 were detected, including

pmoCAB encoding particulate methane monooxyge-

nase (pMMO) and xoxF encoding a methanol dehy-

drogenase. No gene encoding a formaldehyde

dehydrogenase was present and the formaldehyde to

formate conversion follows the tetrahy-

dromethanopterin (H4MPT) pathway. ‘‘Ca. Methy-

lobacter favarea’’ B2 uses the Ribulose-Mono-

Phosphate (RuMP) pathway for carbon fixation.

Analysis of the MAG indicates that Na?/H? anti-

porters and the urease system might be important in

the maintenance of pH homeostasis of this strain to

cope with acidic conditions. So far, thermoacidophilic

Methylobacter species have not been isolated, how-

ever this study indicates that members of the genus

Methylobacter can be found in distinct ecosystems and

their presence is not restricted to freshwater or marine

sediments.
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Introduction

Volcanic and geothermal areas are hostile environ-

ments characterized by low pH, high temperature,

geothermal gas emissions, and low O2 concentrations.

One of the emitted geothermal gases is CH4, a potent

greenhouse gas. Multiple studies have shown that

aerobic methanotrophs may be important in reducing

the emissions of geothermally produced CH4

(D’Alessandro et al. 2009; Etiope and Klusman 2002).

Phylogenetically, aerobic methanotrophs belong to

the phyla Alphaproteobacteria, Gammaproteobacteria

or Verrucomicrobia (Op den Camp et al. 2009). These

methanotrophs are microorganisms that conserve

energy by oxidizing CH4 to CO2, while using O2 as

terminal electron acceptor (Hanson and Hanson 1996).

The first step of the methane oxidation pathway

involves the conversion of methane into methanol

catalysed by a soluble or membrane-bound methane

monooxygenase (Hanson and Hanson 1996). In the

following steps, methanol is converted into CO2 via

formaldehyde and formate using either lanthanide-

dependent XoxF-type methanol dehydrogenase or a

calcium-dependent MxaF-type methanol dehydroge-

nase (Keltjens et al. 2014). Carbon fixation occurs via

the Ribulose-Mono-Phosphate (RuMP) pathway, the

Serine Pathway or the Calvin–Benson–Bassham

(CBB) cycle (Chistoserdova 2011; Khadem et al.

2011; Murrell 1992; Rasigraf et al. 2014; Sharp et al.

2014).

Previous studies using analysis of 16S rRNA genes

or the diagnostic pmoA gene revealed the presence of

methanotrophs in volcanic areas (Gagliano et al.

2014, 2016; Niemann et al. 2006). Thermoacidophilic

methanotrophs from geothermal areas have been

isolated and resulted in the first pure cultures of

methanotrophic members of the phylum Verrucomi-

crobia (Dunfield et al. 2007; Erikstad et al. 2019; Islam

et al. 2008; Pol et al. 2007; van Teeseling et al. 2014).

A recent metagenomic analysis of the volcanic soils

of the Favara Grande, the main geothermal active area

of Pantelleria Island, Italy, indicated the presence of a

unique methanotrophic community, composed of

Verrucomicrobia and Gammaproteobacteria (Picone

et al. 2020). Different metagenome assembled gen-

omes (MAGs) were retrieved. One of theseMAGs was

nearly complete and phylogenetic analysis showed

that it represents the genome of a novelMethylobacter

species. Typically,Methylobacter species are found in

freshwater sediments and wetland soils, where they

account for a large fraction of aerobic methanotrophs

(Smith et al. 2018). ThermoacidophilicMethylobacter

species have, so far, not been isolated. In this study, we

determined the phylogenetic position of this Methy-

lobacter, and analysed the encoded metabolic

potential.

Materials and methods

Sampling location and DNA isolation

Samples were collected at Favara Grande, Pantelleria,

Italy 2017 (FAV1, 36� 500 8000 N; 11� 570 17000 E) and
(FAV2, 36� 500 7700 N; 11�570 16000 E) during a field

campaign in June 2017 (Picone et al. 2020). Soil

samples (1–10, 10–15 and 12–20 cm depth) were

taken using a core sampler (diameter 1.5 cm), stored

in sterile 50 mL tubes and kept at 4 �C until DNA was

extracted. In situ pH values were 4–4.5 with temper-

atures from 60 to 67 �C. Two different DNA extrac-

tion methods were used, namely Fast DNA Spin kit for

soil (MP Biomedicals, Santa Ana, California), accord-

ing to manufacturer’s instructions, and the CTAB

method (Allen et al. 2006). DNA extraction was only

successful from the FAV2 sampling site and the reads

from the different depths and different extraction

methods were combined for assembly and binning.

For more detail see Picone et al. (2020).

Genome sequencing, assembly and binning

The metagenome was sequenced on the Illumina

sequencing platform. For library preparation the

Nextera XT kit (Illumina, San Diego, California)

was used according to the manufacturer’s instructions.

Enzymatic tagmentation was performed starting with

1 ng of DNA, followed by incorporation of the

indexed adapters and amplification of the library.

After purification of the amplified library using

AMPure XP beads (Beckman Coulter, Indianapolis),

libraries were checked for quality and size distribution

using the Agilent 2100 Bioanalyzer and the High

sensitivity DNA kit. Quantitation of the library was

performed by Qubit using the Qubit dsDNA HS Assay

Kit (Thermo Fisher Scientific, Waltham, Mas-

sachusetts). The libraries were pooled, denatured and

sequenced with the Illumina Miseq sequence machine
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(San Diego, California). Paired end sequencing of

2 9 300 base pairs was performed using the MiSeq

Reagent Kit v3 (Illumina, San Diego, California)

according the manufacturers protocol.

Reads were trimmed using BBDuk (BBMap),

assembled by MEGAHIT v1.0.3 (Li et al. 2015) and

binned using an in-house pipeline, using different

binning algorithms, including BinSanity (Graham

et al. 2017), COCACOLA (Lu et al. 2017), CON-

COCT (Alneberg et al. 2014), MaxBin 2.0 (Wu et al.

2016), and MetaBAT 2 (Kang et al. 2019). DAS Tool

1.0 was used for consensus binning (Sieber et al. 2018)

and CheckM was used to assess the MAG quality

(Parks et al. 2015). The average nucleotide identity

using BLAST (ANIb) is calculated using JSpeciesWS

software with standard settings (Richter et al. 2016).

An up-to-date Bacterial Core Gene (UBCG) phyloge-

netic tree was constructed using RAxML (Stamatakis

2014) on CIPRES Science Gateway V. 3.3 platform

(Miller et al. 2012). PROKKA and the MicroScope

platform were used to automatically annotate the draft

genome (Seemann 2014; Vallenet et al. 2013) and

genomic features were manually checked.

Results and discussion

The Favara Grande is the main geothermal gas-

emitting area on Pantelleria Island, Italy. The soil in

this region is acidic, of high temperature and exposed

to geothermal gas emission (D’Alessandro et al.

2009). It is devoid of any plant growth. At the FAV2

site the following physicochemical parameters were

observed: temperatures 60–67 �C, pH 4–4.5, CH4

1000–18,000 ppm and H2 125–8400 ppm (see also

Picone et al. 2020). CH4 and H2 concentrations were

lowest close to soil surface, indicating active con-

sumption of these gases. Metagenomic analysis of

FAV2 soil samples revealed the presence of a diverse

community of methanotrophs including those belong-

ing to the phyla Verrucomicrobia and Gammapro-

teobacteria, at 6–11% and 2.5–3% relative abundance,

respectively. No alphaproteobacterial methanotroph

was detected (Picone et al. 2020) (Fig. 1). One of these

FAV2 methanotrophs was classified as a Methylobac-

ter species. The Methylobacter sp. B2 MAG was

chosen for detailed analysis to achieve a better

understanding of its metabolic potential and its

relevance in the carbon cycle of geothermal soils.

The MAG had a size of 4,086,539 bp, consisted of 134

contigs and had a GC content of 47.2%. CheckM

analysis revealed that the completeness of this MAG

was 99.1% with only 0.4% contamination. A total of

3955 genes could be identified, of which 3902 were

protein coding genes and 53 were RNA genes.

Functions could be assigned to 2164 protein coding

genes (Table 1). Moreover, 88.4% of the predicted

genes were assigned into Clusters of Orthologous

Groups and these COG functional categories are

compiled in Table 2.

Fig. 1 The relative abundance of the different binned MAGs

(completeness[ 95%) at the different depths of the geothermal

soil of the Favara Grande, Pantelleria Island, Italy. The relative

abundance of Methylobacter sp. B2 (MAG2) is 0.49%, 0.71%

and 1.17% in the top layer, at 10–15 cm depth and at 15–20 cm

depth, respectively

Table 1 Genome statistics

Attribute Value

Genome size (bp) 4,086,539

DNA coding (bp) 3,391,419

DNA G ? C (%) 47.2

DNA scaffolds 134

Total genes 3955

Protein coding genes 3902

RNA genes 53

rRNA genes 3a

tRNA genes 36

Pseudo genes 11

Genes in internal clusters –

Genes with function prediction 2164

Genes assigned to COGs 3338

aSee supplementary material
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Phylogeny

The draft genome of Methylobacter sp. B2 contained

one 16S rRNA gene. This gene is located at the end of

a contig and the rest of the ribosomal RNA operon

could not be detected. This often happens during

binning due to high conservation of the rRNA gene

sequences. We were able to assemble a contig with the

full rRNA operon using all reads from the metagen-

ome dataset and the contig with the 16S rRNA gene in

MAG as a seed (Supplementary Material). Phyloge-

netic analysis of the 16S rRNA gene revealed that this

gene clusters together with Methylobacter species

(Supplementary Fig. S1, Kumar et al. 2016; Tamura

1992). The closest cultivated relative isMethylobacter

psychrophilus Z-0021, showing a 16S rRNA gene

identity of only 96.5%. Using a species boundary of

98.2%, this 16S rRNA identity indicated that the B2

MAG represented a novel species within the genus

Methylobacter. Besides the 16S rRNA gene, pmoA is

considered as molecular marker gene for defining

methanotrophic taxa (Knief 2015). Phylogenetic

analysis revealed of the pmoA gene in this MAG did

not cluster with other Methylobacter species (Supple-

mentary Fig. S2, Saitou and Nei 1987; Zuckerkandl

and Pauling 1965). This is not uncommon as for

Methylobacter species, single-gene phylogenies

resulted in inconsistencies, since this genus is assumed

to be polyphyletic (i.e. having more than one common

ancestor) (Orata et al. 2018). To circumvent this one-

gene-polyphyletic classification problem, an UBCG

(Up-to-date bacterial core gene set) phylogenetic tree

was constructed. Rather than a single gene, this tree is

based on 92 bacterial core genes (Na et al. 2018). The

UBCG phylogenetic analysis showed that Methy-

lobacter sp. B2 clusters within the Methylobacter

genus (Fig. 2). Furthermore, average nucleotide iden-

tity (ANI) calculations gave values well below the

threshold for species delimitation (95–96%), demon-

strating that this MAG indeed represents a novel

species within the genus Methylobacter (Table 3)

(Chun et al. 2018), for which we propose the name

‘‘Candidatus Methylobacter favarea’’ B2.

Table 2 Number of genes

associated with general

COG functional category

prediction

aThe total number is based

on the number of protein

coding genes (3902) in the

genome

Code Value % of totala Description

J 168 4.25 Translation, ribosomal structure and biogenesis

A 1 0.03 RNA processing and modification

K 149 3.77 Transcription

L 286 7.23 Replication, recombination and repair

B 2 0.05 Chromatin structure and dynamics

D 56 1.42 Cell cycle control, cell division, chromosome partitioning

V 67 1.69 Defense mechanisms

T 184 4.65 Signal transduction mechanisms

M 245 6.19 Cell wall/membrane/envelope biogenesis

N 98 2.48 Cell motility

U 114 2.88 Intracellular trafficking, secretion, and vesicular transport

O 158 3.99 Posttranslational modification, protein turnover, chaperones

C 210 5.31 Energy production and conversion

G 140 3.54 Carbohydrate transport and metabolism

E 209 5.28 Amino acid transport and metabolism

F 60 1.52 Nucleotide transport and metabolism

H 130 3.29 Coenzyme transport and metabolism

I 87 2.20 Lipid transport and metabolism

P 187 4.73 Inorganic ion transport and metabolism

Q 92 2.33 Secondary metabolites biosynthesis, transport and catabolism

R 416 10.52 General function prediction only

S 279 7.05 Function unknown

– 615 15.60 Not in COGs

123

316 Antonie van Leeuwenhoek (2021) 114:313–324



Analysis of the encoded metabolic potential

Methanotrophy

The first step in the methane oxidation pathway is the

conversion of methane into methanol catalyzed by a

membrane-bound or soluble methane monooxyge-

nase. Analysis of the draft genome (see Fig. 3 for a

schematic representation) revelaed one pmoCAB gene

cluster, encoding for the particulate membrane-bound,

methane monooxygenase (pMMO). Typically, but not

in all methanotrophs, the pmoCAB gene cluster is

complemented with a pmoD gene. Recent studies

show that pmoD is essential for pMMO activity, and

probably involved in copper incorporation (Fisher

et al. 2018). In draft genome of ‘‘Ca. Methylobacter

favarea’’ B2, a homolog of the pmoD gene

(METHB2_v1_630010) was present, but the gene is

not located near the pmoCAB gene cluster. Genes

encoding for the soluble methane monooxygenase

(sMMO) were not detected.

Fig. 2 Up-to-date Bacterial Core Gene (UBCG) phylogenetic

tree of MAG2 and members of the familyMethylomonaceae, all
with a genome completeness of[ 90%. Hyphomicrobium
denitrificans was used to root the tree, but removed from the

tree for clarity. The tree was constructed using RAxmL.

Bootstrap analysis was carried using 100 replications and

percentage bootstrap values[ 95% are indicated by black

circles

Table 3 Average nucleotide identity (ANI) analysis of Methylobacter sp. B2 other representatives of this genus using JSpeciesWS

software

Strain Strain name 1 2 3 4 5 6 7 8 9

1 Methylobacter sp. B2 (MAG2) 73.7 75.9 75.9 72.8 74.6 74.1 75.9 73.3

2 Methylobacter marinus A45 73.4 74.7 74.6 94.6 72.6 84.3 74.7 96.1

3 Methylobacter tundripaludum SV96 75.5 74.4 95.4 70.6 75.4 74.7 95.6 74.2

4 Methylobacter tundripaludum 31/32 75.5 74.3 95.3 71.3 75.6 75.0 97.9 74.0

5 Methylobacter sp. BBA51 73.0 98.4 72.2 73.3 71.9 82.7 73.5 74.8

6 Methylobacter sp. KS41 74.8 73.0 76.1 76.1 72.6 73.4 76.2 72.4

7 Methylobacter luteus 73.9 84.5 75.0 75.1 79.7 73.1 75.2 83.6

8 Methylobacter tundripaludum 21/22 75.5 74.5 95.6 98.1 71.9 75.6 76.1 74.3

9 Methylobacter whittenburyi 73.3 98.2 74.6 74.6 80.3 72.2 84.8 74.6

All reference genomes show a completeness of at least 90% and a contamination of maximum 5%
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‘‘Ca. Methylobacter favarea’’ B2 catalyses the

second step of the methane oxidation pathway, the

conversion of methanol into formaldehyde, using a

rare earth element (REE) and pyrroloquinoline

quinone (PQQ) dependent XoxF-type methanol dehy-

drogenase (MDH) (Keltjens et al. 2014; Pol et al.

2014). In the genome, XoxF (METHB2_v1_30111),

the catalytic MDH protein and XoxJ

(METHB2_v1_30112), involved in protein binding

for stability or electron transfer (Versantvoort et al.

2019), were encoded. The xoxG gene, which encodes

for the cytochrome cL, that accepts electrons from

MDH (Keltjens et al. 2014), could not be detected

within the xoxF/xoxJ gene cluster. However, XoxF-

MDH systems do not follow a general organizational

pattern at genomic level (Keltjens et al. 2014) and this

MAG contains several mono-heme cytochromes with

the heme-binding motif CxxCH and the conserved

methionine typical for XoxG proteins

(METHB2_v1_70040, METHB2_v1_200048,

METHB2_v1_230021, METHB2_v1_350009,

METHB2_v1_350010 and METHB2_v1_510007).

These cytochromes could serve as electron acceptor

for XoxF (Versantvoort et al. 2019). During methanol

oxidation, electrons are transferred to the cytochrome

via the cofactor PQQ and all genes for the synthesis of

PQQ were present in this MAG. No genes encoding

for the calcium-dependent MxaF-MDH could be

identified.

XoxF-MDH requires lanthanides as metal cofactor

(Pol et al. 2014) but the mechanism of their uptake in

bacterial cells in not completely clarified. Recently,

the lanthanide binding protein Lanmodulin was iden-

tified and postulated to function as cargo protein for

lanthanides from a lanthanide transporter to MDH

(Cotruvo et al. 2018). Lanmodulin seems not to be

encoded in the MAG. Other studies indicated that

TonB-dependent transporters might be involved in

REE transport over the outer membrane, which are

encoded by tonB or cirA genes (Ochsner et al. 2019;

Roszczenko-Jasińska et al. 2020). The draft genome of

‘‘Ca. Methylobacter favarea’’ B2 contains several

tonB and cirA genes (METHB2_v1_20123,

METHB2_v1_30066, METHB2_v1_130008,

METHB2_v1_200030 and METHB2_v1_300037)

whereby METHB2_v1_20123 shows the highest

Fig. 3 Cell metabolism of ‘‘Ca. Methylobacter favarea’’ B2.
Pmo particulate methane monoxygenase, XoxF XoxF-type

methanol dehydrogenase, FDH formate dehydrogenase,

NifDHK nitrogenase, Nirk dissimilatory nitrite reductase, NorB
nitric oxide reductase,HoxHY hydrogenase. Enzyme complexes

of the electron transport chain are labeled by Roman numerals

123

318 Antonie van Leeuwenhoek (2021) 114:313–324



similarity (33% based on amino acid composition)

with the putative REE transporter of Methylorubrum

extorquens PA1. None of these transporters are

located near the methanol dehydrogenase genes as in

Methylorubrum extorquens PA1 (Ochsner et al. 2019).

In the next step of the CH4 oxidation pathway,

formaldehyde is oxidized to formate. Formaldehyde is

a key metabolite, since it is used for carbon assimi-

lation by proteobacterial methanotrophs. Furthermore,

formaldehyde oxidation is considered to be essential,

since intracellular concentrations of toxic formalde-

hyde should remain low (Chistoserdova 2011). How-

ever, this MAG does not seem to contain a gene

encoding for formaldehyde dehydrogenase, which

prevents direct formaldehyde to formate conversion.

In vitro studies showed that XoxF-MDH from M.

extorquens AM1 and M. fumariolicum SolV can use

formaldehyde as substrate leading to the hypothesis

that XoxF-type MDHs oxidize methanol into formate

(Pol et al. 2014; Good et al. 2018). In contrast, in vivo,

the XoxF-type MDH of M. extorquens AM1 was

shown to produce formaldehyde, which can be used

for carbon assimilation (Good et al. 2018).

In M. extorquens AM1 the lanthanide-dependent

ethanol dehydrogenase ExaF was involved in

formaldehyde oxidation (Good et al. 2018). As there

was no ethanol dehydrogenase nor a MxaF-MDH

found in the draft genome of ‘‘Ca. Methylobacter

favarea’’ B2 to oxidize formaldehyde, indicating that

this strain possibly uses a different pathway for

formaldehyde oxidation. The most widespread

formaldehyde conversion pathway is the glutathione-

linked formaldehyde oxidation pathway. The first step

in this pathway is the reaction of formaldehyde with

glutathione. The glutathione-dependent formaldehyde

dehydrogenase enzyme accelerates this spontaneous

reaction (Goenrich et al. 2002). This enzyme could be

detected in the ‘‘Ca.Methylobacter favarea’’ B2MAG

(METHB2_v1_3500004). In the following two steps,

formate is formed by glutathione-dependent formalde-

hyde dehydrogenase and S-formylglutathione hydro-

lase, however none of these enzymes could be

detected within ‘‘Ca. Methylobacter favarea’’ B2.

Alternatively, formaldehyde can be converted to

formate by the tetrahydromethanopterin (H4MPT)

pathway or the methylene-tetrahydrofolate (methy-

lene-H4F) pathway. The genes for both pathways were

detected in draft genome of ‘‘Ca. Methylobacter

favarea’’ B2, suggesting that this strain can use both

pathways, as described for Methylococcus capsulatus

Bath (Chistoserdova et al. 2005). Proteomics studies

revealed that the H4MPT-pathway is used for

formaldehyde to formate conversion in M. capsulatus

Bath (Kao et al. 2004). Whether ‘‘Ca. Methylobacter

favarea’’ B2 uses the H4MPT-pathway or the methy-

lene-H4F-pathway remains uncertain. However, the

genes for the synthesis of the cofactors methanofuran

(MFR) and tetrahydromethanopterin (THPMT) were

lacking, whereas the genes needed for the synthesis of

tetrahydrofolate (THF) were present. This suggests

that the H4MPT-pathway can only be used whenever

the cofactors are supplied by other members of the

microbial community.

Formate dehydrogenase catalyses the final step in

the methane oxidation pathway, namely the conver-

sion of formate into CO2. Typically, methanotrophs

encode for multiple formate dehydrogenases (Chis-

toserdova 2011; Flynn et al., 2016). ‘‘Ca. Methy-

lobacter favarea’’ B2 encodes for two different

formate dehydrogenases, a NAD-dependent FDH

encoded by a single gene (METHB2_v1_310032)

and a molybdopterin containing formate dehydroge-

nase encoded by the three genes fdhABC

(METHB2_v1_500021, METHB2_v1_500022 and

METHB2_v1_500023).

Energy conservation and respiration

‘‘Ca. Methylobacter favarea’’ B2 uses O2 as terminal

electron acceptor. The NADH:ubiquinone reductase

genes (complex I, nuoABCDEFGHIJKLMN) were

found in the MAG, together with genes encoding the

succinate dehydrogenase (complex II), cytochrome

bc1 (complex III) and cytochrome-c-oxidase (complex

IV) complexes. The proton motive force generated by

the respiratory chain can be used by the ATP-

generating ATPase (complex V).

Carbon fixation

‘‘Ca. Methylobacter favarea’’ B2 uses the ribulose-

mono-phosphate (RuMP) pathway for carbon fixation,

as do other Methylobacter species (Flynn et al. 2016).

Interestingly, a nearly complete serine pathway could

also be detected in the genome of ‘‘Ca.Methylobacter

favarea’’ B2. Usually, the serine pathway is used by

alphaproteobacterial methanotrophs as carbon fixation

pathway and gammaproteobacterial methanotrophs
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only contain parts of the serine pathway. Typically,

gammaproteobacterial methanotrophs lack the

enzyme phosphoenolpyruvate carboxylase (Chistoser-

dova 2011), however, the ‘‘Ca. Methylobacter

favarea’’ B2 MAG encodes for every enzyme in the

serine pathway except the serine-glyoxylate amino-

transferase. In contrast to Verrucomicrobial methan-

otrophs (Khadem et al. 2011), the Calvin–Benson–

Bassham cycle cannot be used for carbon fixation in

‘‘Ca. Methylobacter favarea’’ B2, since RuBisCO

genes are lacking.

Alternative substrates

All genes for the glycolysis and gluconeogenesis were

found and the TCA cycle genes were present. Genes of

the glyoxylate shunt were partially detected, the gene

encoding for isocitrate lyase is found in the draft

genome, but a gene encoding for malate synthase

could not be detected. The pentose phosphate pathway

was present. Furthermore, transporters for a variety of

organic molecules could be predicted. This indicates

that ‘‘Ca. Methylobacter favarea’’ B2 could benefit

from a mixotrophic lifestyle or survival modus.

Furthermore, ‘‘Ca. Methylobacter favarea’’ B2

seemed to be able to store a variety of carbon

compounds, including glycogen, polyhydroxybutyrate

and polyphosphates.

The ‘‘Ca. Methylobacter favarea’’ B2 MAG con-

tained an oxygen tolerant NAD-coupled hydrogenase,

belonging to group 3d bidirectional hydrogenases

(Greening et al. 2016). H2 is an abundant electron

donor in the FAV2 soils (D’Alessandro et al. 2009;

Gagliano et al. 2016; Picone et al. 2020) and

simultaneous CH4 and H2 oxidation is reported for

different methanotrophs (Chen and Yoch 1987;

Hanczar et al. 2002; Mohammadi et al. 2017; Carere

et al. 2017). However, it is unlikely that ‘‘Ca.

Methylobacter favarea’’ B2 can grow as ‘Knallgas’

bacterium, since it requires formaldehyde for carbon

fixation. A mechanism for CO2 fixation is not detected

in this MAG.

Nitrogen

Ammonia can be used as nitrogen source and is

assimilated using either the glutamate dehydrogenase

(METHB2_v1_670013) or the glutamine synthetase

(METHB2_v1_100031) and glutamate synthase

(METHB2_v1_410017). Nitrate and nitrite could also

serve as nitrogen source. The activity of the assimi-

latory nitrate reductase NasA (METHB2_v1_40058)

and nitrite reductase NirBD (METHB2_v1_40055,

METHB2_v1_40054) would results in the production

of ammonium. Genes encoding urease

(METHB2_v1_20024, METHB2_v1_20025 and

METHB2_v1_20026) and nitrogenase (nifHDK,

METHB2_v1_180032, METHB2_v1_180033 and

METHB2_v1_180034) were present, indicating that

urea and N2 could also be used as nitrogen source in

this severely N-limited ecosystem. The genes encod-

ing the nitrite reductases NirK (METHB2_v1_00392),

NirS (METHB2_v1_02231) and nitric oxide reductase

NorBC (METHB2_v1_01347, METHB2_v1_01348)

were found, suggesting that ‘‘Ca. Methylobacter

favarea’’ B2 may be capable of partial denitrification.

pH homeostasis

In order for ‘‘Ca.Methylobacter favarea’’ B2 to thrive

in an acid environment, it is important to control the

intracellular pH. The maintenance of pH homeostasis

is a result of restriction of proton permeation, internal

consumption of protons and enhancement of proton

pumps (Guan and Liu 2020). ATPases can pump out

electrons and release acid stress, but this requires ATP

(Liu et al. 2015a). ‘‘Ca. Methylobacter favarea’’ B2

encodes for different Na?/H? antiporters

(METHB2_v1_30076, METHB2_v1_70105,

METHB2_v1_150016 and METHB2_v1_840011),

which might be important for proton exchange as

well (Slonczewski et al. 2009).

There are different mechanisms on intracellular

proton consumption, which generates alkaline prod-

ucts. Several microorganisms use an amino-acid

tolerance system to decrease the intracellular pH.

However, both the arginine deaminase (ADI) system

and the glutamate-dependent acid tolerance system

(Liu et al. 2015b; Reeve and Reid 2016; Shabayek and

Spellerberg 2017) could not be detected in the draft

genome of ‘‘Ca. Methylobacter favarea’’ B2 Instead,

‘‘Ca. Methylobacter favarea’’ B2 could use the urease

system for proton consumption. Since the genome

encodes a urease, this enzyme can transform urea into

ammonia and CO2 at the expense of a proton, whereby

it regulates the internal pH (Miller and Maier 2014).

Interestingly, the urease genes are widespread

amongst the geothermal microorganisms of the Favara
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Grande (Picone et al. 2020), indicating that this urease

system might be an important mechanisms in pH

homeostasis within geothermal microorganisms.

Ecological role

Typically, Methylobacter species are found in fresh-

water oxic sediments, terrestrial habitats and marine

ecosystems, where they account for a large fraction of

aerobic methanotrophy (Hao et al., 2020; Khatri et al.

2019; Smith et al. 2018). Thermoacidophilic Methy-

lobacter species have, so far, not been isolated.

Thermophilic Gammaproteobacteria are found within

the family Methylothermaceae and the genus Methy-

localdum (Houghton et al. 2019) and not within the

familyMethylomonaceae. Previously, 16S rRNA gene

amplicon sequencing and metagenomic sequencing

revealed thatMethylobacter sp. are abundant methan-

otrophs in the geothermal soils of the Favara Grande

(Gagliano et al. 2016). Other geothermal soil micro-

bial communities, such as the one in the Solfatara

Crater near Naples, Italy, did not show the presence of

Methylobacter species (Crognale et al., 2018), indi-

cating that we still have to learn more about the

metabolic diversity of this important group of

methanotrophs.
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