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Abstract

The epidermis undergoes constant renewal during its lifetime. This is possible due to a spe-

cial population of keratinocyte stem cells (KSCs) located at the basal layer. These cells are

surrounded by their direct progeny, keratinocyte progenitors or transient amplifying cells

(TAs), which arise from cell division. Skin is exposed every day to sun radiation; in particular,

UVA radiation penetrates through the epidermis and induces damage to KSCs and TAs.

Although keratinocytes in the basal layer are the most likely skin carcinomas and/or photo-

aging cells of origin, surprisingly few studies have addressed the specific responses of

these cells to UV radiation. In this study, we showed for the first time that keratinocyte stem

cells were more resistant to UVA irradiation than their direct progeny, transient amplifying

cells. Using both the MTT assay and clonogenic assay, we found that KSCs were more

photo-resistant compared to TAs after exposure to different doses of UVA (from 0 to 50 J/

cm2). Moreover, KSCs had a greater ability to reconstruct human epidermis (RHE) after

UVA exposure compared with TAs. Finally, investigations of DNA repair using the comet

assay showed that DNA single-strand breaks and thymine dimers were repaired quicker

and more efficiently in KSCs compared with TAs. In a previous work, we showed that the

same stem cell population was more resistant to ionizing radiation, another carcinogenic

agent. Collectively, our results combined with other observations demonstrate that keratino-

cyte stem cells, which are responsible for epidermal renewal throughout life, are equipped

with an efficient arsenal against several genotoxic agents. Our future work will try to identify

the factors or signaling pathways that are responsible for this differential photo-sensitivity

and DNA repair capacity between KSCs and TAs.

Introduction

The epidermis is a pluristratified and differentiated epithelium composed of 90% keratino-

cytes. Only the basal cells of the epidermis can proliferate, which allows for its constant

renewal. Along their progression to the surface, basal cells acquire different morphological and
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biochemical modifications, eventually leading to the stratum corneum. In this stratum, corneo-

cytes, which are cells that have lost their nucleus and are filled with crosslinked material, assure

the barrier function of the skin. A specific keratinocyte population, keratinocyte stem cells

(KSCs), leads to the constant renewal of the epidermis throughout life. A stem cell is defined as

a cell that, under normal circumstances, maintains its own population, is undiminished in

function and size, and furnishes daughter cells to provide new functional cells in that tissue[1].

In the epidermis, stem cells are mainly located in hair follicles within a distinct structure

known as the bulge. Hair follicle stem cells (HFSCs) are a particular stem cell population that

is capable of differentiating into all epidermal lineages and thus can form all epidermal tissues

and annexes. Another keratinocyte stem cell population is localized in the basal layer of the

interfollicular epidermis, where they are surrounded by their direct progeny, transitory ampli-

fying cells (TAs), that arise from their asymmetric divisions. These populations are morpho-

logically and phenotypically similar, and the only difference between KSCs and TAs is their

cell cycle activity. KSCs are quiescent and rarely divide, following a historically proposed possi-

ble asymmetrical division model [2,3]. Indeed, one stem cell gives rise to another stem cell and

to a daughter cell or TA, which maintains the keratinocyte stem cell pool throughout life. Con-

sequently, the same number of epidermal stem cells is found in the skin of both young and old

individuals [4]. By contrast, TAs actively proliferate to generate an important number of kera-

tinocytes, which quickly enter into the differentiation and migration processes after mitosis

[5–7] as soon as they leave the basal layer. To date, no unique specific markers for KSCs have

been identified, making them difficult to isolate. Some authors have proposed a simple way to

isolate KSCs (rapid adhesion method (RA)) based on their ability to adhere faster than TA

cells [8]. Others have demonstrated that a population of cells sorted by flow cytometry and fol-

lowing the phenotype integrin alpha 6high/ transferrin receptor CD71low displayed a quiescent

state once extracted; however, they displayed a high clonogenic and proliferative potential

once cultured [9]. Moreover, these cells had a strong ability to reconstruct a pluristratified epi-

dermis in vivo with a very low cellular seeding density [10] and were described as KSCs [11].

In comparison, alpha 6high/CD71high presented characteristics similar to those shared by TAs

[12,13].

The skin is continuously exposed to many external biological or environmental factors such

as sun radiation, including UV radiation. Among the types of radiation, UVA and UVB pene-

trate through the epidermis and induce DNA damage to basal cells. Due to their strong

absorption by DNA, UVB rays are known to generate photoproducts (cyclobutane pyrimidine

dimers (CPDs), 6–4 photo-products (6-4PP) and Dewar isomers), leading to DNA mutations

and cancers [14,15]. UVA rays are weakly absorbed by DNA and have been considered to be

responsible for photo-ageing for years. Indeed, they generate strong oxidative stress (forma-

tion of reactive oxygen species, ROS), causing cellular damage to several macromolecules such

as lipids and proteins in the dermis and epidermis [16–18]. Today, UVA rays also appear to be

a source of DNA damage in keratinocytes, which makes this type of radiation responsible for

skin cancer formation [19] and has led UVA to be recognized as a class I carcinogen [20].

Indeed, by inducing ROS production, UVA rays oxidize guanine bases, forming 8-oxo-

7,8-dihydroguanine (8-oxoG) by the singlet oxygen, specifically [16,21,22]. Moreover, the

hydroxyl radical, •OH, oxidizes purines and pyrimidines bases [23], but to a lesser extent [24].

The hydroxyl radical directly reacts with DNA that is situated close to its production location

and induces a single-strand break (SSB) by attacking 2-deoxyribose fragments [25]. UVA radi-

ation also leads to the formation of thymine dimers [26] by two reactions as follows: direct

absorption by DNA [27] and a triplet-triplet energy transfer reaction [28]. The quantity of

CPDs formed after UVA radiation is actually higher than 8-oxoG in culture cells [26,29] as

well as in skin [30]. It is notable that CPD formation in UVA-exposed skin is dependent on
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the skin phototype [31]. Finally, UVA rays do not lead to the formation of double-strand

breaks (DSB) but modulate the UVB-induced photoproduct distribution by facilitating 6-4PP

isomerization into Dewar isomers [26].

Both UVA and UVB induce keratinocytes response but in a different way, leading to differ-

ent skin response. Indeed, besides difference on penetration, sunburn and tanning induction

as well as on carcinogenesis, only UVB radiation induces an increase in MC1R and CYP11B

genes expression and in the production of CRH, ACTH and cortisol showing its implication

in the local regulation of neuroendocrine activities [32,33]. This neuroendocrine system

appears important to coordinate local and systemic responses to environment (via the implica-

tion of endogenous factors such as melatonin, serotonin and others) as well as by its ability to

reset the body homeostasis adaptation mechanisms [34].

In this context, although KSCs are responsible for epidermal renewal throughout life, it is

essential to maintain their integrity. Indeed, even if they are protected by their deep location

within the basal layer in their niche [35] as well as their quiescent state to avoid replication

mistakes, genomic instability can lead to their activation and thus to depletion, premature age-

ing and/or skin carcinomas (reviewed in [36]). Because UVA and UVB radiation can reach

KSCs and induce DNA damage, it seems important to specifically characterize the KSC

response to UV radiation. It has previously been reported that stem cells were more resistant

to various stressors [37–40]. In the epidermis, the same trend was observed. Actually, an

alpha6+/CD44+ cell population sharing similar characteristics to KSCs displayed resistance to

apoptosis following UVB radiation or other genotoxic stressors [41]. Moreover, 24 h post-

UVB radiation, the proportion of the alpha6+/p63+ cell population, considered to be stem

cells, increased at the expense of the other populations, which decreased in proportion [42].

Interestingly, rapid adherent cells (10 min on collagen I) extracted from irradiated skin are

photosensitive [43] but not in comparison to non-adherent cells. Finally, KSCs were demon-

strated more resistant to ionizing radiation stress compared with TAs [44,45].

The aim of the study is first to characterize the KSC and TA responses to UVA radiation by

assessing their cytotoxicity, clonogenicity and ability to reconstruct human epidermis in vitro.

We previously showed that despite optimization of the rapid adhesion method, the rapid

adherent cell population was not similar to the KSC population obtained by flow cytometry

that was sorting following alpha6high/CD71low [46]. For this reason, in this study, the responses

to the UVA irradiation of human KSCs and TAs are immediately investigated from native

skin after cell sorting by flow cytometry using aplah6 and CD71 labeling as well as during pri-

mary culture to investigate the cell phenotypes similar to those found in vivo in the basal layer

of the epidermis. In the case of different sensitivities between the two populations, the second

objective is to investigate whether this difference could be due to a difference in DNA damage

induction or repair. The main findings show that KSCs are more photoresistant compared to

their direct progeny, TA cells, partially due to their better DNA repair ability.

Material and methods

Keratinocyte extraction and culture

Primary cultures of keratinocytes were established from human skin obtained from patients

undergoing surgery with informed consent, in accordance to ethical with ethical guidelines

and declared to the French research ministry (Declaration no. DC-2008-162 delivered to the

Cell and Tissue Bank of Hospices Civils de Lyon). The donors were healthy female between 20

and 35 years old. All donors were Caucasian and Phototype III or IV. The epidermis was sepa-

rated from the dermis using 10 mg/mL dispase (Thermo Fisher Scientific, Waltham, MA

USA). The cells were then dissociated using trypsin EDTA 0.05% (Thermo Fisher Scientific)
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for 12 min at 37˚C and counted in Malassez after staining with trypan blue 0.04% (hospital

pharmaceutical preparation).

The isolation of Keratinocyte Stem Cells (KSCs) and Transitory

Amplifying cells (TAs)

According to Kaur’s laboratory protocol, keratinocyte populations were defined on the basis of

two cell-surface markers, namely, α6-integrin (α6) and CD71 [11]. Briefly, freshly extracted kera-

tinocytes were incubated with a biotinylated mouse anti-human CD71 antibody (BD biosciences,

New Jersey, USA) for 30 min at 4˚C. After washing, cells were stained with R-Phycoerythrin

(R-PE)-conjugated rat anti-human CD49f antibody (mAb anti-alpha6) and streptavidin allophy-

cocyanin (SAV-APC) for 30 min at 4˚C. α6highCD71low (KSC) and α6highCD71high (TA) popula-

tions were isolated using a MoFlo cell sorter (DakoCytomation, Glostrup, Denmark). For all

experiments, an appropriate isotype-matched control, mAbs, was used to determine the level of

background staining. After sorting, cells were counted, and viability was controlled using trypan

blue before seeding for CFU and RHE. Validation of cell sorting and characterization of isolated

cells (KSCs and TAs) were performed [45].

UVA radiation

KSC and TA populations were seeded at 10 000 cells/cm2 in KSFM-medium supplemented

with 1.5 ng/mL EGF, 25 μg/mL bovine pituitary extract (BPE) and 75 μg/ml of primocin. The

next day, the culture medium was removed, the cells were rinsed twice with PBS, and irradia-

tion with UVA (UVA 700L Waldmann, Germany) was performed at different doses (from 10

to 50 J/cm2) in PBS with the lid removed. The plates were placed to ice to prevent heating due

to the UVA lamp. After radiation, PBS was replaced by fresh medium. Control sham irradia-

tion (CSI) was used as the non-irradiated control.

MTT assay

After cell sorting, KSCs and TAs were seeded at 10 000 cells/cm2 in KSFM-medium supple-

mented with 1.5 ng/mL EGF, 25 μg/mL bovine pituitary extract (BPE) and 75 μg/ml of primo-

cin and subsequently irradiated the next day as previously described. Five days after UVA

radiation, KSCs and TAs were rinsed with PBS and placed in MTT solution (Sigma, St Quen-

tin Fallavier, France) at 1 mg/mL for 2 hours at 37˚C. The MTT was then dissolved in DMSO

for 30 min under agitation. Optical density (OD) was measured in 450 nm using a spectropho-

tometer. The results are expressed for each UVA dose as OD measured and as viability % vs.

CSI as 100%. Experiments were performed on 3 samples from three donors.

Clonogenic assay

After cell sorting, KSCs and TAs were seeded at a clonal density of 60 cells/cm2 onto inactivated

human fibroblasts, which served as a feeder layer pre-seeded at 4000 cells/cm2 in keratinocyte

medium DMEM and Ham’s F12 at a ratio of 3:1 (Thermo Fisher Scientific). This medium was

supplemented with 10% fetal calf serum (Hyclone, Logan, Utah, USA), 10 ng/mL epidermal

growth factor (EGF) (Sigma, St Quentin Fallavier, France), 24.3 μg/mL adenine (Sigma), 0.4 μg/

mL hydrocortisone (Upjohn, Serb Laboratories, Paris, France), 0.12 IU/mL insulin (Lilly France,

St Cloud, France), 2.10-9M triiodo-L-thyronine (Sigma), 10−9 M cholera toxin (Sigma) and antibi-

otics. The next day, the cells were irradiated as described previously and cultured for 14 days. The

medium was changed three times a week. For clone staining, the cells were fixed and stained

using rhodamine (Sigma) at 0.01 g/mL in 4% paraformaldehyde for 30 min. Holoclones,
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meroclones and paraclones were counted using microscope. Holoclone” was used to refer to large

(> 5 mm) and homogeneous clones with regular and smooth contours whereas meroclones are

intermediate sized, heterogeneous and display contours”. Paraclones are defined as smaller colo-

nies and contains exclusively cells with a short replicative lifespan. Colony forming efficiency

(CFE) was calculated as follows: CFU (number of meroclones + holoclones)/(cellular seeding den-

sity x 100). Experiments were performed on 3 samples from three donors.

Reconstructed human epidermis (RHE)

Culture. After cell sorting, KSCs and TAs were seeded at 5.105/cm2 in culture inserts 0.4 μm

PCF (Millicell, Millipore) in keratinocyte medium (DMEM and Ham’s F12 at a ratio of 3:1 (Thermo

Fisher Scientific)) supplemented with 10% fetal calf serum (Hyclone, Logan, Utah, USA), 10 ng/mL

epidermal growth factor (EGF) (Sigma, St Quentin Fallavier, France), 24.3 μg/mL adenine (Sigma),

0.4 μg/mL hydrocortisone (Upjohn, Serb Laboratories, Paris, France), 0.12 IU/mL insulin (Lilly

France, St Cloud, France), 2.10-9M triiodo-L-thyronine (Sigma), 10−9 M cholera toxin (Sigma) and

antibiotics. The next day, they were irradiated at 10 J/cm2 as previously described. Cells were then

cultured in a keratinocyte medium for 7 days in immerged conditions before elevation at air/liquid

interface for 7 additional days in a differentiation medium (DMEM supplemented with 8 mg/mL

bovine serum albumin (Sigma, St Quentin Fallavier, France), 0.12 IU/mL insulin, 0.4 μg/mL hydro-

cortisone, and antibiotics). Experiments were performed on samples from three donors.

Histology and immunohistological analysis. After 14 days of culture, reconstructed epi-

dermis was fixed in neutral buffered formalin 4% (Diapath, Martinengo, Italy) for 24 h and

embedded in paraffin. Paraffin-embedded formalin-fixed samples were then cut into 5-μm

sections. After dewaxing and rehydration, sections were stained with hematoxylin—phloxin—

saffron (HPS staining) for routine histology.

For immunohistological analysis, 5-μm tissue sections were incubated in 5% H2O2 / 3%

normal goat serum (NGS; Jackson Immunoresearch, UK) to inactivate endogenous peroxi-

dases. Non-specific binding was blocked in PBS containing 5% of NGS. Sections were then

incubated with the following primary antibodies diluted in PBS / NGS 5% overnight at room

temperature: Ki67 (Dako, France). The secondary antibody HRP-anti-mouse (Dako, France)

was incubated for 1 hour at room temperature. Labeling was revealed using DAB (Dako,

France), and slides were stained with hematoxylin.

Image processing and analysis were performed using the software MBF ImageJ for micros-

copy (Research Service Branch, US National Institute of Health, United States).

Epidermal thickness was obtained by measuring the distance between the basal lamina and

the top of the epidermis excluding the stratum corneum. Conversion from numbers of pixels

and μm was performed related to a scale included in the software. Nine different fields per

experimental condition were quantified. Data are expressed in μm.

For proliferative capacity, the number of Ki67 positive-cells was counted in nine fields of

each sample (n = 3).

Alkaline comet assay

The principle of the comet assay is shown in Fig 1. This assay allows the detection of single- and

double-strand breaks as well as alkali-labile sites expressed as frank single-strand breaks in indi-

vidual cells. Cell suspensions (50 μl containing 200 000 cells) were mixed rapidly with 450 μl of

0.7% prewarmed low-melting-point agarose in PBS. A total of 100 mL of the cell suspension

mixture was spread on a microscope slide coated with 1% agarose and chilled to ice tempera-

ture. After gelling, the slides were treated with lysis solution [2.2 M NaCl, 89 mM ethylene-dia-

minetetraacetic acid disodium salt (Na-EDTA, Sigma), 8.9 mM hydroxymethylaminomethane
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buffer (Tris, Sigma), 30 mM N-lauroyl sarcosine, 10% dimethyl sulfoxide (DMSO, Sigma), and

1% Triton X100, pH 10] overnight at 4˚C. The slides were washed three times in 0.4 M Tris pH

7.4 for 10 min and submersed in a horizontal chamber in electrophoresis buffer (0.3 M NaOH,

1 mM Na-EDTA) for 20 min at 4˚C. Electrophoresis was performed at 300 mA at 4˚C for 30

min. The slides were neutralized three times for 10 min with Tris buffer (0.4 M pH 7.4), stained

with 50 μl of GelRed and then incubated at 4˚C in a light-tight wet chamber until analysis of the

slides. For revealing oxidized purines and pyrimidine dimers, Fpg (Trevigen, Gaithersburg,

MD, USA) and T4endoV (BioLabs, Ipswich, MA, USA) were added after the lysis step at 0.05

U/μL for 45 min at 37˚C. The slides were stained with GelRed, and comet analysis was per-

formed using the image analysis Komet 6.0 software (Kinetic Imaging Ltd., Andor Technology

plc., Belfast, Ireland). The median % tail intensity was accepted as the index of damage. For

each condition, the average median % tail intensity was determined from the analysis of 150

comets (triplicate slides, 50 comets analyzed per slide) from three donors. Oxidized purines and

pyrimidine dimer lesions were calculated by subtraction of damages obtained with and without

Fpg/T4endoV.

Statistical analysis

For all data, the statistical significance was assessed by the Mann-Whitney test using the soft-

ware GraphPad Prism 4 (GraphPad, La Jolla, CA, USA). Statistically significant differences are

indicated by asterisks as follows: � P� 0.05 ��, P� 0.005, and ��� P�0.0005. All the experi-

ments were performed on 3 donors.

Results

KSC and TA responses after UVA Exposure

Short-term resistance against UVA-induced cytotoxicity (photo-toxicity). Fig 2 shows

the percentage of viability of sorted KSC and TA populations irradiated with increasing doses

Fig 1. Principle of the comet assay. For revealing a specific lesion, the lesion-specific enzyme may be used to transform the lesion into

a break; i.e., Fpg: enzyme cutting oxidative bases (8oxo-G et 8oxo-A) and T4 endo V: enzyme cutting CPDs.

https://doi.org/10.1371/journal.pone.0203863.g001
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of UVA. After exposure to 10 J/cm2, the viability strongly and statistically (P<0.05) decreased

for both KSCs and TAs (Fig 2 A). However, at this UVA dose, the viability was significantly

higher for KSCs compared to TAs (Fig 2A and 2B), demonstrating that KSCs are more resis-

tant to UVA-induced cytotoxicity than TAs. From 20 to 50 J/cm2, the cell viability was equal

to zero for both cell populations (data not shown).

Long-term photo-resistance against UVA-induced cytotoxicity. The representative CFE

profile of samples from three donors was obtained for KSCs and TAs irradiated at different

UVA doses and is presented in Fig 3. For CSI (0 J/cm2), the CFE appears higher for KSCs than

TAs, which shows a better clonogenic potential of KSCs, thus validating the results of the cell

sorting and experiments. As described above, low doses of UVA were sufficient to induce a

strong CFE reduction for both populations; however, at 10 and 20 J/cm2, the KSC population

still displayed a higher clonogenic potential compared to TAs, which were only able to form a

few colonies (Fig 3A and 3B). Interestingly, only holoclones (colonies formed by KSCs) were

resistant to radiation, as shown by the strong decrease of meroclones in this irradiated TA pop-

ulation compared to the non-irradiated population where holoclones and meroclones were

present (Fig 3C). For doses of UVA higher than20 J/cm2, both populations seemed to be

unable to form colonies.

The organogenesis potential of KSC and TA populations after UVA exposure. Follow-

ing the results shown above, 10 J/cm2 was selected to test the effect of UVA radiation on the

ability of KSCs and TAs to reconstruct human epidermis (RHE). Fig 4 compares RHE cultured

with KSCs and TAs irradiated to 10 J/cm2 UVA or not irradiated (CSI). RHE cultured with

non-irradiated freshly extracted keratinocytes displayed between 2 and 6 living layers of stra-
tum granulosum and stratum corneum, which are signs of terminal differentiation (Fig 4A).

The non-irradiated RHE cultured with KSCs measured 62.7 μM and is thicker than the one

produced with TA cells that measured only 36.5 μM, although the number of Ki67-positive

cells appeared lower in the KSC-RHE vs. the TA-RHE (11 cells compared to 17 for TA-RHE).

Fig 2. The effect of UVA radiation doses on the cytotoxicity of KSCs and TAs. The percentage of viability vs. sham irradiated cells (100%)

is shown. At 10 J/cm2, KSCs are more resistant to UVA radiation compared to TAs; the mean of 3 donors +- SD; �� p<0.005, ��� p<0.0005.

https://doi.org/10.1371/journal.pone.0203863.g002
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Note that whatever the treatment conditions, a stratum corneum layer was observed for all of

the reconstructed epidermis.

After UVA exposure, only KSC-cultured RHE was able to preserve its thickness and integ-

rity. Indeed, KSC-RHE thickness appeared very similar to that of CSI, with a stabilization of

approximately 62 μM, whereas the thickness of the TA-cultured RHE significantly decreased

from 35 μm to 20 μm (P = 0.0286) with UVA radiation (Fig 4A and 4C). Concerning the pro-

liferation state, after radiation, the number of proliferative cells tended to increase in the

KSC-RHE, whereas they decreased in the TA-RHE.

Fig 3. The Effect of UVA radiation doses on the clonogenicity of KSCs and TAs. A. The results are expressed as colony forming efficiency (number of colonies/

seeding density x 100). At 10 J/cm2 and 20 J/cm2, KSCs form more clones compared to TAs; the mean of samples from three donors; B. A picture of clones obtained

for KSCs and TAs at different UVA doses; C. Number of holoclones and meroclones for KSCs and TAs at different UVA doses; representative results of samples

from 3 donors; ��� p<0.0005.

https://doi.org/10.1371/journal.pone.0203863.g003
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All together, these results show that KSCs are more photo-resistant to low UVA radiation

than their direct progeny, the TA cells.

Single-strand breaks and repair of thymine dimers is faster in KSCs

compared to TAs

Global (SSB and ALS), oxidative (8oxoG) and pyrimidine dimer (CPDs) DNA lesion induc-

tion and repair were characterized in sorted KSCs and TAs using the alkaline comet assay with

or without Fpg or T4 endoV (Figs 5 and 6). Repair kinetics was described as the disappearance

of DNA lesions according to the time post-UVA exposure.

DNA damage induction is similar in both populations. As shown in Fig 5, non-irradi-

ated cells (CSI) did not show any DNA lesions in either population. The peak of SSBs and

CPDs is significantly higher in both irradiated populations vs. CSI and highest immediately

after UVA exposure (T0) (tail intensity of approximately 30% and 40% for SSB and CPDs,

respectively). For this time (T0), the levels of SSB and CPDs were similar for UVA-irradiated

KSCs and TAs. Concerning 8oxoG, at T0, the level of 8oxoG appeared particularly low (tail

intensity of approximately 10%) in both UVA-irradiated populations in contrast to SSB and

CPD damage. For this time, there was no difference in 8oxoG damage level between the

Fig 4. The effect of UVA radiation at 10 J/cm2 on the organogenesis potential of KSC and TA populations. Morphology by HPS staining (A),

epidermal thickness (B), and number of Ki67+ cells (B and D) were assessed. Epidermal thickness and Ki67-positive cells were numbered on three slides

per donor; representative profile of two donors;� p<0.05.

https://doi.org/10.1371/journal.pone.0203863.g004
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irradiated populations. However, the level of 8oxoG was significantly different for UVA-TA

compared to CSI-TA, whereas it was not different for UVA-KSC compared to CSI-KSC. The

peak of 8oxoG appeared 30 min after UVA-radiation and was higher for TAs than for KSCs;

however, the difference was not statistically significant. For this time, the levels of 8oxoG

observed in TAs and in KSCs were significantly higher than those measured in CSI-TA

(p<0.005) and CSI-KSC (p<0.05).

DNA damage repair displays a difference between KSCs and TAs. Despite no difference

in DNA damage induction between the two populations, KSCs displayed a better SSB and

CPD repair capacity compared to TAs (Fig 6). Indeed, the peak of global DNA damage (SSB

and ALS) was revealed by comet assay without Fpg and was highest immediately after 10 J/

cm2 UVA radiation for both populations; however, the repair process was achieved within 30

min for the KSC-enriched population and took 24 h for TA cells to achieve. Indeed, the SSB

level was significantly reduced between T0 and 30 min post-exposure in KSCs.

The peak of the CPD lesions reached the maximum immediately after radiation (T0) for

both KSCs and TAs. However, for KSCs the CPD levels significantly decreased 24 h after radia-

tion to reach the initial level at 48 h after UVA radiation. In contrast to KSCs, the level of

Fig 5. SSB, ALS, 8oxoG and thymine dimer induction in UVA-irradiated KSCS and TAs (at 10 J/cm2) by comet

assay +- Fpg/T4 endoV. The results are expressed as the median % tail intensity. The results for 8oxoG and TT-dimers

were obtained by subtraction of the comet assay results with and without Fpg and T4endoV, respectively; the mean of

samples from 3 donors +- SD; � p<0.05 ��, p<0.005 ���, p<0.0005.

https://doi.org/10.1371/journal.pone.0203863.g005
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CPDs in TAs followed a decreasing trend to 24 h post-exposure and stabilized at 48 h post

UVA-exposure.

The repair of 8oxoG was faster for TAs compared to the KSC-enriched population. Indeed,

2 hours after radiation exposure, the level of 8oxoG in TAs was significantly lower than at 30

min and then returned to the initial level before radiation. For the KSC population, 2 hours

after radiation exposure, the level of 8oxoG was not significantly different from the level

observed at 30 min, and it took 24 h to reach the initial level. Moreover, the level of 8oxoG was

very low immediately after UVA radiation (T0), which may not be sufficient to activate DNA

repair systems.

Fig 6. SSB, ALS and 8oxoG repair of UVA-irradiated KSCs and TAs (at 10 J/cm2) using comet assay +- Fpg/T4endoV. The results are expressed as the

median % of remaining lesions. The results for 8oxoG and TT-dimers were obtained by subtraction of comet assay results with and without Fpg and

T4endoV, respectively; the mean of samples from 3 donors +- SD. Statistical analyses were performed for each population (dotted line for TAs and black line

for KSCs) between each time and the previous time; � p<0.005, �� p<0.005.

https://doi.org/10.1371/journal.pone.0203863.g006
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Discussion

For the first time, our results strongly demonstrate that a keratinocyte population enriched

with epidermal stem cells is more resistant to UVA radiation than their direct progeny, TA

cells. KSC population was more able to survive, to repair its damages and to keep its organo-

genesis potential than TA population after UVA irradiation. Indeed, the KSC population dis-

played lower short- and long-term photosensitivities compared to TA population, as

demonstrated by the MTT assay; clonogenic potential; and ability to reconstruct an epidermis

in vitro. The viability evaluated by the MTT assay appeared higher in irradiated KSCs com-

pared to that in irradiated TAs. The clonogenic potential was also 3 times higher for KSCs

than for TAs after 10 J/cm2 UVA radiation. Moreover, even if the clonogenicity potential was

reduced for both irradiated TA and KSC populations, holoclones, known to be formed by

KSCs [47], are preserved after radiation in the TA population, suggesting that epidermal stem

cells (having contaminated TA cells) are more resistant. This contamination may explain the

presence of clones in the TA population after 10 J/cm2 UVA and thus, a similar ratio was

obtained between non-irradiated and irradiated cells in both populations. In addition, the

thickness of the KSC-cultured epidermis, which was 3 times greater than the thickness of the

epidermis produced from TAs, remained stable after UVA radiation, most likely due to a

higher number of Ki67+ cells. By contrast, the number of proliferative cells had a decreasing

trend in irradiated TA-RHE, which suggests the loss of their proliferative capacity after radia-

tion, compared to KSCs that most likely preserved their ability to proliferate in the regenera-

tion of tissue. Note that for each studied parameter, both suspensions enriched for KSCs and

TAs were irradiated before entering into their cell cycle to approximate physiological condi-

tions. These results are consistent with other studies where KSCs were more resistant to vari-

ous genotoxic stressors such as UVB [41,42] and ionizing radiation [44,45].

Several mechanisms of action can explain the difference in photosensitivity between KSCs

and TAs. Quiescence is the first way to resist against accumulated DNA damage and mutations

that appear with repeated divisions or following exogenous stress such as UVA radiation [48].

In addition, asymmetrical division ensures the integrity of an “immortal strand” in intestinal

stem cells, but not in hair follicle stem cells. This process has not been demonstrated in KSCs

to date.

Second, the modulation of one or several pathways of the DNA damage response (DDR)

can occur in KSCs. Among them, cells can undergo cell cycle arrest, apoptosis can be downre-

gulated, the expression of some genes (cytokines, growth factors, intracellular pathways) can

be modulated, and DNA repair systems can be more efficient. Concerning cell cycle arrest, the

unchanged colony size after radiation of both KSCs and TAs obtained in our study suggest

that this mechanism is not functioning. The resistance of stem cells against genotoxic stress

would be the result of a specific resistance to apoptosis. Indeed, in our study, both populations

did not survive high UVA doses, but in the KSC population, a higher number of cells remained

alive and were still able to form colonies after low doses of UVA irradiation, which suggests a

resistance to apoptosis. In accordance, the apoptosis pathway is under regulated in KSCs after

ionizing radiation [44,45] and in the large bowel [49], which makes these cells prone to the

development of cancers. By contrast, the elimination of damaged cells unable to repair their

lesions via apoptosis represents a specific response for avoiding cell transformation in the

small intestine [49]. The Embryonic Stem Cells (ESCs) are also sensitive to ionizing radiation

as the G1-checkpoint is not present, thus implying the deregulation of several pathways such

as p53, p21, ATM, Chk2, Cdc25A and Cdk2, which favors apoptosis [50]. After ionizing radia-

tion in the epidermis in vivo, damaged proliferative keratinocytes (TAs) are eliminated by the

natural process of mitosis/differentiation [51].
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Another mechanism can be the modulation of gene transcription and/or intracellular path-

ways. Indeed, the FGF2 pathway is upregulated in irradiated KSCs [44,45], and the Wnt/β-

catenin pathway is implied in the radio-resistance of mammary stem cells [52]. Skin cells also

synthetize various endogenous factors protecting the skin from DNA damage and oxidative

stress. For instance, melatonin may protect DNA against free radical damage not only by mod-

ulating the gene expression of antioxidant enzymes or scavenging hydroxyl radicals but also

via regulation of several key genes involved in DNA damage repair pathways [53]. Besides this

melatoninergic system, a secosteroidogenic system implying the 1,25(OH)2D3, 20(OH)D3

and 20,23(OH)2D3 also protects the skin against the damage induced by UVB [54]. Note that

all these aspects (cell cycle and cellular pathways) were not the main focus of this work and

thus were not further investigated.

In our study, we focused on DNA damage and repair. As UVA induced strong oxidative

stress, which is an accountable factor for stem cell senescence and ageing [55,56], global UVA

cell sensitivity could be related to ROS production, leading to DNA damage as SSB, oxidized

bases such as 8oxoG, as well as impairment of repair system enzymes [57–59]. Indeed the oxi-

dation of OGG1 reduces the ability to repair 8oxoG [59]. In addition to these alterations,

CPDs are also induced [26]. Our results showed no difference in SSB, 8oxoG and CPD induc-

tion between KSCs and progenitors immediately after UVA radiation. However, KSCs dis-

played a greater DNA repair capacity; SSB repair was faster for the KSC population, which was

consistent with a previous report [44]. Indeed, only 30 min after UVA radiation, all SSBs were

repaired, whereas it took 24 h for the SSBs to be repaired in the TA population. Moreover,

KSCs also repaired CPDs faster as evidenced by a reduction in damage 24 h post-exposure and

repair completed at 48 h after radiation, whereas CPDs persisted in the TA population, as

shown for whole keratinocytes [30]. In accordance, better repair capacities have been reported

in embryonic stem cells [60,61], iPS [62], adult neural stem cells [63,64], adult mammary stem

cells [65] and KSCs [44,45].

Concerning 8oxoG, the peak of damage appeared 30 min after radiation, most likely due to

a late production from the mitochondria [66] and is lower in KSCs compared to TAs, which

suggests better protection from ROS. Consistently, previous reports showed that stem cells

were much less susceptible to damage from hydrogen peroxide than differentiated cells [67]

and in cases where ROS were decreased in a murine epidermal side-population with stem cell-

like properties [68]. Such resistance has also been reported in embryonic stem cells [50], blood

progenitors [67] and hematopoietic stem cells [69]. For embryonic stem cells, the mechanism

of ROS production may be explained by a lower number of mitochondria that are less mature

and associated with energy production via glycolysis instead of oxidative phosphorylation [70–

74]. For blood progenitors, antioxidant enzymes (catalase, glutathione peroxidase and manga-

nese superoxide dismutase) are upregulated [67]. However, such ROS protection systems have

not yet been demonstrated in KSCs.

Repair system enzymes are also impaired by UVA-induced oxidative stress [57–59]. A bet-

ter protection from ROS in KSCs may be linked to the higher endogenous repair capacities

observed here for SSBs and CPDs. By contrast, in the TA population, 8oxoG damage appears

to be more rapidly repaired (within 2 hours). We can also suppose that cells do not develop a

repair system for damage that they do not undergo. Indeed, even if it has not been demon-

strated, quiescent cells may not be prepared for potential damage once they enter into a prolif-

erative cycle, as observed here for 8oxoG [75]. By contrast, oxidative damage in embryonic

stem cells was reported to be more efficient [38]. However, note that due to the low initial level

of 8oxoG observed here, especially in KSCs, it is particularly difficult to interpret the repair

kinetics, and other studies should be performed. As the base excision repair (BER) is impli-

cated in SSB repair and the nucleotide excision repair (NER) in CPD repair, the expression of
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genes implicated in BER and NER pathways could be upregulated in KSCs, in addition to cyto-

kines or growth factors. However, due to the low cell number obtained after cell sorting, the

choice of techniques to evaluate the expression of repair genes is limited, making it difficult to

perform these evaluations.

Even if KSCs are more photo-resistant than TAs, they still clearly display photosensitivity.

Indeed, the MTT assay results and the decrease in clonogenicity from 10 J/cm2 UVA radiation

are possible results of accumulating genetic alterations that can compromise the genomic

integrity of KSCs. In contrast to TAs that are actively proliferative but rapidly eliminated by

the differentiation program, KSCs persist throughout life, making them a specific target for

photocarcinogenesis. Indeed, over the long term, the genotoxic stress may induce KSC

impairment, loss of function [76] and/or deprivation from their niche (reviewed by [77]) with

premature ageing and/or carcinogenesis as consequences. In addition, the structure and com-

position of the stem cell niche is also modified by UV radiation [78,79], which implies the loss

of communication between KSCs and their microenvironment, which is essential for their reg-

ulation and maintenance [80].

Conclusions

To conclude, we demonstrated that a population enriched in KSCs is more resistant to UVA

radiation than TAs, notably because of the high endogenous repair ability. Indeed, SSBs and

CPDs were repaired faster in KSCs compared to TAs. Concerning 8oxoG, the peak of damage

appeared to be lower in KSCs than TAs, which suggests better protection from ROS produc-

tion. Finally, even if KSCs are have increased resistance to DNA damage, they still display

photosensitivity and should be protected from genotoxic stress, making them a specific target

for photoprotection.
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